
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 51, February 2022

12

A Survey on Software Testing Automation using

Machine Learning Techniques

Mustafa Abdul Salam
Artificial Intelligence Dept.,
Faculty of Computers and

Artificial Intelligence, Benha
University, Egypt

Faculty of Computer Studies,
Arab Open University, Cairo,

Egypt

Mohamed Abdel-Fattah
Information System Dept.,
Faculty of Computers and

Artificial Intelligence, Benha
University, Egypt

Abdullah Abdel Moemen
Information System Dept.,
Faculty of Computers and

Artificial Intelligence, Benha
University, Egypt

ABSTRACT

Finding, locating, and resolving software defects takes a lot of

time and effort on the part of software engineers. Humans are

required to search and analyses data in traditional testing.

Humans are prone to making incorrect assumptions, resulting

in distorted results, which leads to defects being undetected.

Machine learning enables systems to learn and use what they

have learnt in the future, providing software testers with more

accurate information. Several advanced machine learning

approaches, such as deep learning, are capable of performing

a variety of software engineering tasks, including code

completion, defect prediction, bug localization, clone

detection, code search, and learning API sequences. One of

the most essential methods of examining software quality

assurance is software testing. This procedure is time-

consuming and costly, accounting for over half of the total

cost of software development. Researchers are looking for

using automated methods to reduce the cost and time of the

test, in addition to the cost issue. A survey has been conducted

with comparison between Machine Learning, and Data

Mining algorithms.These algorithms are such as: Hill-

Climbing Algorithm (HCA), Artificial Bee Colony Algorithm

(ABC), Firefly Algorithm (FA), Particle Swarm Optimization

(PSO), Artificial Bee Colony Algorithm (ABC), Genetic

Algorithm (GA), Ant Colony Optimization (ACO), Artificial

Neural Network (ANN), Support Vector Machine (SVM) and

Hybrid Algorithms.

Keywords

Machine learning, artificial intelligence, data mining,

Software Testing, Machine Learning, Testing Automation,

Software Testing Tool.

1. INTRODUCTION
Testing conducted on a software product is called software

testing. The main objective of testing or software testing is to

find bugs in the software. Bug is an error or fault caused in the

behavior of the software program or software application.

Software testing can be done to check if the software

● Meets all the requirements mentioned in design

phase

● Gives correct output for different inputs

● Will be able to complete the task within time limit

or acceptable time.

● Will run in different environments.

Test cases are a set of conditions used by testers to determine

whether or not the system under test operates properly. The

creation of test cases aids in the discovery of application flaws

or needs [1].

Any software application testing that is automated will go

through a series of activities, processes, and tools in order to

complete the test. The outcomes of these runs can be saved

and recorded [3].

Software Testing can be majorly classified into two

categories:

1. Black Box Testing is a software testing method

in which the internal structure/ design/

implementation of the item being tested is not

known to the tester.

2. White Box Testing is a software testing

method in which the internal structure/ design/

implementation of the item being tested is

known to the tester [4].

Test automation can be of 2 types:

1. Testing with code: uses pre-existing interfaces,

libraries, classes, and modules to test with a large

number of inputs and check and verify whether or

not the results are right.

2. Testing with a Graphical User Interface (GUI):

Interface events such as keystrokes and mouse

clicks can be generated and used by the framework

to identify changes and test whether the program's

performance is right or not [5].

The benefits of automation testing:

1. Speed and Faster time to market

2. Wider test coverage

3. Consistency

4. Cost savings

5. Frequent and thorough testing

There are some instances where manual testing is better than

automation testing, including (see Figure 1):

● New test cases that have not yet been executed

manually.
● Test cases where the criteria are always changing.
● Test cases that are not routine [2].

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 51, February 2022

13

Fig 1: Software test cycle [2]

Once the application is developed based on the below

parameters the product is verified and validated in testing

environment such as:

● Reliability
● Portability
● Usability
● Flexibility
● Testability
● Efficiency

The main objective of this study is to build a techniques for

pinpointing and correcting bugs in the software (see Figure 2),

solve the issues in software testing automation, help software

testers with more accurate knowledge, enhance the accuracy

and minimize effort and time of software testing. These

improvements can be achieved by:

1. Implement the data mining algorithms, machine

learning techniques and AI methodology to obtain

new model for automated software testing.

