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ABSTRACT 

Finding, locating, and resolving software defects takes a lot of 

time and effort on the part of software engineers. Humans are 

required to search and analyses data in traditional testing. 

Humans are prone to making incorrect assumptions, resulting 

in distorted results, which leads to defects being undetected. 

Machine learning enables systems to learn and use what they 

have learnt in the future, providing software testers with more 

accurate information. Several advanced machine learning 

approaches, such as deep learning, are capable of performing 

a variety of software engineering tasks, including code 

completion, defect prediction, bug localization, clone 

detection, code search, and learning API sequences. One of 

the most essential methods of examining software quality 

assurance is software testing. This procedure is time-

consuming and costly, accounting for over half of the total 

cost of software development. Researchers are looking for 

using automated methods to reduce the cost and time of the 

test, in addition to the cost issue. A survey has been conducted 

with comparison between Machine Learning, and Data 

Mining algorithms.These algorithms are such as: Hill-

Climbing Algorithm (HCA), Artificial Bee Colony Algorithm 

(ABC), Firefly Algorithm (FA), Particle Swarm Optimization 

(PSO), Artificial Bee Colony Algorithm (ABC), Genetic 

Algorithm (GA), Ant Colony Optimization (ACO), Artificial 

Neural Network (ANN), Support Vector Machine (SVM) and 

Hybrid Algorithms.  
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1. INTRODUCTION 
Testing conducted on a software product is called software 

testing. The main objective of testing or software testing is to 

find bugs in the software. Bug is an error or fault caused in the 

behavior of the software program or software application. 

Software testing can be done to check if the software 

● Meets all the requirements mentioned in design 

phase 

● Gives correct output for different inputs 

● Will be able to complete the task within time limit 

or acceptable time. 

● Will run in different environments. 

Test cases are a set of conditions used by testers to determine 

whether or not the system under test operates properly. The 

creation of test cases aids in the discovery of application flaws 

or needs [1]. 

Any software application testing that is automated will go 

through a series of activities, processes, and tools in order to 

complete the test. The outcomes of these runs can be saved 

and recorded [3]. 

Software Testing can be majorly classified into two 

categories: 

1. Black Box Testing is a software testing method 

in which the internal structure/ design/ 

implementation of the item being tested is not 

known to the tester. 

 

2. White Box Testing is a software testing 

method in which the internal structure/ design/ 

implementation of the item being tested is 

known to the tester [4]. 

 

Test automation can be of 2 types: 

1. Testing with code: uses pre-existing interfaces, 

libraries, classes, and modules to test with a large 

number of inputs and check and verify whether or 

not the results are right. 

2. Testing with a Graphical User Interface (GUI): 

Interface events such as keystrokes and mouse 

clicks can be generated and used by the framework 

to identify changes and test whether the program's 

performance is right or not [5]. 

The benefits of automation testing: 

1. Speed and Faster time to market 

2. Wider test coverage 

3. Consistency 

4. Cost savings 

5. Frequent and thorough testing 

 

There are some instances where manual testing is better than 

automation testing, including (see Figure 1): 

● New test cases that have not yet been executed 

manually. 
● Test cases where the criteria are always changing. 
● Test cases that are not routine [2]. 
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Fig 1: Software test cycle [2] 

Once the application is developed based on the below 

parameters the product is verified and validated in testing 

environment such as: 

● Reliability 
● Portability 
● Usability 
● Flexibility 
● Testability 
● Efficiency 

The main objective of this study is to build a techniques for 

pinpointing and correcting bugs in the software (see Figure 2), 

solve the issues in software testing automation, help software 

testers with more accurate knowledge, enhance the accuracy 

and minimize effort and time of software testing. These 

improvements can be achieved by: 

1. Implement the data mining algorithms, machine 

learning techniques and AI methodology to obtain 

new model for automated software testing. 

2. Working to choose the most efficient and 

appropriate learning method for automation of a 

target testing stage. 

3. Evaluating the performance of the proposed work 

with the previous works to touch on the changes of 

data mining and machine learning techniques. 

