
International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.50, February 2022

Using Random Scheduling Technique with
Crowd-Sourcing to Solve Exam Timetable

Charles Roland Haruna
University of Cape Coast

Department of Computer Science and Information Technology
Cape Coast, Ghana

Elliot Attipoe
University of Cape Coast

Department of Computer Science and Information Technology
Cape Coast, Ghana

Isaac Armah Mensah
University of Cape Coast

Department of Computer Science and Information Technology
Cape Coast, Ghana

Kwame Opuni-Boachie Obour Agyekum
Kwame Nkrumah University of Science and Technology

Department of Telecommunication Engineering
Kumasi, Ghana

ABSTRACT
An examination timetable is arranging temporary, a set of meet-
ings making sure that all given constraints are fulfilled. A univer-
sity has many colleges, faculties and programs within departments,
each having their plan about how, when and where their exami-
nation should be run. Students can offer courses from a combina-
tion of several programs in the same or different departments, from
different faculties and or colleges. Thus, scheduling of an exami-
nation timetable is a large and complex assignment. Various uni-
versity examination timetabling systems have been proposed and
developed, but not all university examination timetables can be
scheduled by machines only, for example in the case of the Uni-
versity of Cape Coast. Both machine and experts are required. In
this paper, a case study is presented and a hybrid technique tai-
lored to suit the University of Cape Coast examination timetable
scheduling is proposed, where machines are first used then experts
complete the scheduling. Real data set from the University is used
in this research and the effectiveness of the proposed technique is
presented by performing multiple experiments and the results of an
examination timetable using real data sets from past academic years
(semesters) from the University of Cape Coast are discussed.

Keywords
Timetabling Problem, Examination Timetabling Scheduling, Ran-
dom Scheduling Algorithm, Crowd-Sourcing

1. INTRODUCTION
In all universities, scheduling an examination timetable is a serious
challenge with respect to concerns on assigning venues over a tem-
poral period of time to examinations. The notable major challenges
examination scheduling faces include; when students’ population
exceeds the available resources, when the university’s examination
venues within time periods are limited and to satisfy all other
constraints. For decades, examination timetabling has become one

of the most studied domains in the research communities, this is
because of the importance of scheduling examination in numerous
academic institutions across the world. In spite of this, researchers
have aimed their works at developing methodologies that generate
the best timetables in solving a single problem, Qu et al.[4].

Figure 1a is a sample list of records of all 55 courses, read by level
100 B.A Arts students only, with different course combinations.
The columns, Department Name, Course Code and No. of stds are
representing the departments the courses belong to, the codes of
the courses and the number of students reading each course respec-
tively. It can be seen that there are courses (course codes) from
distinct departments, for example LSC106 from the chemistry de-
partment, LAG109 from the agricultural engineering department,
which are read by the students as either electives or compulsory
courses. Due to the complexities of the course selections for a group
of students, the examination timetable scheduling for UCC is al-
ways a challenge. The algorithm must therefore take into consid-
eration so many factors when scheduling. One of the courses read
by some students of the group, record number 33 (Figure 1a), high-
lighted in yellow with a course code ECO102 is mounted by the
Economics Department. Figure 1b shows additional details of the
course code ECO102 such as; For that particular semester, a group
of students with different class size numbers from different pro-
gram backgrounds who are reading the same course. Highlighted
in green and yellow are programs BSc Mathematics and BA Arts
respectively.
Figure 2 shows a pictorial diagram depicting the relationship be-
tween BSc Mathematics and BA Arts. The diagram also shows the
relationships among programs(level), departments, courses and stu-
dents. The green and yellow rectangles depict programs BSc Math-
ematics(100) and BA Arts(100) respectively. The different colors
of ellipses represent departments from which the two programs
select their courses for example department of mathematics, de-
partment of computer science, department of music and so on. In
each colored ellipse are unique courses for each department rep-

1



International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.50, February 2022

Fig. 1. A sample of a program and its course combinations (a) and an
example of a course code with its different program backgrounds (b).

