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ABSTRACT
The maximum order of partition of the vertex set V (G) into ver-
tex hop hub sets is called hop hubtic number of G and denoted
by hξ(G). In this paper the hop hubtic number of some standard
graphs was determined. Also bounds for hξ(G) were obtained.
The hop hub polynomial of a connected graph G was introduced.
The hop hub polynomial of a connected graph G of order n is the
polynomial

Hh(G, x) =

|V (G)|∑
i=hh(G)

hh(G, i)xi,

where hh(G, i) denotes the number of hop hub sets of G of car-
dinality i and hh(G) is the hop hub number of G. Finally, the
hop hub polynomial of some special classes of graphs was studied.
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1. INTRODUCTION
By a graph G = (V,E) we mean a finite and undirected graph

without loops and multiple edges. A graph G with n vertices and
m edges is called a (n,m) graph, the number n is referred to as the
order of a graph G and m is referred to as the size of a graph G. In
general, the degree of a vertex v in a graph G denoted by deg(v) is
the number of edges of G incident with v. Also δ(G) denotes the
minimum degree among the vertices of G [5]. In a tree, a leaf is
a vertex of degree one. See [5] for terminology and notations not
defined here.

A set D of vertices in a graph G is called dominating set of G if
every vertex in V −D is adjacent to some vertex in D , the mini-
mum cardinality of a dominating set in G is called the domination
number γ(G) of a graph G [6]. In 1977, E. J. Cockayne and S.
T. Hedetniemi have introduced the concept of domatic number of
graph G and defined by, a D-partition of G is a partition of V (G)
into dominating sets, the domatic number of G denoted by d(G) is
the maximum order of a D-partition of G [3].

Introduced by Walsh [14], a hub set in a graph G is a set H of ver-
tices in G such that any two vertices outside H are connected by
a path whose all internal vertices lie in H . The hub number of G,
denoted by h(G), is the minimum size of a hub set in G. Shadi,
Veena, and Sultan [7] have introduce the maximum order of parti-
tion of the vertex set V (G) into hub sets is called hubtic number
of G, and denoted by ξ(G). A H-partition of a graph G is a par-
tition of V (G) into hub sets. There are many polynomials associ-
ated with graphs. For example, domination polynomial, chromatic
polynomial, clique polynomial, characteristic polynomial and Tutte
polynomial, see [1, 2, 4, 10, 12]. In 2020, R. P. Veettil and T. V. Ra-
makrishnan [13] introduce hub polynomial of a connected graph
G. The hub polynomial of a connected graph G of order n is the
polynomial

HG(x) =

|V (G)|∑
i=h(G)

h(G, i)xi

where h(G, i) denotes the number of hub sets of G of cardinality i
and h is the hub number of G. In 2020, Sultan and Veena [8] de-
fined hub-integrity polynomial of graphs and obtained some of its
properties. Also in 2021, S. S. Mahde and A. S. Sand have intro-
duced the concept of hop hub integrity [9].

In 2021, A. S. Sand and S. S. Mahde [11], have introduced the
concept of hop hub set of a graph which is defined as follows. A
hub set S is a hop hub set of G if for every v ∈ V − S, there exists
u ∈ S such that d(u, v) = 2. The minimum cardinality of a hop
hub set of G is called the hop hub number and is denoted by hh(G).
Using the concept of hop hub set of a graph G and the definition
of the hubtic number of a graph G, motivated by this, we introduce
the concept of hop hubtic number of a graph G as a new parameter
of a graph.

The following results will be useful in the proof of our results.

PROPOSITION 1. ( [3]) For any graph G, daim(G) ≤ δ(G)+
1.

LEMMA 1. ( [11]) Let T be a tree with n vertices and l leaves
and p internal vertices, then hh(T ) = h(T ) = n − l such that
p ≥ 3.

PROPOSITION 2. ( [11]) The hop hub numbers of some specific
classes of graphs are as below:
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(1) For any path Pn,

hh(Pn) =

{
2, if n = 2,
3, if n = 3,
n− 2, if n ≥ 4.