The idea improves the current test management life cycle by 

making it more productive, efficient, and a rapid and reliable 

self-decision-making system. The innovation uses supervised 

/ semi-supervised learning to automate and save time on all 

processes. Algorithms and algorithms regulate quality such 

that any number of problems can be dealt with quickly. 

Almost 90% of the applications are planned and developed 

through this control process. The major challenges in 

reliability growth models are that every tester must include an 

operational profile before testing the product, which must 

specify the operations that a low number of failures defines a 

reliable product, and that fault assumptions in software 

reliability models must be independent. Because it is 

necessary to specify the test efforts, including the testing time 

and finish time. Software reliability provides engineers with a 

solution by anticipating application requirements from the 

beginning to the end. 

 

Fig 2: Illustrates the system for automated software 

testing based on ML [6] 

The steps of automated software testing (see Figure 3): 

1) Software test automation framework configured to 

collect automated test suite and test execution 

results. 

2) A report parser to parse the test execution results 

generated by the software test automation 

framework and configured to identify the failures or 

exceptions with their respective stack trace. 

3) A NoSQL database configured to hold historical 

defect, bug tickets with past failures or exceptions. 

4) A ML engine to evaluate matching results of the 

NoSQL database and configured to predict type of 

the failure or exception. 

5) A defect - tracking tool configured to create relevant 

bug tickets based on the type of failure or exception. 

6) An automated notification system configured to 

notify the status of a bug ticket. 

7) A dashboard to facilitate the access results, logs, 

failures, key performance indicators etc. in the form 

of histograms, pie graphs etc. 

8) A manual feedback mechanism for adjusting the 

machine learning algorithm and NoSQL database 

table entries. 
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Fig 3: Illustrates a method for automated software testing 

based on ML, in accordance to one or more embodiment 

of the present invention [6] 

Although applying ML to tackle software-testing problems is 

a relatively new and emerging research trend, many studies 

have been published in the past two decades. Different ML 

algorithms have been adapted and used to automate software 

testing, however, it is not clear how research in this area has 

evolved in terms of what has already been investigated. 

Despite the inherent value of examining the nature and scope 

of the literature in the area, few studies have attempted to 

provide a general overview of how ML algorithms have 

contributed to efforts to automate software-testing activities. 

For instance, proposed a frame- work that can be used to 

classify research at the intersection of ML and software 

testing. Nevertheless, their classification framework is not 

based on a systematic review of the literature, which to some 

extent undermines the scope and validity of such framework 

[7]. 

2. LITERATURE REVIEW 
Mehdi Esnaashari, Amir Hossein Damia, they discussed that 

The main issue in the test data generation process is to 

determine the input data of the program in such a way that it 

meets the specified test criterion, in this study, a structural 

method was employed to automate the test data creation 

process while keeping the condition of covering all finite 

pathways in mind. The problem is transformed into a search 

problem in structural approaches, and meta-heuristic 

algorithms are utilized to solve it. This work proposes a 

memetic algorithm that employs reinforcement learning as a 

local search approach within a genetic algorithm [8]. 

The conclusion in this paper (see Figure 4) the success rate of 

MAAT in comparison to other existing algorithms. It is 

evident from this figure that the proposed algorithm has a 

success rate of 100%, while none of the other algorithms can 

reach more than 80% in this criterion. This is again due to the 

fact that mean fitness evaluations at MAAT is much lower 

than other algorithms. 

 

Fig 4: comparison success rate and algorithms for 

Experiment (Triangle program) [8] 

Dr. Subarna Shakya, Dr. S. Smys, they suggested research 

study develops an optimized automatic software testing model 

using a hybrid model of differential evolution and ant colony 

optimization to increase software testing accuracy and 

reliability. To validate the proposed model's reliability, it is 

compared to traditional models such as artificial neural 

networks and particle swarm optimization [9, 21, and 22]. 

The experimentation of proposed hybrid model is performed 

in Mat Lab 14.1 installed on a 3.5 GHz i3 processor with 4GB 

of RAM. To increase the complexity of the experimentation 

process, we have used three different data sets with different 

attributes [23, 24]. 