Fig. 2. A graphical example of course conflict.

resented by triangles like elementary programming from depart-
ment of computer science and analytic geometry and calculus from
the mathematics department. Finally, students who read different
courses are represented by filled colored circles; for example, a cir-
cle filled with red implies the student is reading six courses, four
from four different departments and two from the same depart-
ment. The course highlighted with black dashed lines is represent-
ing ECO102, a mutual course which is read by level 100 students
from both BSc Mathematics and BA Arts. Timetabling constraints
studied and presented by Burke, et al.[1] were divided into two cat-
egories; hard and soft constraints. Hard constraints must always be
satisfied.

1.1 Hard Constraints
A timetable which does not conform to a hard constraint is not a
feasible solution. Examples of hard constraints are:

—In no period must a student be allowed to sit for more than one
exam.

—Sufficient resources such as seats must be available to students
for all the exams that have been scheduled for that period.

—Given a timeslot (timeslots explained later), each room capacity
should not be exceeded by the number of students sitting a course
examination.

—Practical examinations (exam A) must come before its theoreti-
cal examination (exam B).

1.2 Soft Constraints
In contrast, soft constraints vary from one university to another.
These rules are desirable or requested but are not completely im-
portant; some of them can be violated. Some common soft con-

straints for university timetabling presented by Burke et al.[2] are
as follows:

—Assignments of time: An exam may need to be scheduled in a
particular time period.

—Spreading exams: As much as possible, students should not have
exams in consecutive periods or two exams on the same day un-
less one is a re-sit examination for a continuing student (case of
UCC).

—An exam, such as practical courses or oral language courses must
be conducted in a particular room (as it requires special resources
only available in that room).

Since students have the freedom in their choice of courses, there al-
ways is a problem irrespective of whether the constraints are taken
into considerations or not. Scheduling an examination to fit into a
limited time interval without creating conflicts for some students is
always a difficulty, Laporte et al.[3]. Thus, this research presents a
hybrid-based approach to cater for such occurrences.

1.3 Intermediate Constraints
In this paper, another set of constraints are presented and described,
which are called intermediate constraints in relation to University
of Cape Coast examination timetable scheduling. Though these
rules can be broken, they are not. If broken, the whole system will
not function as desired. Examples of University of Cape Coast in-
termediate constraints are:

—There exist some level 100 compulsory courses that must be
scheduled within the first three (3) days of each end of semester’s
examination.

—Different courses of different programs can be allocated the same
room, irrespective of the students’ levels, as long as the room is
not filled up.

—Care must be taken when scheduling continuing students’ (levels
300 and 400) courses, to avoid such students writing two papers
in the same period due to the possibility of re-sit examination.

Note that a re-sit examination occurs when a student in either level
300 or 400 has to rewrite a failed examination from a lower level
(200 0r 300).

2. MOTIVATION AND OBJECTIVE
Implementing existing works in scheduling the examination
timetable of the university have performance limitations. Owing to
the fact that at UCC, a department may have a wide range of ma-
jors where students can read courses from different departments.
Most of the existing works as well as the current technique being
used find it difficult scheduling this scenario. Another reason for
choosing UCC as the case study is the nearness of on-field testing
and availability of data set. The inter-departmental courses, where
students belonging to one department have the opportunity to read
courses from N number of other departments to satisfy the total
credits hours made this case study an interesting choice. In this
work a human-machine based approach is proposed where firstly
algorithms are executed by machines then experts are used to com-
plete the scheduling, which is not common in this field of research.

3. RELATED WORK
There exists so many automated works that have been proposed
to solve the problems that academic institutions encounter when
scheduling examination timetable. Abayomi-Alli et al.[5] proposed

2



International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.50, February 2022

enhanced particle swarm optimization (PSO) for solving the exam-
ination timetable scheduling problems. PSO was used for resolving
the problems at the Federal University of Agriculture, Abeokuta,
Nigeria. The technique made a combinatory approach using PSO
with local search mechanism to improve on the effectiveness of the
algorithm against the manual timetabling method. Abdul-Rahman
et al.[6] in their work, employed graph coloring heuristics at
each step of the examination timetable scheduling. The authors in
assigning examinations to rooms based on capacity, made use of
the bin packing heuristics concept.