(2) For any complete graph Kn, hh(Kn) = n.
(3) For the wheel graph W1,n−1,

hh(W1,n−1) =

{
4, if n = 4,
3, if n ≥ 5,

(4) For the complete bipartite graph Kn,m, hh(Kn,m) = 2.
(5) For the double star Sn,m, hh(Sn,m) = 2.
(6) For any cycle Cn,

hh(Cn) =

{
2, if n = 4,
3, if n = 3,
n− 3, if n ≥ 5.

2. HOP HUBTIC NUMBER OF GRAPHS
DEFINITION 2. The maximum order of partition of the vertex

set V (G) into hop hub sets is called hop hubtic number of G, and
denoted by hξ(G). A Hh-partition of a graph G is a partition of
V (G) into hop hub sets.

EXAMPLE 1. The Figure 1, shows a hop hubtic partition of a
graph. The hop hub sets S1 = {v2, v3}, and S2 = {v1, v4, v5, v6},
are hop hub sets of G, so hξ(G) = 2.

x x x x

x x

v1 v2 v3 v4

v5 v6

Fig. 1: Graph (G)

THEOREM 3. For any connected graph G, 1 ≤ hξ(G) ≤
⌊ n
hh(G)

⌋.

PROOF. Let H = {H1,H2,H3, ...,Hhξ(G)} be the hop hubtic
partition of graph G. Clearly, |Hi| ≥ hh(G) for all i =
1, 2, ..., hξ(G), so hξ(G)|Hi| ≥ hξ(G)hh(G) for all i =
1, 2, ..., hξ(G), then

n = Σ|Hi| ≥ hξ(G)hh(G).

Hence the assertion follows.

By Theorem 3, we get the next result.

PROPOSITION 3. (1) For any complete graph Kn, hξ(Kn) =
1.

(2) For any path Pn with n ≥ 5, hξ(Pn) = 1.
(3) For the wheel graph W1,n−1, hξ(W1,n−1) = 1.
(4) For the complete bipartite graph Kn,m, hξ(Kn,m) =

min{n,m}.
(5) For the double star Sn,m, hξ(Sn,m) = 2.

(6) For any cycle Cn,

hξ(Cn) =

{
2, if n = 4, 5, 6.
1, if n ≥ 7.

PROOF. 1- By Theorem 3, and Proposition 2 we have

hξ(Kn) ≤ ⌊ n

hh(Kn)
⌋

= ⌊n
n
⌋

= ⌊1⌋
= 1

hξ(Kn) ≤ 1.

And for any graph G, hξ(Kn) ≥ 1, then hξ(Kn) = 1.
2- By Theorem 3, and Proposition 2,

hξ(Pn) ≤ ⌊ n
hh(Pn)

⌋
= ⌊ n

n−2
⌋

= ⌊n−2+2
n−2

⌋
= ⌊n−2

n−2
+ 2

n−2
⌋

= ⌊1 + 2
n−2

⌋
= 1 + ⌊ 2

n−2
⌋, n ≥ 5

= 1 + 0, ⌊ 2
n−2

⌋ = 0, n ≥ 5.

= 1

hξ(Pn) ≤ 1.

