
International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 6, June 2021

36

Formal Specification Method for Gaia Methodology

Laith Obidat
Software Engineering Department

Isra University
Amman, Jordan

ABSTRACT

the software development life cycle process is in continuity
and expansion. So that may occur and leads to complex
software systems which need to have technologies to realize
and understand of large-scale and complex software systems.
One of these methods helps to achieve this goal which called

agent technology that is compatible and deals with complex
software systems characterized by a high degree of
distribution. So, a collection of software agents collaborates or
competes with each other to achieve single or collective task
led to multi-agent. In other hands, the correctness of
specifications in the first phase of software development life
cycle it is the main factor that led to successful project. The
problem is that the specifications are written by informal
method may occur misunderstanding and ambiguity. In this

research, I will give a solution by doing formal specifications
method for GAIA methodology which is one of the methods
used in multi-agent systems. This step will enhance the
specification based-on Object Constraints Language (OCL).

Keywords

Agent-Oriented Methodology, Multi-Agent System, GAIA
Multi-Agent Method, Formal Method, Formal Specification

1. INTRODUCTION
In recent years, agent-based systems have become more
popular in academic and industry environment. The agent-

oriented model it is an extension to the Object-Oriented (OO)
model [1]. Both deal with the principle of encapsulation and
information hidden as well as recognize the importance of
interaction. But agents differ from objects in many issues
such as when we developing Multi-Agent Systems (MAS),
the classical analysis and design approaches are poorly.
Moreover, objects are negative when interacts with external
factors, as well as the interactions between agents are

characterized by independence whereas object interactions are
class dependent [2].

In another side Agent-Oriented Software Engineering (AOSE)
“is one of the most recent contributions in the field of
software engineering to face the complexity of information
communication technology such as agent-based system for
monitoring and diagnosing faults in nuclear power plants” [3].
AOSE provide a variety of conceptual frameworks, notations,
techniques and hence provide a platform supports the

generalization, dynamic, and autonomous which helps
Introducing robustness and easy to use software
methodologies to meet challenges and achieve the goals [4].

Multi-Agent Systems (MAS) are autonomous systems that
interacting together or interact with themselves called the
agent. The agent has some of the characteristics that have
characterized as follows: autonomy– it works without the
direct involvement of human or others; social ability– agents

interact with other agents through agent communication
language and set rules called an interaction protocol [5].

Multi-agent systems are a new subpart of computer science

has been studied only start since about 1980 and it has been
recognized widely since about the mid-1990s. In addition,
after the 1990s, the acquisition of world’s attention has begun,
because of the belief that the agents are a suitable software
approach in huge open distributed systems- such as the
internet [6].

In this paper, the Gaia methodology used for the development
of multi-agent systems is proposed to help an analyst to apply
a systematic method from a statement of requirements to the

design in detailed. Gaia methodology that has two levels
abstract and concrete; abstract level is used during analysis to
conceptualize system such as role, permission, responsibility
and so on. Concrete level is used within design phase. Gaia
methodology doesn’t explicitly deal with requirement
capturing, implementation issues and does not provide
constructs for the formal verification [7, 8], so we will
propose a method to improve the Gaia methodology by

providing formal specification method to get a better practices
and results.

The agent and multi-agent systems are being described as a
new approach in software engineering for the research field to
face the complexity of information communication
technology. Specification one of the factors which impact on
analysis and design phases to reach and achieve best reliable
and accurate practices in Gaia methodology. Then we will

need to provide a formal specification method for GAIA
methodology to achieve this goal that leads to enhancing in
Gaia methodology and improve inputs into analysis phase,
which positively reflected in the analysis and design phases.

This paper is arranged as follows: the second section includes
brief relevant background information over the topics of Gaia
methodology and object constraints language and presents
related works. Then, third section presents proposed solution

and the proof. But last section presents discussions and
conclusion with future work.

2. BACKGROUND
In this section, we will show you some of the concepts that
you must understand in order to reach a conceptual perception

about some of the topics that will lead to understanding the
integrated environment for this paper are as follows.

