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ABSTRACT 
Novelty Search is an algorithm for discovering new things 

that is motivated by a behavior's novelty. Different 

generations from the same individual have varying levels of 

fitness. As a result, the fitness scene is always shifting, and 

while at the size of a single generation, the euphemism of a 

fitness landscape with peaks and valleys still remains true, it 

no longer holds true when seen from the perspective of the 

entire evolutionary process. What are the characteristics of 

these algorithms? Is it possible to define a model that will aid 

in understanding how it functions? This knowledge is 

necessary for analyzing new Novelty Search versions and 

current Novelty Search versions, perhaps more effective ones. 

We claim that in the behaviour space, Novelty Search behaves 

asymptotically as a uniform random search process. This is an 

intriguing feature because it's not practical to sample this area 

directly. The genotype space is only accessible to the 

algorithm directly, which has a complicated interaction with 

the behaviour space. On a classic Novelty Search experiment, 

we discuss the model and put it through its paces. We also 

show that it puts new light on previous study findings and 

suggests new research directions. 
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1. INTRODUCTION 
Evolutionary algorithms use a fitness function to guide the 

selection process, which determines how well an individual 

meets a set of criteria. This goal-oriented fitness function has 

been shown to be deceptive [46,42,41,38] and can be 

substituted having a selection pressure that isn't reliant on the 

goal. A compulsion to try new things. Amazingly, despite the 

fact that the goal to achieve is not taken into in any way 

during the search process. The Novelty Search (NS) 

procedure that results looks to become at least as effective. 

[33,45,53]. though not as effective than a domain-specific 

target search such as Swarms of robots, maze navigation and 

biped locomotion, and plastic neural network design 

Efficiency scenario changes are a phenomenon that emerges 

from evolutionary change that are motivated by a particular 

aim. Individuals tend to reach fitness peaks as a result of the 

evolutionary process. In Novelty Search, from generation to 

generation the fitness scene changes. Individuals who were 

thought to be innovative in one era may not be so in the next. 

What is an NS process's dynamic? What is the best way to 

model it? The dearth of solutions to these issues causes 

serious ramifications. Whenever it comes to putting this an 

approach into reality. Several important issues remained 

unsettled such as how to choose behaviour descriptors. What 

is NS's most important attributes or behaviors? Many practical 

studies have looked into the impact of various algorithm 

decisions. However, no conceptual approach has been 

produced that combines all of these data to provide a holistic 

perspective of the technique. 

It would be fascinating to use such a model to examine the 

consequences of aesthetic choices, and to suggest more 

effective methods. In addition, Novelty Search Performance 

techniques are based on this principle. Rather than an 

absolutely greatest solution, there are multiple options. These 

algorithms try to find a diverse group of efficient alternatives. 

Novelty Search methods and their variants should allow for a 

thorough investigation of the behaviour space, if not uniform 

exploration. We present a simplistic and hypothetical 

paradigm of algorithms that are motivated by novelty. This is 

based on the notion that Novelty Search this results in an 

implicit and homogenous stochastic search process in the 

behaviour space. On the basis of this assumption, a model is 

constructed, its attributes are studied and explained, and an 

extension is offered. The importance of these theoretical 

models is examined in light of the literature after they are 

compared to experimental results. 

2. BACKGROUND  

2.1 Swarm robotics 
The study of social insects has inspired the Mobile robots is a 

subfield of computational intelligence, which is a broader 

term. Smart technologies for swarms. Whether natural like 

synthetic insect nest or huge decentralized quadrotors systems 

depend on its ability to self-organize to demonstrate 

intelligence conduct that is collectively intelligent .as a result, 

swarm robotics is a promising method for decentralizing the 

development of cluster automation and the difficulties which 

have been resolved provide within look at the coordinating of 

large packs of automated systems. However, designing self-

organization in multirobot systems by hand has proven 

difficult. When manually designing the controlling for single 

components of a swarming. it is necessary to decompose the 

macro clustering activity into micro behavioral principles. 