2. Working to choose the most efficient and

appropriate learning method for automation of a

target testing stage.

3. Evaluating the performance of the proposed work

with the previous works to touch on the changes of

data mining and machine learning techniques.

The idea improves the current test management life cycle by

making it more productive, efficient, and a rapid and reliable

self-decision-making system. The innovation uses supervised

/ semi-supervised learning to automate and save time on all

processes. Algorithms and algorithms regulate quality such

that any number of problems can be dealt with quickly.

Almost 90% of the applications are planned and developed

through this control process. The major challenges in

reliability growth models are that every tester must include an

operational profile before testing the product, which must

specify the operations that a low number of failures defines a

reliable product, and that fault assumptions in software

reliability models must be independent. Because it is

necessary to specify the test efforts, including the testing time

and finish time. Software reliability provides engineers with a

solution by anticipating application requirements from the

beginning to the end.

Fig 2: Illustrates the system for automated software

testing based on ML [6]

The steps of automated software testing (see Figure 3):

1) Software test automation framework configured to

collect automated test suite and test execution

results.

2) A report parser to parse the test execution results

generated by the software test automation

framework and configured to identify the failures or

exceptions with their respective stack trace.

3) A NoSQL database configured to hold historical

defect, bug tickets with past failures or exceptions.

4) A ML engine to evaluate matching results of the

NoSQL database and configured to predict type of

the failure or exception.

5) A defect - tracking tool configured to create relevant

bug tickets based on the type of failure or exception.

6) An automated notification system configured to

notify the status of a bug ticket.

7) A dashboard to facilitate the access results, logs,

failures, key performance indicators etc. in the form

of histograms, pie graphs etc.

8) A manual feedback mechanism for adjusting the

machine learning algorithm and NoSQL database

table entries.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 51, February 2022

14

Fig 3: Illustrates a method for automated software testing

based on ML, in accordance to one or more embodiment

of the present invention [6]

Although applying ML to tackle software-testing problems is

a relatively new and emerging research trend, many studies

have been published in the past two decades. Different ML

algorithms have been adapted and used to automate software

testing, however, it is not clear how research in this area has

evolved in terms of what has already been investigated.

Despite the inherent value of examining the nature and scope

of the literature in the area, few studies have attempted to

provide a general overview of how ML algorithms have

contributed to efforts to automate software-testing activities.

For instance, proposed a frame- work that can be used to

classify research at the intersection of ML and software

testing. Nevertheless, their classification framework is not

based on a systematic review of the literature, which to some

extent undermines the scope and validity of such framework

[7].

2. LITERATURE REVIEW
Mehdi Esnaashari, Amir Hossein Damia, they discussed that

The main issue in the test data generation process is to

determine the input data of the program in such a way that it

meets the specified test criterion, in this study, a structural

method was employed to automate the test data creation

process while keeping the condition of covering all finite

pathways in mind. The problem is transformed into a search

problem in structural approaches, and meta-heuristic

algorithms are utilized to solve it. This work proposes a

memetic algorithm that employs reinforcement learning as a

local search approach within a genetic algorithm [8].

The conclusion in this paper (see Figure 4) the success rate of

MAAT in comparison to other existing algorithms. It is

evident from this figure that the proposed algorithm has a

success rate of 100%, while none of the other algorithms can

reach more than 80% in this criterion. This is again due to the

fact that mean fitness evaluations at MAAT is much lower

than other algorithms.

Fig 4: comparison success rate and algorithms for

Experiment (Triangle program) [8]

Dr. Subarna Shakya, Dr. S. Smys, they suggested research

study develops an optimized automatic software testing model

using a hybrid model of differential evolution and ant colony

optimization to increase software testing accuracy and

reliability. To validate the proposed model's reliability, it is

compared to traditional models such as artificial neural

networks and particle swarm optimization [9, 21, and 22].