2.1 Definition of Multi-Agent System
A Multi-Agent System (MAS) is a computerized system
consists of multiple autonomous agents, who can interact
using an interaction protocol and perform actions within a

common environment to solve difficult complex problems [9].
Another definition of a Multi-Agent System (MAS), systems
are interrelated through processes work together in parallel
with the synchronization between them to solve complex
problems to achieve and perform a specific goal [8].

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 6, June 2021

37

2.2 Agent Characteristics
Agent in Multi-Agent System (MAS) has many of the

properties are as follows [9, 10]:

- Autonomy: the agent is not controlled directly by

human or others.

- Local views: the agent does not have a complete
public view of the system.

- Decentralization: No agent has complete control

over the system.

 - Reactivity: agents perceive their environment and
respond in an appropriate time to changes that occur
in it.

- Pro-activity: agents have the ability to present goal-

directed behavior by taking the initiative.

2.3 Agent Environment Characteristics
They are many properties for agent environment as follows
[9]:

- Accessible vs. Inaccessible.

- Static vs. dynamic.

- Open vs. closed.

2.4 Gaia Methodology
Gaia Methodology is the first complete methodology
suggested to show the process of developing a Multi-Agent
System (MAS). The scope of the methodology incorporates

the analysis and design stages and rejects both gatherings of
specification and implementation. It is applied after gathering
and specified of the requirements and applicable to a range of
multi-agent systems [11].

It was released many versions that concerning with the Gaia
methodology in order to improve and those versions: Gaia v2,
ROADMAP and extending Gaia with AUML. In general, the
Gaia process comprises in constructing a series of models, as

shown in Figure 1. These models are aimed to describe both
macro-level (societal) and micro-level (agent) aspects of
systems [12].

These models are distributed into the analysis and design
phases are as follows: in the analysis phase constructs both
role model and interaction model. These two models represent
the abstract level, and used as input to design phase, but in
design phase that is called concrete level is consist of three

models: an agent model, a service model, and an acquaintance
model are defined to build a full design specification of the
Multi-Agent System (MAS) to be used for implementation
phase that is not supported by Gaia methodology [12, 13].

2.5 Object Constraint Language (OCL)
We need language to help in the specification, A UML

diagram, such as class diagram is not enough to describe all
relevant information about a specification. Also, we need to
specify and describe extra constraints don’t capable and
applicable using UML diagram such as constraints that
described only by natural language. Object Constraints
Language is used to specify the constraints on object-oriented
systems. OCL is a standardized and it is used to converts the
semi-formal specification to formal specification without side

effects and no control flow; this means that the model cannot
change during the validation process. In addition, it is
supporting object concepts. OCL is not a programming
language but it has a formal mathematical semantics and
depends on set theory and predicate logic [14].

2.6 Combining OCL with UML
UML models will be weak and inaccurate without OCL

expressions. Also, without UML models, the OCL
expressions are not connected with diagram elements. But,
when combined the UML model and the constraints, it
achieves the fully specify the model. We can connect OCL
expression with a UML model using the basic types such as
String, Integer, Real, and Boolean, also, we can link between
OCL expression and class from the UML model and their
attributes [15].

3. RELATED WORK
In this section, we will study the related work in the area of
merged the object constraint language (OCL) with class
diagrams and validate it; also, we will study integrated Gaia
methodology with UML/OCL class diagrams.

The study in [16], it depicts the importance of integrating both
the OCL with UML models to get a precise description of
some aspects of software models. In addition to this research,
introduces recommendation to use the OCL because the OCL
is supported by tools, accepted language, consistency and
expressivity.

The research in [17], it was intended to introduce a formal
specification through analyzing functional and non-functional

properties in stepwise enhancement process from abstract
specification level to concrete specification level to achieve to
formal verification for these specifications. Where it was
merged Gaia methodology with finite state process (FSP) and
as a result, it has been providing the formal specification of
their system and validate these specifications by analyzer
called Labeled Transition System Analyzer (LTSA) which
was proposed and modeled by Magee and Kramer, as a result,

it has been verified both safety and liveness property in Gaia
methodology.