And for any graph G, hξ(Pn) ≥ 1, then hξ(Pn) = 1 if n ≥ 5.
3- If n = 4, W1,3

∼= K4 and hξ(K4) = 1 form Proposition 3, part
1.
If n ≥ 5, let V (W1,n−1) = {v, v1, v2, · · · , vn−1} and
hh(W1,n−1) = 3, since v is center of W1,n−1 adjacent any
vertex in W1,n−1, then hξ(W1,n−1) = 1.
4- Let V (Kn,m) = {v1, v2, . . . , vn, u1, u2, . . . , um}. Consider
Hh = {v1, u1} is a hop hub set of Kn,m such that |Hh| = 2,
therefore any hop hub set Hh must contain {vi, uj} such that
i ∈ n, j ∈ m, therefore, the number of hop hub set depended on
the minimum vertex i or j.
5- Let V (Sn,m) = {v, v1, v2, . . . , vn, u, u1, u2, . . . , um}.
There are two Hh-partition of V (Sn,m) are S1 = {v, u} and
S2 = {v1, v2, . . . , vn, u1, u2, . . . , um}, then hξ(Sn,m) = 2.
6- Consider V (Cn) = {v1, v2, ..., vn} be the vertex of cycle, the
following cases are discussed :
Case 1: When n = 4, there only two Hh sets of cardinality
two, namely, S1 = {v1, v2} and S2 = {v3, v4}. Therefore,
hξ(C4) = 2.
Case 2: When n = 5, there only one Hh set of cardinality two,
namely, S1 = {v1, v2} and one set of cardinality three, namely,
S2 = {v3, v4, v5}. Then, hξ(C5) = 2.
Case 3: When n = 6, there only two Hh sets of cardinality
three, namely, S1 = {v1, v2, v3} and S2 = {v4, v5, v6}. So,
hξ(C6) = 2.

Case 4: When n ≥ 7. By Theorem 3, and Proposition2, we
have
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hξ(Cn) ≤ ⌊ n
hh(Cn)

⌋
= ⌊ n

n−3
⌋

= ⌊n−3+3
n−3

⌋
= ⌊n−3

n−3
+ 3

n−3
⌋

= ⌊1 + 3
n−3

⌋
= 1 + ⌊ 3

n−3
⌋

= 1 + 0. ⌊ 3
n−3

⌋ = 0, n ≥ 7.

= 1

hξ(Cn) ≤ 1.

And for any graph G, hξ(Cn) ≥ 1, so hξ(Cn) = 1.

THEOREM 4. Let G be a tree with at least 3 non-leaf vertices.
Then hξ(G) = 1.

PROOF. Suppose that G is a tree with at least 3 non-leaf ver-
tices. We discuss the following cases:
Case 1. Let H be a set of all non-leaf vertices. Clearly, any path
between two leaves does not pass through another leaf. So, H is a
hop hub set of G, and by Lamma 1, it is a minimum hop hub set.
Now, suppose that D ⊆ V (G)−H is a hop hub set of G. Since G
is a tree with at least 3 non-leaf vertices, take any two non-adjacent
vertices u, v ∈ H . Since all vertices in D are leaves, then there is
no path between u and v with all internal vertices in D. This is a
contradiction. Hence hξ(G) = 1.
Case 2. Suppose that H is a hop hub set of G but not contain-
ing all non-leaf vertices. Since G has at least three non-leaf ver-
tices, let {v1, v2, v3} be non-leaf vertices and v1v3 /∈ E(G),
let l1, l3 be leaves adjacent to v1 and v3, respectively. Clearly,
G[{l1, v1, v2, v3, l3}] is a path P5. Since hh(P5) = 3, then H con-
tains at least three vertices from P5. Then any other hop hub set of
G must intersects H since |P5| = 5, therefore hξ(G) = 1.

THEOREM 5. For any graph G, hξ(G) ≤ δ(G) + 1.

PROOF. Suppose hξ(G) > δ(G) + 1, We have the following
cases :
Case 1: If G ∼= Kn,

hξ(Kn) > δ(Kn) + 1

1 > δ(Kn) + 1

1− 1 > δ(Kn)

0 > δ(Kn).

impossible
Case 2: If G is tree, hop hubtic of tree is 1 or 2 by Theorem 4.
If hop hubtic of tree is 1 and since δ(T ) = 1, then

hξ(T ) > 1 + 1

hξ(T ) > 2

1 > 2,

impossible.
If hop hubtic of tree is 2, then

2 > 1 + 1

2 > 2

this is impossible.
Case 3: Now If G is not tree, then there exist some graph such that

hξ(G) = δ(G), so the relation hξ(G) > δ(G) + 1 is not true.
Therefore, hξ(G) ≤ δ(G) + 1.

LEMMA 6. For any graph G, hξ(G)+daim(G) ≤ 2δ(G)+2.

PROOF. By Proposition 1, daim(G) ≤ δ(G) + 1 and Theorem
5, hξ(G) ≤ δ(G) + 1, then hξ(G) + daim(G) ≤ 2δ(G) + 2.