In [7] by Mauritsius et al., the authors published a detailed
report using three unique neighborhood structures to conduct
an investigation on the implementation of a heuristic hybridized
in conjunction with a simulated annealing-based heuristic. The
research focused on using graph coloring to significantly reduce
problems associated with examination timetabling. Chu et al. in
paper [8] employed particle swam optimization to solve distinct
timetable scheduling problems and experimentally proved that
as well. Practical Solutions to the problems of the examination
timetable scheduling problems of the University of Technology
of Compi‘egne were developed by Boufflet et al.[9] presenting
three tools in the process; the first being the approximate tech-
nique centered on the tree search, the next tool also centered
on tabu technique and the last is based on a computer aided
design system.The authors realized the best being the first tool. In
generating the extent of the value of each examination’s difficulty
degree, Abdul et al.[10] used the non-linear heuristic aspect of
two graph coloring; the largest and saturation degrees, to solve the
examination timetable challenges.

Saat et al.[11] developed an application using visual basic, a graph-
ical user interface and artificial intelligence called eMaS that of-
fer valuable attributes that presents a solution to solving the ex-
amination timetable problem in precise and a fast manner. Mandal
et al.[12] presented a feasible solution after investigating perfor-
mances of the key trajectory metaheuristics and graph heuristics
employing six graph heuristics namely; largest degree (LD), largest
weighted degree (LWD), largest enrolment degree (LE), and three
hybrid heuristic with saturation degree (SD) being SD-LD, SD-LE,
and SD-LWD. The sole objective by Kahar et al.[13] was to formu-
late a mathematical model while testing it to produce an examina-
tion timetable that outperformed some existing techniques. A doc-
toral research dissertation by Samaya[14] presented findings from
the work, to find techniques to overcome the scheduling challenges
of examination timetable. Aminu et al.[15] from the Yusuf Maitama
Sule University Kano, Nigeria presented a method using genetic al-
gorithms for the problem of scheduling examination timetable and
invigilation, that provided an optimal solution. Elsaka[16] modeled
the examination timetable applying CSP with Optimization Pro-
gramming Language and in so doing, automatically generating a
schedule which is free of conflicts.

4. PROBLEM DESCRIPTION
In this paper, the authors aim at automating an examination
timetable schedule for UCC. Nonetheless, the technique proposed
can be applied to solve the exams timetable problems for other uni-
versities. The timetable to be treated in this work is constructed for
all levels of the university degrees; undergraduate, masters and PhD
courses, so far as there are examinations to be sat for the courses.
The major problem of the University is with the conflicts that arise
when scheduling undergraduate examination timetable, thus this re-

search focuses on undergraduate examination timetable scheduling.
Once the problem is solved for the undergraduate exam timetable
scheduling, the technique can be used at all levels. The Univer-
sity of Cape Coast examination is scheduled within a period of two
weeks (10 weekdays), and even though the length of period may
vary, the algorithm can still schedule the timetable. There are three
time periods in a day, and each consists of 120 minutes; 8:30 –
10:30, 12:00-14:00 and 15:30-17:30. Five main entities are used
to define the problem; Student Number, Venue, Time, Course and
Date. It is worth noting that the algorithm is not affected by the
number of days and duration of time for the exams. One notable
rule of the university is to, within the first days, schedule all level
100 elective courses which are currently done manually by experts.
Due to the huge number of students (an entire year group of stu-
dents, making thousands of them) reading each level 100 compul-
sory course, the students are divided into groups after registration.
The remainder of the courses are then also scheduled.