The research in [18], the main goal of this research is to
present a method for fully automatic, decidable and
expressive verification of UML/OCL class diagrams. In this
method is used constraint programming approach as
formalism, so that was developed a systematic procedure for
the transformation of UML class diagram annotated with OCL
constraints through a constraint satisfaction problem (CSP),

where it was pre-definition set of the correct properties about
the UML/OCL diagram, such as satisfiable of the model,
liveliness of a class and redundancy of a constraint. Also
checked the result using a graphical front-end tool called
UMLtoCSP which is developed to improve the usability of
them verification method. Using this tool (UML to CSP)
begins by introducing a UML class diagram in an XMI and a
text file contains the OCL constraints as an input. On the

opposite side, the output of the (UMLtoCSP) tool is a UML
object diagram that leads to prove the property. The
(UMLtoCSP) tool is easy to use because the user does not
need to know about prolog or CSPs. So the input and output
notations are usable to designer. The whole verification stage
is fully automated and hidden from the user, so the following
the hidden formal methods is to enhance the usability of the
(UMLtoCSP) tool and its results. The preliminary results of

this approach offered through the workshop and have taken
those preliminary results to add a richer description of the
method and tool, an enhance UML/OCL to CSP mapping
strategy, an evaluation of the problem complexity and
efficiency results with more detailed comparison with relevant
approaches. The limitations of this approach that is used the
(UMLtoCSP) tool is the lack of the translation from
UML/OCL into CSPs because it does not provide support for

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 6, June 2021

38

all the features described in the complex standards for UML
and OCL, such as multiple inheritances and recursive OCL
queries. Also, the encoding in the CSP can reduce the
performance of the verification process.

Another related approach is the USE tool [19]; this tool is

more focused on validation process than verification process.
USE allows to check of formal properties and allows us to
review the consisting of UML models and constraints. Also,
USE allows generating snapshots automatically, but it permits
to generate finite snapshots. In this tool (USE) the user
identifies a list of properties for the instances and their
numbers. As a result, the USE tool is generating and validates
them. Finally, the limitation of this approach is the USE tool

used for validation only because it isn’t focused on
verification.

Another related approach is the Higher-Order Logic (HOL-
OCL) [20]; this system is developed to introduce formal and
interactive proof environment for UML and OCL
specifications which is involved into Isabelle/HOL. HOL-
OCL is depends on the store for UML/OCL models that are
called Su4sml and Isabelle/HOL. UML/OCL specification is

developed by ArgoUml tool. Then, they import them into
HOL-OCL by Su4sml repository. The core theorems needed
for verification and formal semantics that related with the
OCL. The integrated of all parts in this approach will provide
a proof environment for specification that based on UML
class models with OCL constraints. Finally, the limitation of
this system is undecided until now.

Another related work in [21]; adopts the reasoning process on

UML class diagram based on the CASE tools are available,
that provide tools to create and modify multiple UML
diagrams easily. These tools have the efficiency which allows
discovering related formal properties. Some of these tools

such as Rational Rose, Together, Poseidom and ArgoUml, are
used to support the designer with a GUI which has a rich user-
friendly graphical environment for accessing to several UML
class diagrams. But in this study, the knowledge
representation and reasoning procedures are developed by

Description Logics (DLs). Description logics are used to
represent of knowledge in classes and relationship between
them. The contributions resulting from this study are included
to prove the reasoning on class diagrams is EXPTIME-hard
by presenting a polynomial reduction from reasoning in
description logics. Another contribution is establishing
EXPTIME-membership of reasoning on class diagrams
without using OCL constraints. The last rich contribution

provides polynomial encoding of class diagrams in the
description logic that called ALCQI. Finally, the limitation of
this study is not support OCL.

Another related work in [22]; it adopts the model-driven
development (MDD) approach to present a new automatic
method for verifying UML models that extended with OCL
constraints to provide correctness then by operation contracts.
In this study, the different in this study from the most others

studies have focused on the verification of both dynamic
aspects and more focus on static aspects, but in the most other
studies that are only focused on the static aspects. Also, in this
study the automatic translation process is done into constraint
satisfaction problem (CSP) by (UML to CSP) tool. Successive
steps in this study are as follows: declarative operations in
OCL, list of correctness properties based on pre- and post-
condition, some of these properties such as applicability,

redundant precondition, weak excitability, strong excitability,
correctness preserving, and immutability. Finally, the last step
is verifying operation with constraint programming.