The experimentation of proposed hybrid model is performed

in Mat Lab 14.1 installed on a 3.5 GHz i3 processor with 4GB

of RAM. To increase the complexity of the experimentation

process, we have used three different data sets with different

attributes [23, 24].

Fig 5: Proposed Model (H-ACO) [9]

The accuracy comparison between ANN, PSO and H-ACO is

depicted and it is observed that proposed model attains better

accuracy compared to other models. The proposed model

hybrid ACO model attains accuracy range of rate of 96.2%,

but particle swarm optimization attains an average of 95.5%

and artificial neural network obtains an accuracy of 92%

which is 4% lesser than the proposed model.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 51, February 2022

15

The performance comparison in terms of sensitivity and

specificity is depicted. It is observed from the figure, that the

proposed model attains better sensitivity and specificity

values than artificial neural network and particle swarm

optimization model.

The proposed model (see Figure 5) attains better reliability

compared to other model by identifying the bugs in datasets

with an accuracy rate of 96.2%.

(see Figure 6) depicts a computation time analysis. All three

models are tested on all three data sets. When compared to

other models, the proposed model takes the least amount of

time to compute. The performance of ANN lags due to its low

memory capacity, while PSO takes more time due to its

convergence parameters.

Fig. 6. Computation Time Comparison [9]

Mukesh Mann, Om Prakash Sangwan, and Pradeep Tomar,

Smys, they work for the design and execution of test cases,

this study proposes a regression framework based on a

keyword-oriented data-driven methodology. The created

framework's methodology is based on Test Language

Processing (TLP), which is a complete approach to test case

design and execution. Vtiger-Customer Relationship

Management (CRM) version 5 is an open-source web

application that is used to test the framework. In terms of test

suite execution and optimization, the framework is compared

to manual testing [10].

Based on our experiments it is concluded that (1) Test

execution time using TLP based framework is significantly

low and (2) a test suite optimization of 83.78% is achieved

through the proposed TLP framework. For test suite execution

and optimization in the shortest amount of time, a Regression

Framework (based on TLP) is built. With further

investigation, it was shown that the time value of manual

testing varies with each subsequent iteration since manual

testing is dependent on human efficiency, which is dependent

on a variety of characteristics such as experience and domain

expertise of the tester. However, it has been discovered that,

in terms of time, subsequent cycles of iterations do not play a

significant role in the established framework. MUT's testing

time remains constant with each iteration. As a result, this

framework aids in the speedy execution of testing [10].

SiwakornSrisakaokul, ZhengkaiWu, AngelloAstorga,

OreoluwaAlebiosu, Tao Xie, they offer a method for testing

supervised learning software, which is a common form of

machine learning software, using multiple implementation

testing. Our method, in particular, generates a test input's

proxy oracle from the majority-voted output of many

implementations of the same algorithm's test input (based on a

pre-defined percentage threshold). Our method classifies as

failing tests those test inputs whose outputs (generated by the

Implementation under test) differ from the majority-voted

outputs. We test our method against two well-known

supervised learning algorithms: k-Nearest Neighbor (kNN)

and Naive Bayes (NB) [11].

Conclusion is an approach of multiple implementation testing

for supervised learning software. Our tests on two common

machine learning algorithms, k-Nearest Neighbor (kNN) and

Naive Bayes (NB), revealed that our majority-voted oracle,

generated through multiple implementation testing, is a good

surrogate for a test oracle. The oracle with the most votes has

fewer false positives and can discover more true flaws than

the oracle with the most votes. In particular, 19 kNN

implementations detect 13 real errors and 1 potential fault,

while 7 NB implementations detect 16 real faults. Among the

three widely used open-source ML projects, our technique can

detect 7 true problems and 1 potential defect [11].

Anna Trudova, Michal Dolezel, they purpose of this

Systematic Literature Review (SLR) is to highlight the

significance of artificial intelligence in software test

automation by categorizing AI techniques and associated

software testing tasks to which they might be used. The

impact of AI on those activities was specifically investigated.

To that purpose, the SLR was focused on research studies that

reported on the use of AI approaches in software test

automation [12].