3. HOP HUB POLYNOMIAL OF GRAPHS
DEFINITION 7. The hop hub polynomial of a connected graph

G of order n is the polynomial

Hh(G,x) =

|V (G)|∑
i=hh(G)

hh(G, i)xi,

where hh(G, i) denotes the number of hop hub sets of G of cardi-
nality i and hh(G) is the hop hub number of G.

To show this polynomial, we discuss this example.

EXAMPLE 2. Let G be a graph as shown in Figure 2.

x x x

x

�
�

�
�

�
�

�@
@

@
@

@
@

@

u2 u3 u4

u1

Fig. 2: Graph (G)

We have hh(G) = 3 such that S1 = {u1, u2, u3}, S2 =
{u1, u2, u4}, S3 = {u1, u3, u4} and S4 = {u1, u2, u3, u4}, are
Hh-sets of G.
Then, Hh(G,x) = 3x3 + x4.

THEOREM 8. Let G be a path Pn. Then

Hh(Pn, x) =


x2 if n = 2,
2x2 + x3 if n = 3,
4x2 + 4x3 + x4 if n = 4,
7x3 + 5x4 + x5 if n = 5,

xn + nxn−1 + (
(
n
2

)
− 2)xn−2 if n ≥ 6.

PROOF. We have the following cases:
Case 1: When n = 2. Let S = {v1, v2} is Hh set of P2, hence
hh(P2) = 2. By definition of hop hub polynomial,

Hh(P2, x) =

2∑
i=2

hh(P2, i)x
i = x2.

Case 2: When n = 3. Let Consider V (P3) = {v1, v2, v3} and
hh(P3) = 2. Also every subset S of vertex set of P3 consisting
of 2 elements, let it be S1 = {v1, v2} and S1 = {v2, v3}, clearly,
the number of sets that contain tow elements are two sets. Also the
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number of sets that contain three elements is only one set. Then by
definition of hop hub polynomial, we have

Hh(P3, x) =

3∑
i=2

hh(P3, i)x
i = 2x2 + x3.

Case 3: When n = 4, Consider V (P4) = {v1, v2, v3, v4}
and hh(P4) = 2. Every subset S of vertex set of P4 consist-
ing of 2 elements, let it be S1 = {v1, v2}, S2 = {v3, v4},
S3 = {v1, v4} and S4 = {v2, v3}, note that the number of
sets that contain tow elements are four sets. We also note that
the number of sets that contain three elements is only four
set

(
4
3

)
= 4. Note that the number of sets that contain four

elements are one set. Then by definition of hop hub polynomial
Hh(P4, x) =

∑4

i=2
hh(G, i)xi = 4x2 + 4x3 + x4.

Case 4: When n = 5 Let Consider V (P5) = {v1, v2, v3, v4, v5}
and hh(P5) = 3. Also every subset S of vertex set of P5 consisting
of 3 elements is

(
5
3

)
= 10 but the sets S1 = {v2, v4, v5}, S2 =

{v1, v2, v4} and S3 = {v1, v3, v5} are not hop hub set, then every
subset S of vertex set of P5 consisting of 3 elements is 7. We note
that the number of sets that contain four elements are five sets such
that

(
5
4

)
= 5. Note that the number of sets that contain five elements

are one set. Then by definition of hop hub polynomial Hh(P5, x) =∑5

i=2
hh(G, i)xi = 7x3 + 5x4 + x5.

Case 5: When n ≥ 6. Let Pn = {v1, v2..., vn} be a path. Then
we have hh(Pn) = n − 2. Also every subset of vertex set of Pn

consisting of n − 2 elements and all its super sets form a hop hub
set for the path Pn. Hence
hh(Pn, n− 2) =

(
n

n−2

)
− 2 =

(
n
2

)
− 2.

hh(Pn, n− 1) =
(

n
n−1

)
=
(
n
1

)
= n.

hh(Pn, n) = 1.