Fig 1: Models in Gaia Methodology

4. PROPOSED SOLUTION AND THE

PROOF
The heading of a section should be in Times New Roman 12-
point bold in all-capitals flush left with an additional 6-points
of white space above the section head. Sections and
subsequent sub- sections should be numbered and flush left.
For a section head and a subsection head together (such as

Section 3 and subsection 3.1), use no additional space above
the subsection head.

4.1 Proposed Solution
As noted in studies related to Gaia methodology, the lack

contained in this methodology didn’t deal with the system
requirements because it’s scope of application only includes
both the analysis and design phases. Also, it ignores both the

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 6, June 2021

39

implementation and the system requirements phases (see
Figure 1: Model of Gaia) was necessary to propose a solution
that leads to improved Gaia methodology. After reviewing the
many aspects that can improve the Gaia methodology,
whether in the implementation phase, the system requirements

phase, within the two phases of analysis and design which are
contained in the Gaia methodology or otherwise. We have
reached a solution to regarding of the system requirements
that was ignored by Gaia methodology, leading to the
improvement of Gaia methodology by providing a formal
specification. After searching of the part of the formal
specification for the system, we have reached to two ways to
provide a formal specification of the system are: The Z

language and Object Constraints Languages (OCL), and we
have chosen the OCL, rather than the Z language because of
the features offered by OCL previously mentioned (see
section 2.1.6). In addition, the limitation exists in the Z
language. After doing an analytic study about both options Z
language and OCL, we can say that the OCL has syntax more
familiar to the users. That leads to the description OCL more
readable. In addition to the OCL, does not require prior

knowledge of mathematics. Thus, we agree on the choice of
the OCL to be used in the description of the models instead of
the Z language. The OCL is supported by tools but the Z
language not supported by tools [26]. After choosing the
OCL, we chose the unified modeling language models (Class
Diagrams) to be combined with the OCL to introduce a formal
specification of the system into verification task. After
obtaining the formal specifications we combine these

specifications as input to the analysis phase in the Gaia and
evaluate the combine process by JADE framework (see Figure
2).

4.2 Proved the Proposed Solution: E-

Travel System Case Study
As shown in the solution proposed (see Figure 2), which
begins in the introduction of system specifications, and then,
get into the modeling environment by providing class
diagrams of the system using the CASE tools that deal and
address strongly the class diagrams, in addition to support for
the Object Constraints Language (OCL) which help top make

a formal specification [14]. After studying the characteristics
and features for several CASE Tools, which support the
Unified Modeling Language (UML), and supporting the
Object Constraints Language (OCL). We have come to the
selection ArgoUml tool and the reason has gone back to some
of the characteristics which are characterized by ArgoUml

tool. after choosing ArgoUml tool, we have combined both
the object language constraints with class diagrams of the

system in order to help us to make a formal specification of
the system to be presented in the form of inputs in the Gaia
methodology. As a result, this method will save the time and
effort for both the analyst and designer. In addition, it
achieves a better practice in the Gaia methodology and relying
on well-known idea. The process that provides a good and a
formal system specification are going to get the best results at
all stages that follow the stage of submission of the

specification [15].

Fig 2: Overall picture of the process in our solution

4.3 E-Travel System as Case Study
When applying the E-travel system case study, that contains
Personal Travel Assistant agent PTA Agent and Coordinator
Agent which representing a real scenario of the tourist zone.
Mentioned scenario is one where someone wants to find out
information such as price and availability of the different
elements related to travel, such as hotels and transportation.

The real scenario was derived from E-Travel case study. From
the beginning when the user orders something. For instance,
the user needs to look for place to stay. The confined in New
York from 20/03/2014 to 25/03/2014, he should write in the
search places and submits it. Then, we explain what is going
on the multi-agent applications, later the user presses the
“Search” button. Then again, the user has compassed his
order, this order will be arrived and reserved through Personal

Travel Assistant Agent to require and organize it. The
connection within the user and the PTA is done by jade
Gateway class. A servlet response to user’s input, that is
crossed through Gateway Agent among Black Board object.
The Gateway Agent read out the recipient and message tenor
and later on sends and exports the message to the PTA.