Discovering significant interactions between individual 

robots, as well as between robots and the environment, is part 

of this deconstruction, this will eventually result in the 

development of universal self-organized conduct. Regrettably, 

there really is no uniform method for decomposing true 

international conduct through into clear regulations that 

control it. As a result, system designers frequently draw 

Natural swarming mechanisms can be used as motivation, or 

deliberate guess work can be used [38]. Meta-heuristic 

methods are applied successfully in several applications such 

virtual machine placement [59,60,61,62,63].  

2.2 Evolutionary robots  
The use of evolution robots is the application of combinatorial 

optimization to the creation of mobile robots. Because the 

need for physical dissection of the intended macro activity is 

reduced via simulated annealing. Modular robotic platforms 

can benefit from adaptive robots as a fault diagnosis option. 

Artificial evolution is simply a process of experimentation in 

which possible improvements are evaluated assessed based on 
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their conduct at the cluster stage. As a result, the adaptive step 

is followed toward the objective through macro evaluation. 

Traditional evolutionary techniques, on the other hand, are 

prone to a variety of flaws. In evolutionary computation, 

deception is a difficult problem as it can cause the process of 

evolution to hastily concentrate on unique way. Deception 

occurs whenever the heuristic generates a false performance 

slope. Whenever the fitness value lacks to appropriately 

compensate all stages takes to achieve the optimal solutions, 

something happens. The bootstrap problem is a potential 

problem that may arise when using ensemble approach to 

address challenging situations. Through the early phases of 

evolution, whenever the job is very onerous to create greater 

selection pressures on the species. This dilemma arises, due to 

the fact that everyone performs badly. As a result, there really 

is no utility slope, and the biological evolution moves at a 

snail's pace begins to drift towards a boring part of the 

solution space. gap in an uninspiring part of the solution space 

Mobility sharing, for example, is a technique for maintaining 

genomic variety in a population propagation of variety based 

on the solutions' ranking. Individuals of genetically stages 

mingling and minimization of genotype age, are one way to 

avoid deceit. However, the issue could eventually the fitness 

value will win out over the detection algorithm. Irrespective 

of how much genomic diversity there is in the population. The 

process of evolution may nevertheless succeed if the fitness 

value is intentionally misleading the search. The utilisation of 

coevolution is a unique technique to dealing with the issue of 

deceit. Individual fitness is assessed in competitive 

coevolution instead of an ideal fitness assessment, through 

rivalry with other members of the population. This in theory, 

encourages a scramble to the top that drives towards ever 

solutions. This method has been successful in some sectors, 

but it is also linked to a variety of concerns arising from 

potentially counterproductive dynamics among several 

species that are founder such as poor steady situations 

divergence. Other approaches for overcoming deception and 

bootstrapping development rely on breaking down the goal 

into several sub-goals, each of which is easier to achieve. 

Incremental evolution, fitness shaping, and multi-

objectivization are examples of these strategies. The fact that 

job division may not always be possible is a common 

drawback of these methods. Even when it isn't, it requires a 

large amount of construct significant sub based on past 

understanding more about work. 

2.3 The Search for Novelty  
Remember that the difficulty with machine learning's 

objective function is that it doesn't always a recompense for 

the intermediary starting points which result in the desired 

destination [37]. Starting points which result in the desired 

destination. The suggested strategy is to use novelty as a 

substitute for milestones. That is correct rather than looking 

for an ultimate goal, the learning technique is awarded for 

discovering any entity with the ability to differ considerably 

from what has already been identified. As a result, rather than 

a novelty metric is used in search utilizing an optimal 

solution. There is no indicator to quantify increase in this way. 

In fact, such a method mimics the process of gradual 

evolution invisibly, namely, progressively amassing fresh 

forms as they go up the complexity ladder. Initial attempts in 

a labyrinth navigation domain, for example, may hit a wall 

and come to a halt. The novelty measure in opposed to a 

function that is subjective, would credit merely colliding with 

another barrier, irrespective or not it was better in the future. 