4.1 PROBLEM DEFINITION
The examination timetable is formulated as follows: A set of Prob-
lem = {C, T, S}, where T = {T1, T2, ..., Tt} are the timeslots for
examinations and each consists of a date, a time (duration) and a
venue code. For example, the set of Tt may be any of the following
sets; {(25−May − 2021; 8 : 30− 10 : 30;LLT ); (25−May −
2021; 12 : 00− 14 : 00;LLT ); (25−May − 021; 15 : 30− 17 :
30;LLT ); (25 − May − 2021; 8 : 30 − 10 : 30;LT12); (25 −
May − 2021; 8 : 30 − 10 : 30;LT5); (25 − May − 2021; 8 :
30 − 10 : 30;LT22)}. C = {C1, C2, ..., Cc} is the set of exami-
nation courses. S = {S1, S2, ..., Ss} is the number of students who
will participate in Cc.

4.1.1 Machine-Based Random Local Search. In this paper, a ran-
dom local search method is designed and implemented on the Uni-
versity of Cape Coast timetable scheduling. The machine-based ap-
proach schedules the timetable in three phases, with the end of a
phase signifying the beginning of another, in this order:

(1) Randomly schedules exams for the level 100s with respect to
the compulsory courses within the first three days. Presently,
this phase of scheduling is done manually by user experts. By
automating this phase, the technique eradicates the manual
way significantly. Exams for all other levels but level 100s
can also be scheduled into an unfilled venue of timeslots, Tt,
within the first three days.

The pseudocode of the random scheduling of the first phase
is as follows. The algorithm randomly selects a group related
to a level 100 compulsory course. It then randomly selects a
timeslot within the first three days, and schedules the group,
irrespective of the capacity of venue. It checks if the group’s
students have all been scheduled. If not, it picks another
timeslot with similar date and time and nearby venue as an
already scheduled timeslot and same course and schedules the
remainder of the students. It does this iteration till a group is
exhausted. If all group’s students have been scheduled, it then
selects another group of the same elective course. Now, if an
already scheduled timeslot has seats available, some students
of the new group are scheduled, otherwise a new timeslot is
selected taking into consideration the location of the venues.
The algorithm iterates till all groups of an elective course have
been scheduled. Then it selects another elective course and
the whole scheduling iterations begin. The algorithm executes

3



International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.50, February 2022

Fig. 3. Code Snippets.

satisfying all the constraints.

(2) The technique schedules the single-program courses. These
courses are read by students of the same program background
only.

The algorithm responsible for the single-program courses is
implemented. The pseudocode of this algorithm first checks
if there are, within the first three days unallocated timeslots,
including available seats in an already scheduled timeslot. If
yes and a randomly selected non-level 100 single-program
course can be scheduled, it is executed. Otherwise, the course
is scheduled in a new timeslot selected randomly. If a level
100 single-program course is selected, the algorithm then
selects a timeslot not in the first three days and schedules. The
algorithm iterates till, if possible, all single-program courses
are scheduled not violating any of the rules of the constraints;
hard, soft and intermediate.

(3) Finally, the automation schedules multi-program courses.
Courses that are read by students with different program
backgrounds. These courses usually pose challenges when
scheduling at the university due to conflicts encountered while
processing.

The third phase of the algorithm responsible for the multipro-
gram courses is implemented. The pseudocode of this algo-
rithm first checks if there are, within the first three days unallo-
cated timeslots, including available seats in an already sched-
uled timeslot. If yes and a randomly selected non-level 100
multi-program course can be scheduled, it is executed. Other-
wise, the course is scheduled in a new timeslot selected ran-
domly. If a level 100 multi-program course is selected, the al-
gorithm then selects a timeslot not in the first three days and
schedules. The algorithm iterates till, if possible, all multipro-
gram courses are scheduled not violating any of the rules of the
constraints; hard, soft and intermediate.

4.2 Human/Expert Input
After the machine-based random scheduling has been executed suc-
cessfully, the unscheduled courses are submitted to the expert for
completion. The expert uses a graphical user interface (GUI) to up-
date the scheduled timetable by scheduling the remaining courses
if any.