According to the collected data, most commonly used AI

techniques appears to be from the field of machine learning,

specifically different types of neural networks: Artificial

Neural Network, Recurrent Neural Network, Bayesian

Network; Q-learning; L* etc. Bayesian Network and

techniques from the Computer Vision field belong among the

techniques that were used across more testing activities more

frequently than others.

Akshat Sharma, Rishon Patani and Ashish Aggarwal, we

work on describes a collection of approaches for

automatically generating test data in software testing that

employs a genetic algorithm. Researchers have proposed

numerous ways for generating test data over the years, each

with its own set of problems. We have provided numerous

Genetic Algorithm (GA) based test techniques in this

research, each with its own set of parameters for automating

the generation of structural-oriented test data on the basis of

internal programmer structure [13].

Need for Genetic Algorithms in Software Testing [25, 26 and

27]:

● Drawbacks of manual testing: [17, 18]
● Speed of operation is limited as it is carried out by

humans.
● High investment in terms of cost, time.
● Limited availability of resources.
● Redundancy in test cases.
● Inefficient and inaccurate test checking.
● Pros of using genetic algorithms in software testing:
● Parallelism is a important characteristic of genetic

testing [19, 20].
● Less likely to get stuck in extreme ends of a code

during testing since it operates in a search space.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 51, February 2022

16

● With the same encoding, only fitness function needs

to be changed according to the problem.

There are few basic methodology/Terminology that will be

used while implementing genetic algorithm like:

● Individual – Possible solutions
● Population - Set of all individuals
● Search Space - All possible solutions to the

specified problem
● Chromosome – Blueprint for an individual
● Trait - Possible aspect of an individual entity.
● Allele - Possible settings for a trait
● Locus - The position of a gene on the chromosome
● Genome - Collection of all chromosomes for an

individual entity.

Algorithm:

● Start with randomly generated test cases from the

population.
● Calculate the fitness f(x) of each pair of test cases

(chromosome x) in the population.
● Repeat the following steps until a n child test cases

have been generated.

The steps of algorithm:

a) Select a pair of parent test cases from the current

population, with selection probability increasing as

fitness increases. The selection is done "with

replacement," which means that the same pair of

test cases can be chosen as a parent many times.

That is to say (Selection process is carried out).

b) Using the crossover probability Pc, cross the couple

at a random location to create two kid cases or

offspring. Form two test cases that are exact clones

of their respective parent cases if no crossover

occurs.

c) Mutate the two kid cases with Pm mutation

probability and add the resulting pair of test cases to

the new population. If n is odd, a new member of

the population can be rejected at random. Substitute

the new test cases for the existing ones.

Genetic Algorithm Implementation in C++, The outer loop,

which will generate the remaining possible test cases, is the

second phase for creating data. The loop will iterate until it

satisfies the test findings for the supplied population values,

accounting for the possibility of unrealistic test requirements

such as branches and statement values. The algorithm will

generate values for the crossover and mutation operators to

use. The fitness function for individual values is next

determined, followed by the population's individual average

fitness functions. In the final step, the algorithm will assign

the combined values of the test cases and find at least one

individual desired fitness function values until enough test

generations have been passed.

Even as the number of test cases grows, genetic algorithms

become more efficient. Because data points in Random

Testing Methods do not depend on time, it becomes

inefficient as code becomes more sophisticated. As a result,

Genetic Algorithms are being utilized to improve the

efficiency and processing time of Software testing by

providing us with an automatic test case generator. The

evolutionary creation of test cases can be used, and it has been

shown to be more efficient and cost effective than Random

Testing.

Manju Khari, Anunay Sinha, Elena Verdu´, Ruben Gonza´ lez

Crespo, they focuses on the performance evaluation of six

metaheuristic algorithms namely: hill-climbing algorithm

(HCA), particle swarm optimization (PSO), firefly algorithm

(FA), cuckoo search algorithm (CS), bat algorithm (BA) and

artificial bee colony algorithm (ABC) by using their standard

implementation to optimize the path coverage and branch

coverage produced by the test data [14, 28].

The results for hundred executions of each algorithm to

generate the most optimized test suites for the five Java

programs under test:

1) Triangle classification problem.