This type of search necessitates the use of a search engine. a 

group of instances representing the most recent finds is kept. 

Following these characteristic behaviours, further search is 

launched. After discovering. Although there are a few chosen 

to implement towards barriers, the only method to get 

rewarded is to identify a behaviour that does not immediately 

contact a barrier. From the bottom up, here is how the 

intricate bucket clogs up. Despite the fact that it is not an 

objective, a voyager will eventually need to traverse the maze 

well in order to achieve something new! 

This strategy may appear foolish at first look. What assurance 

is it possible for a search strategy to solve a problem even if 

the aim isn't specified? Its attractiveness, however, stems from 

the fact that it rejects the fallacious notion that objectives are a 

necessary component of the process of discovering. The 

thought that it's a heavy burden to digest that the aim could be 

the enemy of progress but if the correct starting points aren't 

accessible along the route, we'll have little choice but to 

abandon its delusory illusion of security. What chance is there 

that innovation will improve things if it offers no information 

about the solution's path? Isn't the realm of new behaviours 

limitless, with endless possibilities for meandering? 

Exhaustive search can be contrasted to novelty search. 

Naturally, the answer will finally emerge from a search that 

itemizes all viable solutions. However, it will do so at a huge 

computational cost. However, there are excellent various 

grounds to believe that novelty search and thorough search are 

not the same thing and that the number of innovative acts is 

sensible and limited in many actual circumstances. The major 

reason for optimism is that task domains give sufficient 

limitations on the types of behaviours that can occur or are 

relevant without the requirement for extra limits imposed by 

an objective function A maze-navigating robot, for example, 

can only do so much; the robots in this study only had two 

effectors. The dimensionality is effectively infinite due to 

NEAT's ability to absorb additional genes, but the behaviour 

area into a certain point in the search space implode is 

restricted. After completing an evaluation in the maze, a 

robot, for example, comes to a conclusion at a given point. 

Assume that the robot's behaviour is solely determined by this 

finishing position. While there are various ways to encode a 

policy that arrives at a specific point, they all collapse to the 

same behaviour under this measure of novelty. Indeed, the 

search space has been condensed to a reasonable number of 

uniqueness points recognizing the difference between 

thorough novelty searches. Additionally, rewarding the 

stepping stones. When overarching goal searching flops, 

novelty search succeeds. That is to say, everything truly 

exceptional is praised and encouraged as a launching pad for 

future growth. If we believe that the basic pathology of 

overarching goal search is that it is unable to uncover the 

cornerstones at all, we cannot know which starting points are 

correct. The pathology is rectified. The novelty search method 

is introduced in the following section by substituting the 

optimization model in conjunction with the novelty 

measurement, as well as the formalization of the notion of 

novelty. 

2.4 The Novelty Search Algorithm  
Because the population at the heart of evolutionary algorithms 

like NEAT inherently spans a wide spectrum of growing 

behaviours [1,4,6,12,14]. They're ideal for finding new things. 

In reality, apart from replacing a uniqueness measurement for 

the fitness function monitoring novelty involves only minor 

adjustments to any evolving system. The novelty metric 

assesses how unique an individual is in comparison to others, 

putting ongoing pressure on them to try something new. The 

basic principle is that, rather than rewarding achievement of a 
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goal, the novelty search promotes deviation from previous 

behaviours. As a result, novelty must be assessed. 