THEOREM 9. Let G be a cycle Cn. Then

Hh(Cn, x) =


x3 if n = 3,
4x2 + 4x3 + x4 if n = 4,
18x3 + 15x4 + 6x5 + x6 if n = 6,

−nxn−3 +
∑n

i=n−3

(
n

n−3

)
xn−3 if n=5 , n ≥ 7.

PROOF. Case 1: When n = 3. Suppose that V (C3) =
{v1, v2, v3} and hh(C3) = 3. It is clear that, the number of sets
that contain three element is only one set. So by definition of hop
hub polynomial, Hh(C3, x) = x3.
Case 2: When n = 4. Consider V (C4) = {v1, v2, v3, v4} and
hh(C4) = 2. Also every hop hub subset S of vertex set of C4 con-
sisting of 2 elements. let it be S1 = {v1, v2}, S2 = {v2, v3}, S3 =
{v3, v4} and S4 = {v1, v4}. Also every hop hub sub set S of ver-
tex set of C4 consisting of 3 elements. let it be S1 = {v1, v2, v3},
S2 = {v2, v3, v4}, S3 = {v3, v4, v1} and S4 = {v4, v1, v2}, so
the number of sets that contain three element are four sets. Also the
number of sets that contain four element is only one set. Then by
definition of hop hub polynomial Hh(P4, x) = 4x2 + 4x3 + x4.
Case 3: When n = 6. Consider V (C6) = {v1, v2, v3, v4, v5, v6}
and hh(C6) = 3. Also every subset of vertex set of C6 consisting
of 3 elements except subset S1 and S2 as in the following Figure3,
and all its super sets form a hop hub set for the cycle Cn. Hence
hh(C6, 3) =

(
6
3

)
− 2 = 20− 2 = 18.

hh(C6, 4) =
(
6
4

)
= 15.

hh(C6, 5) =
(
6
5

)
= 6.

hh(C6, 6) =
(
6
6

)
= 1.

u u
u u u

uu u u
u u u

S1 = {v1, v3, v5} S2 = {v2, v4, v6}

v1 v2 v3 v1 v2 v3

v6v4 v5v4 v5 v6

Fig. 3: Graph (C6)

Case 4:When n = 5 and n ≥ 7. Let Cn = {v1, v2, ..., vn} be a
cycle. Then we have hh(Cn) = n− 3. Also every subset of vertex
set of Cn consisting of n− 3 elements and all its super sets form a
hop hub set for the cycle Cn. Hence
hh(Cn, n− 3) =

(
n

n−3

)
− n.

hh(Cn, n− 2) =
(

n
n−2

)
.

hh(Cn, n− 1) =
(

n
n−1

)
.

hh(Cn, n) =
(
n
n

)
= 1.

THEOREM 10. For the complete graph Kn, Hh(Kn, x) = xn.

PROOF. Since hh(Kn) = n, and hh(Kn, n) = 1. We have
Hh(Kn, x) = xn.

PROPOSITION 4. Let G ∼= Kn. Then Hh(Kn, x) = xn.

THEOREM 11. For the star graph K1,n−1,

Hh(K1,n−1, x) =

n−1∑
i=1

[(
n

i

)
−
(
n− 1

i

)]
xi + xn

PROOF. Let V (K1,n−1) = {v, v1, v1, ..., vn−1} is the vertices
of K1,n−1 and v is the central vertex of K1,n−1, since Hh =
{v, vi}, 1 ≤ i ≤ n − 1, then every hop hub set of cardinality i
must include the vertex v. The number of hop hub sets of cardinal-
ity 2 is

(
n
2

)
−
(
n−1
2

)
. The number of hop hub sets of cardinality 3

is
(
n
3

)
−
(
n−1
3

)
. So the number of hop hub sets of cardinality i is(

n
i

)
−
(
n−1
i

)
, i ≤ n− 1. Therefore,

Hh(K1,n−1, x) =

n−1∑
i=1

[(
n

i

)
−
(
n− 1

i

)]
xi + xn

.

4. CONCLUSION
In this paper, we have computed the concept of hop hubtic number
of some standard graphs. Also, hop hub polynomial of some graph
is obtained. hξ(G) and Hh(G,x) of several other families of
graphs are an open problem.
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