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ABSTRACT 

Node clustering is an efficient technique for saving energy of 
wireless sensor networks (WSNs). In this paper we present a 
novel hybrid multi-level clustering scheme that combines a 
traditional, appropriately modified, gradient-based clustering 
protocol with an evolutionary optimization method that is 
mainly based on the Gravitational Search Algorithm (GSA). 
The proposed scheme aims at improved performance over 

large in size networks, where classical schemes in most cases 
lead to non-efficient solutions. It first creates suitably 
balanced multi-hop clusters, in which the sensors energy gets 
larger as coming closer to the cluster head (CH). This scheme 
is then extended to generate a hierarchy of cluster-heads with 
the same characteristics; note that the energy savings increase 
with the number of levels in the hierarchy. In the last level of 
the proposed scheme a suitable protocol based on the GSA 

runs to associate sets of top-level cluster-heads to specific 
gateway nodes for the eventual relaying of data to the base 
station (BS). The fitness function was appropriately chosen 
considering both the distance from the cluster heads to the 
gateway nodes and the remaining energy of the gateway 
nodes, and it was further optimized in order to gain more 
accurate results for large instances. Extended experimental 
measurements demonstrate the efficiency and scalability of 

the presented approach over very large WSNs, as well as its 
superiority over other known clustering approaches of the 
literature, with the same objectives.   
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1. INTRODUCTION 
Grouping sensors in clusters is an effective method for saving 
energy in large-scale WSNs [1]. Considering such a WSN, 
there are several sets of sensors called clusters and each one 
of them has a leader called 'cluster head'. The sensor nodes 
(after sensing the field) send the sensed data to the CH, and 
then the CH (after collecting the data) forwards them to the 
BS. A study in WSN clustering is given in [1]. Furthermore, a 

lot of scientists have adopted the use of a specific kind of 
nodes called 'gateway-nodes' which operate similarly to the 
normal sensor nodes, however they are usually equipped with 
more energy and communication capabilities and they cost 
more [2]. The gateway nodes finally behave as CH in the 
WSN, and forward the gathered data to the BS. Actually the 

scope of this idea is to create a stronger group of CH than in 
typical networks with cluster organization. On the other hand, 
their operation is still based on batteries, so they need to 

preserve their energy adequately while the network operates. 

Let's suppose we have m gateway nodes and n sensors in the 
network, and there are k nodes in the range of the gateway 
nodes. The complexity for associating the n sensors to the m 
gateway nodes is naturally exponential. So, typical techniques 
can't normally lead to effective solutions that scale well. A lot 
of evolutionary methods could be applied to give a good 
approximate solution. The GSA [3] has been recently reported 

as a quite valuable such technique, driven by nature, which 
can manage effectively problems in hard computational form. 
Also, the particle swarm optimization technique and the ant 
colony method have been thoroughly studied [1]. 

A large number of research works can be found in the 
bibliography [1,4-17,22-32] following clustering schemes in 
WSNs (either centralized or distributed). The LEACH 
protocol [8] is the most known and one of the most effective. 

In this protocol the cluster-heads are chosen on the basis of a 
specified probability. The disadvantage of this protocol is that 
a sensor node of less energy could be chosen as a cluster head, 
thus limiting the network operation. PEGASIS [9] was 
proposed as an efficient alternative, but it can't lead to good 
scalability because of several constraints. A number of other 
schemes adopting clustering have further been met, trying to 
achieve sufficiently balanced depleting of energy and thus 

improving the network operation. Many of them [4,22-23,31-
32] aim at solving the 'hot-spot' problem and achieving ideal 
distribution in the depletion of energy for all the nodes, 
whereas others [28-30] try to gain efficiency and scalable 
secure behavior when dealing with large-scale networks and 
deployment areas. A comprehensive analysis including the 
integration of clustering in modern data gathering schemes 
may also be found in [33]. 

 Focusing on the schemes based on the use of 'gateway nodes', 
in [13] the authors propose a scheme of satisfactory balance, 
named LBC. In LBC the clusters are formed quite efficiently, 
but the algorithm doesn't take in account neither the distance 
between the sensor nodes and the gateway nodes nor the 
remaining energy of the gateway nodes. In [14] the authors 
propose an approach named GLBCA applying BFS, but when 
large-scale WSNs are considered non-satisfactory execution 
times are observed. In [15] the authors present an approach 

based on GA-clustering in order to elect a set of cluster heads 
among the regular sensors. In [16] the authors propose a 
scheme based on PSO by taking in account the energy and the 



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 7, June 2021 

31 

distance within the clusters as main criteria, but on the other 
hand they don't consider the energy and the distance of the 
gateway nodes. 