2) Greatest number problem.

3) Prime number identification problem.

4) Days in a month problem.

5) Binary search problem.

As a result, the results showed that ABC had the best balanced

performance. When compared to the other algorithms, ABC

generated the best results in the shortest amount of time.

[97.8%, 98%, 50%, 97.92%, 80%] was the path coverage for

ABC's five programs. These algorithms achieved the best path

coverage when compared to other methods. Despite the fact

that ABC was not the quickest algorithm, it produced the best

results. Following BA, which was the fastest, ABC was found

to be the second and third fastest algorithms, depending on the

problem. Although BA was the fastest, its path coverage was

less than ABC's [97%, 95%, 50%, 88.23%, 65%] was BA's

path coverage. PSO was able to create optimal test suites, but

it was slow. FA was determined to be the slowest of the

algorithms, with results that were not comparable to the test

suites of ABC and BA. CA had the worst results, and HCA,

despite being quite fast, did not get good results.

According to the results, ABC achieved the best tradeoff

between process and product metrics in the TSG problem.

ABC, BA and PSO were the better optimal test suite

generators, while CA, HCA and FA produced non-optimal

test suites. On the other hand, BA, HCA and ABC were the

faster algorithms with similar processing times for the process

metrics. FA, PSO and CA were among the slower performing

algorithms. Hence, ABC and BA present as suitable

algorithms for TSG, while PSO can be improved in the future

for the special case of TSG [29, 30].

Mohd. Mustaqeem, Mohd. Saqib, they discussed that the

previous research conducted on the data without feature

reduction lead to the curse of dimensionality. To solve the

problem, we used a machine learning hybrid strategy that

combined Principal component Analysis (PCA) and Support

vector machines (SVM). To perform our research, we used

PROMISE [15] (CM1: 344 observations, KC1: 2109

observations) data from NASA's directory. The dataset was

divided into two parts: training (CM1: 240 observations, KC1:

1476 observations) and testing (CM1: 104 observations, KC1:

633 observations) [16].

The proposed model is the combination of the following two

models PCA and SVM. The SVM is strong enough to

classified defects and non-defective software observations.

But, we have also included PCA to reduce the time

complexity and robustness of the analysis. PROMISE data

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 51, February 2022

17

repository datasets like KC1and MC1are full of various

attributes which required high processing power. This paper

also explains clearly how high dimensionality data goes inside

the PCA (red color dotted rectangle part). Then, low

dimension data are given to SVM to do classification (green

color dotted rectangle part). F-measures, Recall, Accuracy,

and Precisions are used to calculate test outcomes. On the

KC1 dataset, we discovered that PC-SVM provided accuracy

of 86.6 percent with 86.8% precision, 99.6% recall, and 92.8

percent F-measure. Similarly, the accuracy of the CM1

dataset-specific model was 95.2 percent, with 96.1 percent

precision, 99 percent recall, and 97.5 percent F-measure.

3. CONCLUSION AND FUTURE WORK
In the first, this survey provides what is testing, automation

testing, and types of software testing and benefits of

automation testing. Also, the survey discussed some paper in

automation software testing using machine learning and data

mining algorithms. Also, this paper contains some techniques

to solve the problem of test suite generation and test suite

optimization, how to fetch and predict bugs and solve the

issues in software testing automation, help software testers

with more accurate knowledge, enhance the accuracy and

minimize effort and time of software testing. The most

algorithms used for automation testing are [PC-SVM, GA,

KNN and ACO] (see Table 1), these techniques give the high

result in accuracy and minimize the time of automation testing

and effort. Some improvements on used models will be added

by using metaheuristic optimization algorithms to find the

best solution.

Some improvement on chooses the most efficient and

appropriate learning method for automation and build a hybrid

model of the pervious data mining, machine learning and

swarm intelligence algorithms in software testing automation

to solve the issue in generate test case or fetch bugs in

software [31-40].