By examining and quantifying actions to identify their 

differences, there are numerous potential techniques to 

measure novelty. Importantly, this measure. It, too, must be 

domain-specific, much like the fitness function. A new 

individual's novelty is calculated using the behaviours (rather 

than the genotypes) of a database of previously generated 

individuals whose actions were extremely unique at the time 

of their creation. Furthermore. If you use a stable evolutionary 

technique. That is the present by replacing one people at a 

time, individuals can enrich the library with reflecting the far 

more frequently accessed points. In a novel space, or a space 

characterized by unusual behaviour. The goal is to determine 

how distinct the new member seems to be from the general 

population and predecessors. As a result, any point in the 

novelty space should be computed by a decent metric. Areas 

having a higher density the number of segments is deemed 

fewer distinct, and as a result, they are paid fewer. The 

average distance to the k-nearest neighbours of a point, where 

k is a fixed parameter measured empirically, is a basic 

measure of sparseness at that point. Intuitively, if the average 

distance between a particular point's nearest neighbours is big, 

it is in a sparse area; if the average distance is small, it is in a 

crowded area. At position x, the sparseness is provided by 

𝑓(𝑥) = 1/𝐻 𝑑𝑖𝑠𝑡 x, µi 

ℎ

𝑖=0

 

where µi is the ith-nearest neighbor of x with respect to the 

distance metric dist, which is a domain-dependent measure of 

behavioral difference between two individuals in the search 

space. Individuals from the total population as well as a long-

term archive of new members must be considered in the 

calculation of nearest neighbours [42]. On novelty, 

individuals from even more scarce portions of the behavioural 

search space perform better. It's critical to stress that this fresh 

environment cannot be actively explored. That is, there's no 

way to know a priori how to access low-density areas, just as 

there's no way to know a priori how to build a solution that's 

close to the goal. Exploration is required to navigate the space 

of novel behaviours. In effect, originality is driven by a co-

evolutionary dynamic since it is compared to other individuals 

in the evolutionary process. Similar to archive-based 

approaches in coevolution, if novelty is sufficiently high at a 

new person's location, i.e., over a minimal threshold min, the 

individual is entered into the permanent archive that 

characterizes the distribution of prior solutions in novelty 

space. By seeking to the direction of search is basically to 

what is new in order to maximize the uniqueness index with 

no other stated objective. It's worth noting that novelty search 

mimics the common evolutionary computation technique of 

previous diversity preservation (i.e., speciation). Workout 

sharing versions are a very well. By lessening selection 

pressure, these also open up the search. However, unlike 

Hutter's fitness uniform selection method, these strategies do 

not take the heretical step of completely ignoring the fitness 

function. Novelty search, on the other hand, encourages 

behavioural variation without regard for fitness or an end 

goal. 

It's also worth noting that novelty search isn't a haphazard 

process; rather, it aims to maximize novelty. Backpedaling is 

a common occurrence in random walks. Since uniqueness 

search has an archive that accumulates a trace as to where 

search has gone, it may be seek to prevent in behaviours 

spaces of any complexity. In general, the novelty search 

approach permits any behaviour to be characterized and any 

novelty measure to be used. Venues with misleading fitness 

scapes are suitable for novelty search. Intuitive behavioral 

characterization, and domain limits on feasible expressible 

actions, notwithstanding its universal applicability. Various 

search processes will come from altering the way the activity 

space is specified and comparing characteristics. Comparable 

to how academics are modifying the goal function to improve 

search results at the moment. 

The point isn't to argue that Practical search is more difficult 

to set up than surprise search. Rather, The NEAT algorithm 

resumes regular operation once objective-based fitness is 

substituted by novelty. Choosing and reproducing the greatest 

individuals. As the simpler versions are exhausted, the 

population expands out throughout the range of possible 

behaviours, ascending to new levels of complexity (i.e., via 

expanding the neural networks in NEAT) to develop unique 

behaviours. 

3. CONCLUSIONS  
We found that novelty search often does not produce well-

fitting answers, especially whenever the behavioral field 

contains variables that are unrelated or just distantly related to 

the aim. We looked into two different forms of novelty 

searches to solve this problem. Overall, our findings 

demonstrate that swarm robotics systems can benefit from 

novelty search in comparison to fitness-driven evolution 

novelty search has various advantages. One of the most 

notable benefits is that novelty search frequently results in a 

wide range of successful self-organizing behaviours. Because 

developing such behaviours by hand is challenging Variety 

and self-organization were extremely important in the field of 

swarming robots. Deception also has no influence on novelty 

search, is less susceptible to scaling problems, and can build 

answers with fewer sophisticated neural network models. 
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