5. EXPERIMENTS AND DISCUSSIONS
The proposed algorithm was implemented using mainly SQL server
for the random scheduling and the back-end while python language
was used for the front-end to produce a GUI. The experiments
were conducted using a computer with Intel Core i5-8265U CPU @
1.60GHz (8 CPUs), 1.8GHz, RAM of 8192MB and MS windows
10. The aim of the experiments was to evaluate the results with
respect to the efficiency of the proposed algorithm against the tech-
nique currently being used on the same data. To have a basis for
comparisons of the proposed technique, two different automated
techniques were used in the experiments and compared against the
current system of scheduling. The three methods for comparisons
in the experiments were:

(1) For the first automated algorithm used in the experiments, the
authors, subjected the data sets to an algorithm where the re-
mainder of courses were not split into multi and single pro-
grams (fused multi and single program courses), after the level
100 compulsory algorithm had been executed.

(2) Then the second automated technique (pseudo codes described
4.1.1) where the remainder of courses were split into multi and
single programs, was subjected to the data.

(3) Current exam timetable scheduling system of UCC where the
first three days are done manually and the rest semi-automated.

5.1 Data Sets of Real Problem
In the experiments, data sets of regular undergraduate courses for
five semesters from 2019 to 2021 of the University of Cape Coast
were used. They are 2019 academic year semesters one and two,
2020 academic year semesters one and two and semester one only
of 2021 academic year. All the examination timetable scheduling
experiments were done over a period of 10 working days. Table 1
shows details of data sets used in testing the algorithms including
records of that of masters and doctorate. However, the algorithms
extract and execute records of bachelors degree only. Data sets of
five previous semesters were used; Captured in column 1 are the
academic years and respective semesters. Column 2 shows the total
number of records in each data set and unique courses (in brackets)
for each semester to be scheduled. Column 3 represents in each
data set the total number of records, the distinct course codes and
the percentage of compulsory courses for level 100 that need to
be scheduled within the first 3 days of the exam period. The per-
centages in the third column represent the minimum percentage of
manual work that were input. The last column represents the per-
centage of the courses that the current system automatically sched-
ules. The proposed work aims at eliminating the percentages in the
third column while improving the percentages in the last column.

5.2 Performance and Evaluation
The effectiveness of the algorithm was measured by the time
of execution and its efficiency against the current system. The
algorithm implemented on each data set was executed 5 times.
In all the experiments, for each data set, the same scheduled
timetable was recorded with different execution times recorded.
The varying times recorded were as a result of the random
scheduling nature of the algorithm. The process of schedul-
ing the courses implies that each course code is visited and
selected at most once. The algorithm randomly selects a course
then iterates comparing with courses in the scheduled timetable set.

4



International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.50, February 2022

Table 1. Data Sets.
Academic
Year
(Semester)

Number of records (Dis-
tinct Courses to Schedule)

No. of Records of Level 100 First 3
days compulsory Courses (Distinct
Courses) - Percentage

Percentage Effi-
ciency of Current
System

2021 (1) 1513 (268) 421 (49) – 18.28% 81.72%
2020 (2) 1635 (276) 466 (60) – 21.74% 78.26%
2020 (1) 1150 (265) 441 (50) – 18.87% 81.13%
2019 (2) 1965 (266) 582 (40) – 15.04% 84.96%
2019 (1) 848 (242) 189 (47) – 19.42% 80.58%

Figure 3 shows snippets of the codes used in executing the
algorithm. SQL view like in Figure 3d was created to cater for
scenarios such as; calculating the remaining seats available in
a scheduled venue to allow another course to be scheduled if
possible. Also, if a course is scheduled in a room where the
number of students exceeded the room’s capacity, the remaining
students of that course can be calculated using a view. In the first
phase of the scheduling, the timetables were generated for the
level 100 compulsory courses that have to be scheduled during the
first 3 days of the entire exam period. Generation of timetables for
this phase causes problems due to their complexities and are done
manually currently at the university. In Table 1, column 3 shows
the percentages of work done manually currently. The first phase
of the algorithm successfully scheduled the first three days level
100 courses, by eliminating all the manual input. If no violations
on hard and intermediate constraints were not encountered, the
scheduling was generated quickly and successfully.