 

Fig 5: Proposed Model (H-ACO) [9] 

The accuracy comparison between ANN, PSO and H-ACO is 

depicted and it is observed that proposed model attains better 

accuracy compared to other models. The proposed model 

hybrid ACO model attains accuracy range of rate of 96.2%, 

but particle swarm optimization attains an average of 95.5% 

and artificial neural network obtains an accuracy of 92% 

which is 4% lesser than the proposed model. 
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The performance comparison in terms of sensitivity and 

specificity is depicted. It is observed from the figure, that the 

proposed model attains better sensitivity and specificity 

values than artificial neural network and particle swarm 

optimization model. 

The proposed model (see Figure 5) attains better reliability 

compared to other model by identifying the bugs in datasets 

with an accuracy rate of 96.2%. 

(see Figure 6) depicts a computation time analysis. All three 

models are tested on all three data sets. When compared to 

other models, the proposed model takes the least amount of 

time to compute. The performance of ANN lags due to its low 

memory capacity, while PSO takes more time due to its 

convergence parameters. 

Fig. 6. Computation Time Comparison [9] 

Mukesh Mann, Om Prakash Sangwan, and Pradeep Tomar, 

Smys, they work for the design and execution of test cases, 

this study proposes a regression framework based on a 

keyword-oriented data-driven methodology. The created 

framework's methodology is based on Test Language 

Processing (TLP), which is a complete approach to test case 

design and execution. Vtiger-Customer Relationship 

Management (CRM) version 5 is an open-source web 

application that is used to test the framework. In terms of test 

suite execution and optimization, the framework is compared 

to manual testing [10]. 

Based on our experiments it is concluded that (1) Test 

execution time using TLP based framework is significantly 

low and (2) a test suite optimization of 83.78% is achieved 

through the proposed TLP framework. For test suite execution 

and optimization in the shortest amount of time, a Regression 

Framework (based on TLP) is built. With further 

investigation, it was shown that the time value of manual 

testing varies with each subsequent iteration since manual 

testing is dependent on human efficiency, which is dependent 

on a variety of characteristics such as experience and domain 

expertise of the tester. However, it has been discovered that, 

in terms of time, subsequent cycles of iterations do not play a 

significant role in the established framework. MUT's testing 

time remains constant with each iteration. As a result, this 

framework aids in the speedy execution of testing [10]. 

SiwakornSrisakaokul, ZhengkaiWu, AngelloAstorga, 

OreoluwaAlebiosu, Tao Xie, they offer a method for testing 

supervised learning software, which is a common form of 

machine learning software, using multiple implementation 

testing. Our method, in particular, generates a test input's 

proxy oracle from the majority-voted output of many 

implementations of the same algorithm's test input (based on a 

pre-defined percentage threshold). Our method classifies as 

failing tests those test inputs whose outputs (generated by the 

Implementation under test) differ from the majority-voted 

outputs. We test our method against two well-known 

supervised learning algorithms: k-Nearest Neighbor (kNN) 

and Naive Bayes (NB) [11]. 

Conclusion is an approach of multiple implementation testing 

for supervised learning software. Our tests on two common 

machine learning algorithms, k-Nearest Neighbor (kNN) and 

Naive Bayes (NB), revealed that our majority-voted oracle, 

generated through multiple implementation testing, is a good 

surrogate for a test oracle. The oracle with the most votes has 

fewer false positives and can discover more true flaws than 

the oracle with the most votes. In particular, 19 kNN 

implementations detect 13 real errors and 1 potential fault, 

while 7 NB implementations detect 16 real faults. Among the 

three widely used open-source ML projects, our technique can 

detect 7 true problems and 1 potential defect [11]. 

Anna Trudova, Michal Dolezel, they purpose of this 

Systematic Literature Review (SLR) is to highlight the 

significance of artificial intelligence in software test 

automation by categorizing AI techniques and associated 

software testing tasks to which they might be used. The 

impact of AI on those activities was specifically investigated. 