4.4 Using UMLtoCSP Tool
After obtaining class diagrams, the system extended with the
Object Constraints Language (OCL). It is essential that the
process of verifying the class diagrams. After reviewing
several ways that was proven earlier, we had chosen
verification method that has been used in [28], which depends
on the constraint programming through use and adaption the

UMLtoCSP tool of power.

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 6, June 2021

40

4.5 Applying JADE Framework
After obtaining formal specifications have been verified to be

merged with Gaia methodology to improve them, evaluate
and study the new changes in the workflow of operations and
communications between agents and to clarify aspects of our
optimization and discussed them. The evaluation process will
be through the use of the Java Agent Development
Framework (JADE). We concern with the sniffer tool in the
JADE framework that views the ACL messages which
forwarded through agents. Next paragraph explains the points

of operations and steps.

The sniffer Agent declares and provides us to exam and
observes at real period and time, how the agents connect
through each other to organize and determine the
complication as it’s explained in figure 3.

At figure 3 that explained, During the TravelAgent arrives an
order message, it looks for an agent offering the “coordinator”
service through an order messages and receives the reply like

report connected action. In addition, it forwards the order to
coordinator Agent who is going to order the Agent located or
situated in required categories. The moment that it finds, the
coordinator is going to forward orders to agent that waiting to
their affirmations. When all of them are accepts, it’s going to
forward a conformation message for the TravelAgent saying
that end.

After execute sniffer agent tool by add classes into JADE

framework and validate the sequence diagrams, the JADE is
still not support OCL perfectly since it when we do the sniffer
things still the OCL does not appears, so we do it manually to
show that OCL can go through the sequence diagrams (see
figure 4 add OCL into sniffer manually).

After becoming extremely take formal specification that was
validated it through the object constraint language, we have to
note that the performance of the Gaia methodology became
better than before in the case of its application within the

same environment with the absence of a formal specification.

5. CONCLUSION
In recent years, agent-based systems have become more
popular in academic and industry environment. AOSE provide
a variety of conceptual frameworks, notations, techniques and

hence provide a platform supports the generalization,
dynamic, and autonomous which helps introducing robust and
easy to use software methodologies to meet challenges and
achieve the goals. We have chosen the Gaia methodology to
apply our solution for several reasons as follows: because
Gaia methodology was used extensively worldwide.

Fig 3: Communication between agents by sniffer

Fig 4: Add OCL constraints into Sniffer manually

In addition to the Gaia methodology, it applied to many multi-
agents' systems. And finally, it has been released many
versions of the methodology, such as Gaia V2, ROADMAP
and AUML.

After reviewing the many aspects that can improve the Gaia

International Journal of Computer Applications (0975 – 8887)

Volume 183 – No. 6, June 2021

41

methodology, whether in the implementation phase, the
system requirements phase or within the two phases of
analysis and design, which are contained in the Gaia
methodology or otherwise. We have reached a solution to
regarding of the system requirements that was ignored by

Gaia methodology, leading to the improvement of Gaia
methodology by providing a formal specification. After
searching of the part of the formal specification for the
system, we have reached the way to provide a formal
specification of the system by Object Constraints Languages
(OCL). After choosing the OCL, we chose the unified
modeling language models (Class Diagrams) to be combined
with the OCL to introduce a formal specification of the

system into verification task. After obtaining the formal
specifications we combine these specifications as input to the
analysis phase in the Gaia and evaluate the combine process
by JADE framework.

In this paper, we have introduced a solution for representing a
case study from E-travel system. Into our solution, we
introduced formal specification method for Gaia methodology
which helps into develops agent-based systems in Gaia

methodology by using class diagrams that extends with OCL
constraints. The proposed solution improves the system
through a better performance and management.

6. FUTURE WORK
Further research may be required to extend the solution to be

applicable to other platforms like mobile platform, because
the JADE framework includes the LEAP library that provides
the environment to develop the agent for mobile device.
Another work is to apply our solution on different case
studies.