Table 2 shows results of the efficiency of the algorithm (fused
multi and single program courses). Column 2 shows the number of
distinct courses the algorithm needed to schedule for each semester
(column 1). Captured in column 3 are number of unscheduled
courses and their percentages. Implying the amount of manual
work needed to complete the timetable scheduling. In 2021 first
semester, 7.76% representing 17 courses out of 219 distinct courses
that the algorithm could not schedule. 18 courses out of 216 unique
courses for 2020 second semester were not scheduled represented
by 8.33%. For 2020 first semester data set, 16 out of 215 courses
making 7.44% were not scheduled. The data set for 2019 second
semester had 8.85%, representing 20 out of 266 unique courses
that were not scheduled. Finally, 10.26% (that is 20 out of 195
unique courses) was not scheduled for 2019 first semester data set.
The final column shows the percentages of the scheduled courses.
This algorithm on the average, randomly schedules 91.48% of
the unique courses. While on the average, 8.53% of the unique
courses are scheduled manually. In contrast, the current system
on the average automates 81.33% and at the same time manually
input 18.67% of the unique courses. The algorithm (fused multi
and single program courses) significantly improved the efficiency
of the old and current system by about 10%.

In the experiments with respect to splitting the remainder of the
course, the algorithm successfully scheduled all single-program
courses in each data sets. With no violations on hard and inter-
mediate constraints encountered, the scheduling was generated
quickly.

Table 3 shows the algorithm’s efficiency results based on multi-
program courses after splitting the remainder of courses. Column
4 shows the number of distinct multi-program courses and courses
scheduled in parenthesis. Captured in column 5 are number of

unscheduled courses and their percentages. Implying the amount
of manual work needed to complete the timetable scheduling.
Column 6 shows the efficiency percentage of the algorithm on
multi-program courses.

In 2021 first semester, 2.28% representing 5 courses out of 114
distinct multi-program courses (out of 219 distinct distinct courses)
that the algorithm could not schedule. 6 courses out of 117 distinct
multi-program courses (out of 216 distinct distinct courses) for
2020 second semester were not scheduled represented by 2.78%.
For 2020 first semester data set, 4 out of 114 distinct multi-program
courses (out of 215 distinct distinct courses) making 1.86% were
not scheduled. The data set for 2019 second semester had 2.21%,
representing 5 out of 116 distinct multi-program courses (out of
226 distinct distinct courses) that were not scheduled. Finally,
4.10%, that is 8 out of 109 distinct multi-program courses (of 195
distinct distinct courses) were not scheduled for 2019 first semester
data set. The final column shows the percentages of the scheduled
courses.

It was realized that the unscheduled courses were as a result of in-
credibly huge number of students from vast different program back-
grounds reading a course, thus the algorithm does not schedule such
courses. The percentages representing a handful of courses were
unscheduled, implying experts will manually schedule them using
a GUI provided to them. With respect to the 5 data sets used, the
proposed algorithm (splitting the remainder of courses) on the av-
erage, randomly schedules 97.35% of the unique courses. While on
the average, 2.65% of the unique courses are scheduled manually.
In contrast, the current system on the average automates 81.33%
and at the same time manually input 18.67% of the unique courses.
The proposed algorithm significantly improved the efficiency of the
old and current system by about 16%.