Table 1: The conclusion work of the survey

ID Name Year Method Result

1 Automation of software test data

generation using genetic

algorithm and reinforcement

learning

2021 MAAT Algorithm MAAT algorithm has a success rate of 100%, while none of

the other algorithms can reach more than 80% in this criterion

2 Reliable Automated Software

Testing Through Hybrid

Optimization Algorithm

2020 Hybrid ACO

Algorithm

The proposed model hybrid ACO model attains accuracy

range of rate of 96.2%, but particle swarm optimization attains

an average of 95.5% and artificial neural network obtains an

accuracy of 92% which is 4% lesser than the proposed model

3 Automated Software Test

Optimization using Language

Processing

2019 TLP based

framework

Based on our experiments it is concluded that (1) Test

execution time using TLP based framework is significantly

low and (2) a test suite optimization of 83.78% is achieved

through the proposed TLP framework

4 Multiple-Implementation

Testing of Supervised Learning

Software

2018 k-Nearest

Neighbor (kNN)

and Naive Bayes

(NB)

In particular, 19 kNN implementations detect 13 real errors

and 1 potential fault, while 7 NB implementations detect 16

real faults. Among the three widely used open-source ML

projects, our technique can detect 7 true problems and 1

potential defect

5 Artificial Intelligence in

Software Test Automation: A

Systematic Literature Review

2020 Systematic

Literature Review

(SLR)

Most commonly used AI techniques appears to be from the

field of machine learning, specifically different types of neural

networks: Artificial Neural Network, Recurrent Neural

Network, Bayesian Network; Q-learning; L* etc. Bayesian

Network and techniques from the Computer Vision field

belong among the techniques that were used across more

testing activities more frequently than others

6 Software Testing Using G

Genetic Algorithm

2016 Genetic Algorithm

(GA)

As a result, Genetic Algorithms are being utilized to improve

the efficiency and processing time of Software testing by

providing us with an automatic test case generator. The

evolutionary creation of test cases can be used, and it has been

shown to be more efficient and cost effective than Random

Testing.

7 Performance analysis of six

meta-heuristic algorithms over

automated test suite generation

for path coverage-based

optimization

2019 hill-climbing

algorithm (HCA),

particle swarm

optimization

(PSO), firefly

algorithm (FA),

cuckoo search

algorithm (CS), bat

algorithm (BA)

ABC, BA and PSO were the better optimal test suite

generators, while CA, HCA and FA produced non-optimal test

suites. On the other hand, BA, HCA and ABC were the faster

algorithms with similar processing times for the process

metrics. FA, PSO and CA were among the slower performing

algorithms. Hence, ABC and BA present as suitable

algorithms for TSG, while PSO can be improved in the future

for the special case of TSG

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 51, February 2022

18

and artificial bee

colony algorithm

(ABC)

8 Principal component based

support vector machine (PC-

SVM)

2021 hybrid strategy that

combined

Principal

component

Analysis (PCA)

and Support vector

machines (SVM)

PC-SVM provided accuracy of 86.6 percent with 86.8%

precision, 99.6% recall, and 92.8 percent F-measure.

Similarly, the accuracy of the CM1 dataset-specific model

was 95.2 percent, with 96.1 percent precision, 99 percent

recall, and 97.5 percent F-measure

4. REFERENCES
[1] Mark Last, Menahem Friedman, Abraham Kandel, “The

Data Mining Approach to Automated Software Testing”,

August 24-27, 2003, Washington, DC, USA.

[2] S.Sharmila, Dr Antony SelvadossThanamani, “Analytical

Study of Data Mining Techniques for Software Testing”,

The International journal of analytical and experimental

modal analysis. 6-december-2018.

[3] Ms.Karuturi Sneha, Mr. Malle Gowda M, “Research on

Software Testing Techniques and Software Automation

Testing Tools”. International Conference on Energy,

Communication, Data Analytics and Soft Computing

(ICECDS-2017).

[4] Jihyun Lee, Sungwon Kang, and Danhyung Lee, “A

Survey on Software Testing Practices”, All content

following this page was uploaded by Sungwon Kang. 15

January 2015.

[5] Hussam Hourani, Ahmad Hammad, Mohammad Lafi,

“The Impact of Artificial Intelligence on Software

Testing”, 2019 IEEE Jordan International Joint

Conference on Electrical Engineering and Information

Technology (JEEIT).