To that purpose, the SLR was focused on research studies that 

reported on the use of AI approaches in software test 

automation [12]. 

According to the collected data, most commonly used AI 

techniques appears to be from the field of machine learning, 

specifically different types of neural networks: Artificial 

Neural Network, Recurrent Neural Network, Bayesian 

Network; Q-learning; L* etc. Bayesian Network and 

techniques from the Computer Vision field belong among the 

techniques that were used across more testing activities more 

frequently than others. 

Akshat Sharma, Rishon Patani and Ashish Aggarwal, we 

work on describes a collection of approaches for 

automatically generating test data in software testing that 

employs a genetic algorithm. Researchers have proposed 

numerous ways for generating test data over the years, each 

with its own set of problems. We have provided numerous 

Genetic Algorithm (GA) based test techniques in this 

research, each with its own set of parameters for automating 

the generation of structural-oriented test data on the basis of 

internal programmer structure [13]. 

Need for Genetic Algorithms in Software Testing [25, 26 and 

27]: 

● Drawbacks of manual testing: [17, 18] 
● Speed of operation is limited as it is carried out by 

humans. 
● High investment in terms of cost, time. 
● Limited availability of resources. 
● Redundancy in test cases. 
● Inefficient and inaccurate test checking. 
● Pros of using genetic algorithms in software testing: 
● Parallelism is a important characteristic of genetic 

testing [19, 20]. 
● Less likely to get stuck in extreme ends of a code 

during testing since it operates in a search space. 
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● With the same encoding, only fitness function needs 

to be changed according to the problem. 

There are few basic methodology/Terminology that will be 

used while implementing genetic algorithm like: 

● Individual – Possible solutions 
● Population - Set of all individuals 
● Search Space - All possible solutions to the 

specified problem 
● Chromosome – Blueprint for an individual 
● Trait - Possible aspect of an individual entity. 
● Allele - Possible settings for a trait 
● Locus - The position of a gene on the chromosome 
● Genome - Collection of all chromosomes for an 

individual entity. 

Algorithm: 

● Start with randomly generated test cases from the 

population. 
● Calculate the fitness f(x) of each pair of test cases 

(chromosome x) in the population. 
● Repeat the following steps until a n child test cases 

have been generated. 

The steps of algorithm: 

a) Select a pair of parent test cases from the current 

population, with selection probability increasing as 

fitness increases. The selection is done "with 

replacement," which means that the same pair of 

test cases can be chosen as a parent many times. 

That is to say (Selection process is carried out). 

b) Using the crossover probability Pc, cross the couple 

at a random location to create two kid cases or 

offspring. Form two test cases that are exact clones 

of their respective parent cases if no crossover 

occurs. 

c) Mutate the two kid cases with Pm mutation 

probability and add the resulting pair of test cases to 

the new population. If n is odd, a new member of 

the population can be rejected at random. Substitute 

the new test cases for the existing ones. 

Genetic Algorithm Implementation in C++, The outer loop, 

which will generate the remaining possible test cases, is the 

second phase for creating data. The loop will iterate until it 

satisfies the test findings for the supplied population values, 

accounting for the possibility of unrealistic test requirements 

such as branches and statement values. The algorithm will 

generate values for the crossover and mutation operators to 

use. The fitness function for individual values is next 

determined, followed by the population's individual average 

fitness functions. In the final step, the algorithm will assign 

the combined values of the test cases and find at least one 

individual desired fitness function values until enough test 

generations have been passed. 

Even as the number of test cases grows, genetic algorithms 

become more efficient. Because data points in Random 

Testing Methods do not depend on time, it becomes 

inefficient as code becomes more sophisticated. As a result, 

Genetic Algorithms are being utilized to improve the 

efficiency and processing time of Software testing by 

providing us with an automatic test case generator. The 

evolutionary creation of test cases can be used, and it has been 

shown to be more efficient and cost effective than Random 

Testing. 