5.2.1 Efficiency of Proposed Algorithm. Figure 4 shows a graph
comparing the efficiency percentages of the proposed system
against the current system and the algorithm on the fused multi
and single program courses, relative to the five data sets used. It can
clearly be seen that the proposed technique in this work represented
by the blue bars, outperformed the current system and the fused
multi and single course algorithm represented by red and yellow
bars respectively, and in all the five data sets used. In splitting the
remainder of the courses into multi-program and single-program as
proposed in this work, the random scheduling tends to allocate a
higher percentage of the courses than not splitting the remainder of
the courses. It can be concluded that the random scheduling tech-
nique proposed in this work can be implemented at the university

5.2.2 Execution Time of Proposed Algorithm. Figure 5 is a graph
showing the execution time it took the algorithm to execute each
data set five times. The varying execution times are as a result of the
random selection nature of the algorithm. Implying for each data

5



International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.50, February 2022

Table 2. Fused Multi and Single Program Courses Experimental Results.
Academic
Year
(Semester)

Distinct Courses (Both
Multi and Single Program
Courses)

Number of Unscheduled
courses (Percentage)

Percentage Efficiency

2021 (1) 219 17(7.76%) 92.24%
2020 (2) 216 18(8.33%) 91.67%
2020 (1) 215 16(7.44%) 92.56%
2019 (2) 226 20(8.85%) 91.18%
2019 (1) 195 20(10.26%) 89.74%

Table 3. Multi-Program Courses Experimental Results.
Academic
Year
(Semester)

Distinct
Remainder
Courses

Single-
Program
Courses

Multi-Program
Courses (Sched-
uled Courses)

Number of
Unscheduled
courses (Percent-
age)

Percentage
Efficiency

2021 (1) 219 104 114 (109) 5 (2.28%) 97.72%
2020 (2) 216 99 117 (112) 6 (2.78%) 97.22%
2020 (1) 215 101 114 (110) 4 (1.86%) 98.14%
2019 (2) 226 110 116 (111) 5 (2.21%) 97.79%
2019 (1) 195 86 109 (101) 8 (4.10%) 95.90%

Fig. 4. Efficiency of the Proposed Algorithm.

set, in each experiment, the algorithm does not follow any sequence
in scheduling, thus for N number of experiments, there would be
discrete execution times. It can also be noted that, it takes more
time to execute data sets with larger number of records compared
to those with smaller numbers of records.

6. CONCLUSION AND FUTURE WORK
In this research a random scheduling technique was used to sched-
ule the University of Cape Coast Examination Timetable taking
into account, records of undergraduate courses only. The technique
first uses the machine to accept the data sets and randomly sched-
ules the unique courses, then human experts are used on the courses
that the algorithm did not schedule. The proposed algorithm on the
average, randomly schedules 97.35% of the unique courses. While
2.65% of the unique courses are scheduled manually. Meanwhile,
the current system on the average automates 81.33% while 18.67%
of the unique courses are manually input. Implying the proposed
algorithm significantly improved the efficiency of the old and cur-
rent system by about 16%.The execution times of the algorithm

Fig. 5. Execution Time of Proposed Algorithm.

were also captured in the experiments. To completely solve the
full-scale problem, further algorithm improvements will have to be
made which are presently being worked on. Major improvements
of the user interfaces will also be done.

ACKNOWLEDGMENT

Thank you Professor Moses Jojo Eghan, for providing insightful
comments that helped improve the paper. We appreciate the con-
fidence reposed in us to write this scientific paper for the body of
knowledge and particularly for the University of Cape Coast. Our
gratitude is boundless.

7. REFERENCES

[1] Burke, E., Kingston, J., Jackson, K., Weare, R., “Automated
university timetabling: The state of the art”, The Computer
Journal 40 (9), pp. 565–571 (1997).

[2] Burke, E., Petrovic, E.K., “Recent research directions in au-
tomated timetabling”, European Journal of Operational Re-

6



International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.50, February 2022

search 140, pp 266–280 (2002)

[3] Laporte, G., Desroches, S., “Examination Timetabling By
Computer”, Computer and Operation Research 11 (4), pp
351-360, 1984.

[4] Qu, R., Burke, E.K. and McCollum, B., 2009. Adaptive auto-
mated construction of hybrid heuristics for exam timetabling
and graph colouring problems. European Journal of Opera-
tional Research, 198(2), pp.392-404.