7. REFERENCES
[1] Srivastava, Praveen Ranjan, et al. "Extension of Object-

Oriented Software Testing Techniques to Agent Oriented
Software Testing." Journal of Object Technology 7.8
 ‏.155-163 :(2008)

[2] DeLoach, Scott A. Multiagent systems engineering: a
methodology and language for designing agent systems.
Air force inst of tech wright-pattersonafb oh dept of
electrical and computer engineering, 1999.‏

[3] Tveit, Amund. "A survey of agent-oriented software
engineering." NTNU Computer Science Graduate
Student Conference, Norwegian University of Science
and technology. 2001.‏

[4] Genza, N., and E. Mighele. "Review on multi-agent
oriented software engineering implementation."
International Journal of Computer and Information
Technology 2.03 (2013): 511-520.‏

[5] Dastani, Mehdi, and Jorge J. Gomez-Sanz.
"Programming multi-agent systems." The Knowledge
Engineering Review 20.02 (2005): 151-164.‏

[6] Tan, Ming. "Multi-agent reinforcement learning:
Independent vs. cooperative agents." Proceedings of the
tenth international conference on machine learning.
 ‏.1993

[7] Wooldridgey, Michael, and Paolo Ciancarini. "Agent-

oriented software engineering: The state of the art."
Agent-oriented software engineering. Springer Berlin

Heidelberg, 2001.‏

[8] Akhtar, Nadeem. "Requirements, Formal Verification
and Model transformations of an Agent-based System: A
CASE STUDY." arXiv preprint arXiv:1501.05120
 ‏.(2015)

[9] Steiner, Renee, Gary Leask, and Rym Z. Mili. "An
architecture for MAS simulation environments."
Environments for Multi-Agent Systems II. Springer
Berlin Heidelberg, 2005. 50-67.‏

[10] Panait, Liviu, and Sean Luke. "Cooperative multi-agent
learning: The state of the art." Autonomous Agents and
Multi-Agent Systems 11.3 (2005): 387-434.‏

[11] Wooldridge, Michael, Nicholas R. Jennings, and David

Kinny. "The Gaia methodology for agent-oriented
analysis and design." Autonomous Agents and multi-
agent systems 3.3 (2000): 285-312.‏

[12] Cernuzzi, Luca, et al. "The gaia methodology."
Methodologies and Software Engineering for Agent
Systems. Springer US, 2004. 69-88.‏

[13] Iglesias, Carlos A., Mercedes Garijo, and José C.
González. "A survey of agent-oriented methodologies."

Intelligent Agents V: Agents Theories, Architectures,
and Languages. Springer Berlin Heidelberg, 1998. 317-
 ‏.330

[14] Warmer, Jos B., and Anneke G. Kleppe. "The Object
Constraint Language: Precise Modeling WithUml
(Addison-Wesley Object Technology Series)." (1998).‏

[15] Warmer, Jos B., and Anneke G. Kleppe. The object
constraint language: getting your models ready for MDA.

Addison-Wesley Professional, 2003.‏

[16] Duarte, R., J. Junior, and A. Mota. "Precise modeling
with UML: why OCL?." submitted to the Workshop of
Formal Methods. 2003.‏

[17] Akhtar, Nadeem. "Requirements, Formal Verification
and Model transformations of an Agent-based System: A
CASE STUDY." arXiv preprint arXiv:1501.05120
 ‏.(2015)

[18] Cabot, Jordi, Robert Clarisó, and Daniel Riera. "On the

verification of UML/OCL class diagrams using
constraint programming." Journal of Systems and
Software 93 (2014): 1-23.‏

[19] Gogolla, Martin, Fabian Büttner, and Mark Richters.
"USE: A UML-based specification environment for
validating UML and OCL." Science of Computer
Programming 69.1 (2007): 27-34.‏

[20] Brucker, Achim D., and Burkhart Wolff. "HOL-OCL: a

formal proof environment for UML/OCL." Fundamental
Approaches to Software Engineering. Springer Berlin
Heidelberg, 2008. 97-100.‏

[21] Berardi, Daniela, Diego Calvanese, and Giuseppe De
Giacomo. "Reasoning on UML class diagrams."
Artificial Intelligence 168.1 (2005): 70-118.‏

[22] Cabot, Jordi, Robert Clarisó, and Daniel Riera.
"Verifying UML/OCL operation contracts." Integrated

Formal Methods. Springer Berlin Heidelberg, 2009.‏

IJCATM : www.ijcaonline.org