Manju Khari, Anunay Sinha, Elena Verdu´, Ruben Gonza´ lez 

Crespo, they focuses on the performance evaluation of six 

metaheuristic algorithms namely: hill-climbing algorithm 

(HCA), particle swarm optimization (PSO), firefly algorithm 

(FA), cuckoo search algorithm (CS), bat algorithm (BA) and 

artificial bee colony algorithm (ABC) by using their standard 

implementation to optimize the path coverage and branch 

coverage produced by the test data [14, 28]. 

The results for hundred executions of each algorithm to 

generate the most optimized test suites for the five Java 

programs under test: 

1) Triangle classification problem. 

2) Greatest number problem. 

3) Prime number identification problem. 

4) Days in a month problem. 

5) Binary search problem. 

As a result, the results showed that ABC had the best balanced 

performance. When compared to the other algorithms, ABC 

generated the best results in the shortest amount of time. 

[97.8%, 98%, 50%, 97.92%, 80%] was the path coverage for 

ABC's five programs. These algorithms achieved the best path 

coverage when compared to other methods. Despite the fact 

that ABC was not the quickest algorithm, it produced the best 

results. Following BA, which was the fastest, ABC was found 

to be the second and third fastest algorithms, depending on the 

problem. Although BA was the fastest, its path coverage was 

less than ABC's [97%, 95%, 50%, 88.23%, 65%] was BA's 

path coverage. PSO was able to create optimal test suites, but 

it was slow. FA was determined to be the slowest of the 

algorithms, with results that were not comparable to the test 

suites of ABC and BA. CA had the worst results, and HCA, 

despite being quite fast, did not get good results. 

According to the results, ABC achieved the best tradeoff 

between process and product metrics in the TSG problem. 

ABC, BA and PSO were the better optimal test suite 

generators, while CA, HCA and FA produced non-optimal 

test suites. On the other hand, BA, HCA and ABC were the 

faster algorithms with similar processing times for the process 

metrics. FA, PSO and CA were among the slower performing 

algorithms. Hence, ABC and BA present as suitable 

algorithms for TSG, while PSO can be improved in the future 

for the special case of TSG [29, 30]. 

Mohd. Mustaqeem, Mohd. Saqib, they discussed that the 

previous research conducted on the data without feature 

reduction lead to the curse of dimensionality. To solve the 

problem, we used a machine learning hybrid strategy that 

combined Principal component Analysis (PCA) and Support 

vector machines (SVM). To perform our research, we used 

PROMISE [15] (CM1: 344 observations, KC1: 2109 

observations) data from NASA's directory. The dataset was 

divided into two parts: training (CM1: 240 observations, KC1: 

1476 observations) and testing (CM1: 104 observations, KC1: 

633 observations) [16]. 

The proposed model is the combination of the following two 

models PCA and SVM. The SVM is strong enough to 

classified defects and non-defective software observations. 

But, we have also included PCA to reduce the time 

complexity and robustness of the analysis. PROMISE data 
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repository datasets like KC1and MC1are full of various 

attributes which required high processing power. This paper 

also explains clearly how high dimensionality data goes inside 

the PCA (red color dotted rectangle part). Then, low 

dimension data are given to SVM to do classification (green 

color dotted rectangle part). F-measures, Recall, Accuracy, 

and Precisions are used to calculate test outcomes. On the 

KC1 dataset, we discovered that PC-SVM provided accuracy 

of 86.6 percent with 86.8% precision, 99.6% recall, and 92.8 

percent F-measure. Similarly, the accuracy of the CM1 

dataset-specific model was 95.2 percent, with 96.1 percent 

precision, 99 percent recall, and 97.5 percent F-measure. 

3. CONCLUSION AND FUTURE WORK 
In the first, this survey provides what is testing, automation 

testing, and types of software testing and benefits of 

automation testing. Also, the survey discussed some paper in 

automation software testing using machine learning and data 

mining algorithms. Also, this paper contains some techniques 

to solve the problem of test suite generation and test suite 

optimization, how to fetch and predict bugs and solve the 

issues in software testing automation, help software testers 

with more accurate knowledge, enhance the accuracy and 

minimize effort and time of software testing. The most 

algorithms used for automation testing are [PC-SVM, GA, 

KNN and ACO] (see Table 1), these techniques give the high 

result in accuracy and minimize the time of automation testing 

and effort. Some improvements on used models will be added 

by using metaheuristic optimization algorithms to find the 

best solution. 