[6] Sumit Mahapatra and Subhankar Mishra, “Usage Of

Machine Learning In Software Testing”. July 11, 2020.

[7] Ashritha S and Dr. Padmashree T, “Machine Learning

for Automation Software Testing Challenges, Use Cases

Advantages & Disadvantages”. International Journal of

Innovative Science and Research Technology, September

– 2020.

[8] Mehdi Esnaashari, Amir Hossein Damia, “Automation of

software test data generation using genetic algorithm and

reinforcement learning”, Expert Systems With

Applications 183 (2021) 115446 , 18 June 2021.

[9] Dr. Subarna Shakya, Dr. S. Smys, “Reliable Automated

Software Testing Through Hybrid Optimization

Algorithm”. Journal of Ubiquitous Computing and

Communication Technologies (UCCT) (2020).

[10] Mukesh Mann, Om Prakash Sangwan, and Pradeep

Tomar, Smys, “Automated Software Test Optimization

using Language Processing”. The International Arab

Journal of Information Technology, Vol. 16, No. 3, May

2019.

[11] SiwakornSrisakaokul, ZhengkaiWu, AngelloAstorga,

OreoluwaAlebiosu, Tao Xie, “Multiple-Implementation

Testing of Supervised Learning Software”. 2018.

[12] Anna Trudova, Michal Dolezel, ”Artificial Intelligence

in Software Test Automation: A Systematic Literature

Review”, 2020.

[13] Akshat Sharma, Rishon Patani and Ashish Aggarwal,

“SOFTWARE TESTING USING GENETIC

ALGORITHMS”, International Journal of Computer

Science & Engineering Survey (IJCSES) Vol.7, No.2,

April 2016.

[14] Manju Khari, Anunay Sinha, Elena Verdu´, Ruben

Gonza´ lez Crespo, “Performance analysis of six meta-

heuristic algorithms over automated test suite generation

for path coverage-based optimization”, Published online:

17 October 2019. Springer-Verlag GmbH Germany, part

of Springer Nature 2019.

[15] Mohd. Mustaqeem, Mohd. Saqib, “Principal component

based support vector machine (PC-SVM): a hybrid

technique for software defect detection”, part of Springer

Nature 2021, Published online: 16 April 2021.

[16] Sayyad Shirabad, J., Menzies, T.J.: The {PROMISE}

Repository of Software Engineering Databases (2005).

[17] Christoph C. Michael, Gary E. McGraw, Michael A.

Schatz, and Curtis C. Walton, “Genetic Algorithms for

Dynamic Test Data Generation,” Proceedings of the

1997 International Conference on Automated Software

Engineering (ASE'97) (formerly: KBSE) 0-8186-7961-

1/97 © 1997 IEEE.

[18] Praveen Ranjan Srivastava et al, “Generation of test data

using Meta heuristic approach” IEEE TENCON (19-21

NOV 2008), India available in IEEEXPLORE.

[19] Nashat Mansour, MiranSalame,” Data Generation for

Path Testing”, Software Quality Journal, 12, 121–136,

2004,Kluwer Academic Publishers.

[20] FranciscaEmanuelle et. al., “Using Genetic algorithms

for test plans for functional testing”, 44th ACM SE

proceeding, 2006, pp. 140 - 145.

[21] Ajmer Singh, Rajesh Bhatia, Anita Singhrova (2018).

Taxonomy of machine learning algorithms in software

fault prediction using object-oriented metrics. Procedia

Computer Science. 132. 993-1001.

[22] Alireza Haghighatkhah, Ahmad Banijamali, Olli-

PekkaPakanen, Markku Oivo, PasiKuvaja (2017).

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 51, February 2022

19

Automotive software engineering: A systematic mapping

study. Journal of Systems and Software. 128, 25-55.

[23] Amir Elmishali, Roni Stern, Meir Kalech (2018). An

Artificial Intelligence paradigm for troubleshooting

software bugs. Engineering Applications of Artificial

Intelligence. 69, 147-156

[24] Fuqun Huang, Bin Liu (2017). Software defect

prevention based on human error theories. Chinese

Journal of Aeronautics. 30(3):1054-1070.