[5] Abayomi-Alli, O., Abayomi-Alli, A., Misra, S., Damasevi-
cius, R. and Maskeliunas, R., 2019. Automatic examination
timetable scheduling using particle swarm optimization and
local search algorithm. In Data, Engineering and Applications
(pp. 119-130). Springer, Singapore.

[6] Abdul-Rahman, S., Sobri, N.S., Omar, M.F., Benjamin, A.M.
and Ramli, R., 2014, December. Graph coloring heuristics for
solving examination timetabling problem at Universiti Utara
Malaysia. In AIP Conference Proceedings (Vol. 1635, No. 1,
pp. 491-496). American Institute of Physics.

[7] Mauritsius, T., Legowo, N. and Gunawan, F.E., 2018, Septem-
ber. Reducing the Timeslot Used in Examination Timetable
Problem. In 2018 International Conference on Information
Management and Technology (ICIMTech) (pp. 211-216).
IEEE.

[8] Chu, S.C., Chen, Y.T. and Ho, J.H., 2006, August. Timetable
scheduling using particle swarm optimization. In First In-
ternational Conference on Innovative Computing, Informa-
tion and Control-Volume I (ICICIC’06) (Vol. 3, pp. 324-327).
IEEE.

[9] Boufflet, J.P. and Negre, S., 1995, August. Three methods
used to solve an examination timetable problem. In Interna-
tional Conference on the Practice and Theory of Automated
Timetabling (pp. 325-344). Springer, Berlin, Heidelberg.

[10] Abdul Rahman, S., Syed Abdullah, S.S. and Benjamin, A.M.,
2017. A nonlinear heuristic modifier for constructing exami-
nation timetable. Journal of Theoretical and Applied Informa-
tion Technology, 95(20), pp.5642-5653.

[11] Saat, E.H.M., Ilham, N.I., Othman, N., Bakar, Z.A., Yusof,
Y. and Abd Rahman, N.H., 2019, August. The examination
timetabling problem based on expert system: a case study in
malaysia. In 2019 IEEE 10th Control and System Graduate
Research Colloquium (ICSGRC) (pp. 121-126). IEEE.

[12] Mandal, A.K. and Kahar, M.N.M., 2020. Performance Anal-
yses of Graph Heuristics and Selected Trajectory Metaheuris-
tics on Examination Timetable Problem. Indonesian Jour-
nal of Electrical Engineering and Informatics (IJEEI), 8(1),
pp.163-177.

[13] Kahar, M.N., Bakar, S.A., Shing, L.C. and Mandal, A.K.,
2018. Solving kolej poly-tech mara examination timetabling
problem. Advanced Science Letters, 24(10), pp.7577-7581.

[14] Samaya, R., 2018. Examination timetable system (Doctoral
dissertation, BUSE).

[15] Aminu, A., Caesarendra, W., Haruna, U.S., Sani, A., Sa’id,
M., Pamungkas, D.S., Kurniawan, S.R. and Kurniawan, E.,
2019, October. Design and Implementation of An Automatic
Examination Timetable Generation and Invigilation Schedul-
ing System Using Genetic Algorithm. In 2019 2nd Interna-
tional Conference on Applied Engineering (ICAE) (pp. 1-5).
IEEE.

[16] Elsaka, T., 2017, September. Autonomous generation of
conflict-free examination timetable using constraint satisfac-
tion modelling. In 2017 International Artificial Intelligence
and Data Processing Symposium (IDAP) (pp. 1-10). IEEE.

7


	Introduction
	Hard Constraints
	Soft Constraints
	Intermediate Constraints

	MOTIVATION AND OBJECTIVE
	RELATED WORK
	PROBLEM DESCRIPTION
	PROBLEM DEFINITION
	Machine-Based Random Local Search

	Human/Expert Input

	EXPERIMENTS AND DISCUSSIONS
	Data Sets of Real Problem
	Performance and Evaluation
	Efficiency of Proposed Algorithm
	Execution Time of Proposed Algorithm


	CONCLUSION AND FUTURE WORK
	References