Some improvement on chooses the most efficient and 

appropriate learning method for automation and build a hybrid 

model of the pervious data mining, machine learning and 

swarm intelligence algorithms in software testing automation 

to solve the issue in generate test case or fetch bugs in 

software [31-40]. 

Table 1: The conclusion work of the survey   

ID Name Year Method Result 

1 Automation of software test data 

generation using genetic 

algorithm and reinforcement 

learning 

2021 MAAT Algorithm MAAT algorithm has a success rate of 100%, while none of 

the other algorithms can reach more than 80% in this criterion 

2 Reliable Automated Software 

Testing Through Hybrid 

Optimization Algorithm 

2020 Hybrid ACO 

Algorithm 

The proposed model hybrid ACO model attains accuracy 

range of rate of 96.2%, but particle swarm optimization attains 

an average of 95.5% and artificial neural network obtains an 

accuracy of 92% which is 4% lesser than the proposed model 

3 Automated Software Test 

Optimization using Language 

Processing 

2019 TLP based 

framework 

Based on our experiments it is concluded that (1) Test 

execution time using TLP based framework is significantly 

low and (2) a test suite optimization of 83.78% is achieved 

through the proposed TLP framework 

4 Multiple-Implementation 

Testing of Supervised Learning 

Software 

2018 k-Nearest 

Neighbor (kNN) 

and Naive Bayes 

(NB) 

In particular, 19 kNN implementations detect 13 real errors 

and 1 potential fault, while 7 NB implementations detect 16 

real faults. Among the three widely used open-source ML 

projects, our technique can detect 7 true problems and 1 

potential defect 

5 Artificial Intelligence in 

Software Test Automation: A 

Systematic Literature Review 

2020 Systematic 

Literature Review 

(SLR) 

Most commonly used AI techniques appears to be from the 

field of machine learning, specifically different types of neural 

networks: Artificial Neural Network, Recurrent Neural 

Network, Bayesian Network; Q-learning; L* etc. Bayesian 

Network and techniques from the Computer Vision field 

belong among the techniques that were used across more 

testing activities more frequently than others 

6 Software Testing Using G 

Genetic Algorithm 

2016 Genetic Algorithm 

(GA) 

As a result, Genetic Algorithms are being utilized to improve 

the efficiency and processing time of Software testing by 

providing us with an automatic test case generator. The 

evolutionary creation of test cases can be used, and it has been 

shown to be more efficient and cost effective than Random 

Testing. 

7 Performance analysis of six 

meta-heuristic algorithms over 

automated test suite generation 

for path coverage-based 

optimization 

2019 hill-climbing 

algorithm (HCA), 

particle swarm 

optimization 

(PSO), firefly 

algorithm (FA), 

cuckoo search 

algorithm (CS), bat 

algorithm (BA) 

ABC, BA and PSO were the better optimal test suite 

generators, while CA, HCA and FA produced non-optimal test 

suites. On the other hand, BA, HCA and ABC were the faster 

algorithms with similar processing times for the process 

metrics. FA, PSO and CA were among the slower performing 

algorithms. Hence, ABC and BA present as suitable 

algorithms for TSG, while PSO can be improved in the future 

for the special case of TSG 
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and artificial bee 

colony algorithm 

(ABC) 

8 Principal component based 

support vector machine (PC-

SVM) 

2021 hybrid strategy that 

combined 

Principal 

component 

Analysis (PCA) 

and Support vector 

machines (SVM) 

PC-SVM provided accuracy of 86.6 percent with 86.8% 

precision, 99.6% recall, and 92.8 percent F-measure. 

Similarly, the accuracy of the CM1 dataset-specific model 

was 95.2 percent, with 96.1 percent precision, 99 percent 

recall, and 97.5 percent F-measure 
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