[25] Mark Last, Shay Eyal1, and Abraham Kandel, “Effective

Black-Box Testing with Genetic Algorithms,” IBM

conference.

[26] Wegener, J., Baresel, A., and Sthamer, H, “Suitability of

Evolutionary Algorithms for Evolutionary Testing,” In

Proceedings of the 26th Annual International Computer

Software and Applications Conference, Oxford, England,

August 26-29, 2002.

[27] Mark Last et. al., “Effective black-box testing with

genetic algorithms”, Lecture notes in computer science,

Springer, 2006, pp. 134 -148.

[28] Kumudha, P., Venkatesan, R.: “Cost-sensitive radial

basis function neural network classifier for software

defect prediction”. Sci.World 2016, 2401496 (2016J.)

[29] Hudaib, A., Zaghoul, F.A.L., Widian, J.A.L.:

“Investigation of software defects prediction based on

classifiers (NB, SVM, KNN and decision tree)”. J. Am.

Sci. 9(12), 381–386 (2013).

[30] Naughton, J.: “The evolution of the Internet: from

military experiment to general purpose technology”. J.

Cyber Policy 1(1), 5–28 (2016).

[31] O. Hegazy, O.S. Soliman, and M. Abdul Salam, "A

Machine Learning Model for Stock Market Prediction",

International Journal of Computer Science and

Telecommunications, Vol. (4), Issue (12),pp. 17-23,

December 2013.

[32] O. Hegazy, O.S. Soliman, and M. Abdul Salam,

"LSSVM-ABC Algorithm for Stock Price Prediction",

International Journal of Computer Trends and

Technology (IJCTT), Vol. (7), Issue (2),pp. 81-92, Jan

2014.

[33] O. Hegazy, O.S. Soliman, and M. Abdul Salam,

"Optimizing LS-SVM using Modified Cuckoo Search

algorithm (MCS) for Stock Price Prediction",

International Journal of Advanced Research in Computer

Science and Management Studies, Vol. (3), Issue (2),pp.

204-224, February 2015.

[34] O. Hegazy, O.S. Soliman, and M. Abdul Salam,

"Comparative Study between FPA, BA, MCS, ABC, and

PSO Algorithms in Training and Optimizing of LS-SVM

for Stock Market Prediction", International Journal of

Advanced Computer Research Vol.(5), Issue (18),pp.35-

45, March-2015.

[35] O. Hegazy, O.S. Soliman, and M. Abdul Salam, "FPA-

ELM Model for Stock Market Prediction", International

Journal of Advanced Research in Computer Science and

Software Engineering, Vol.(5), Issue (2),pp.1050-1063,

February 2015.

[36] R. Salem, M. Abdul Salam, H. Abdelkader and A. Awad

Mohamed, "An Artificial Bee Colony Algorithm for Data

Replication Optimization in Cloud Environments," in

IEEE Access, vol. 8, pp. 51841-51852, 2020, doi:

10.1109/ACCESS.2019.2957436.

[37] M. A. Salam, A.T. Azar, R. Hussien, R. (2022). Swarm-

Based Extreme Learning Machine Models for Global

Optimization. CMC-COMPUTERS MATERIALS &

CONTINUA, 70(3), 6339-6363.

[38] M. Abdul Salam, S. Taha, M. Ramadan. COVID-19

detection using federated machine learning. Plos one.

2021 Jun 8;16(6):e0252573.

[39] O. Hegazy, O.S. Soliman, and M. Abdul Salam, A

Hybrid BA-LS-SVM Model and Financial Technical

Indicators for Weekly Stock Price and Trend Prediction.

International Journal. 2014 Apr;4(4).

[40] M. Abdelsalam, H. Ahmed, W.F. Abdulwahed, (2014).

Evaluation of Differential Evolution and Particle Swarm

Optimization Algorithms at Training of Neural Network

for prediction. IJCI. International Journal of Computers

and Information, 3(1), 2-14.

IJCATM : www.ijcaonline.org