In [17], a clustering scheme of high efficiency is presented 
built over the GSA approach, in which the fitness function is 

properly selected considering not only the distance among the 
sensor nodes and the gateways/BS, but also the remaining 
energy of the gateway nodes. The eventually proposed 
scheme, named GSA-EEC, is evaluated based on several 
metrics, and it is proved to be very effective and performing 
better than most of the related approaches [13-16]. On the 
other hand, when  large-scale networks are considered, these 
methods in most cases can't offer satisfactory results because 

of various problems met in the case of very high number of 
dimensions in the search space. More concretely, the GSA 
method in such cases is shown to have limited stability as well 
as low levels of accuracy due to the increased possibility to be 
trapped into local optimum solutions; additionally non-
efficient execution times are observed. The above 
shortcomings restrict the worth of using the GSA technique in 
very large networks. The GSA approach has also been used in 

WSNs for nodes localization and relay/sink nodes placement, 
as shown in [18-21]. 

Trying to overcome the disadvantages referred in the previous 
paragraph with regard to the use of the GSA-oriented scheme 
[17] on large networks, we've designed a novel hierarchical 
clustering protocol that consists of multiple levels, and 
combines adequately the above GSA-oriented scheme with a 
classical gradient clustering scheme, similar to [22-23] and 

suitably modified in order to generate less number of clusters 
and fit better in the energy balancing needs of our proposed 
total scheme. The presented approach (which extends and 
improves adequately the work of [24]) first constructs multi-
hop clusters of evenly distributed energy reserves, in which 
the sensor nodes energy gets larger as coming closer to the 
CH. Thus, since the sensors near to the CH are more 
exhausted because of data forwarding, keeping the residual 
energy of those sensors high guarantees the prolonged and 

seamless operation of the WSN. The above (first level) 
clustering scheme is then extended to generate a hierarchy of 
CHs (in an number of intermediate levels) with the same 
characteristics. As a result the energy savings increase with 
the number of levels in the hierarchy. Finally, a suitable 
protocol based on the GSA runs to associate sets of the top-
level CHs of the hierarchy to specific gateway nodes for the 
eventual forwarding of data to the base station. Extended 

simulated experiments (with Castalia simulator [25]) are 
presented to show the high efficiency and scalability of the 
proposed combined multi-level clustering scheme over very 
large WSNs, as well as its superiority over other clustering 
approaches of the literature [26-27,31,35].  

The primary goal of our work is to build a clustering protocol 
able to achieve highly efficient behavior in very large-scale 
WSNs (i.e. not only for hundreds or one-two thousands of 

sensor nodes but also for 5000-10000 and even more sensors; 
as it will be the case in future IoT/IoE applications). The 
existing clustering protocols unfortunately suffer from several 
shortcomings that lead to performance degradation in such 
very large scale WSNs, either relevant to the hot spot problem 
or to the fact that in order to face the hot spot problem they 
tend to generate quite large number of CHs and/or multi-hop 
routing overhead when we have large numbers of sensors 

(making their further use problematic, i.e. for data gathering), 
and they generally don’t lead to quite scalable solutions. A 
good solution can be given by combining clustering protocols 

with specific features into suitable multi-level hierarchical 
schemes trying to gain efficiency and extent the scalability of 
the total scheme. The main contribution of our work is in the 
above direction, whereas the proposed scheme also achieves 
significant improvements against [35], which is a previous 

work of ours, using a restricted two-level only clustering 
scheme, with similar objectives. 

The remaining text is organized as follows. In section 2 some 
background is firstly given with respect to the GSA technique 
and multi-level clustering setup. Then, in section 3 our 
complete multi-level clustering scheme is described, along 
with proper explanations. In section 4 our extended simulated 
experiments are presented and the corresponding results are 

thoroughly discussed, whereas section 5 concludes the paper. 

2. MATERIALS AND METHODS 

2.1 The gravitational search algorithm 
The description of the GSA technique in details is given in 
[3]. Let's assume we have a group of agents, NA. Every agent 
is expected to give a part of the solution. The location of agent 
Ai, 1 ≤ i ≤ NA in dimension d is xi

d whereas its velocity is vi
d, 

1≤d ≤ D. Every agent has the same dimension. Every agent is 
evaluated to verify the suitability of the result based on a 
specific fitness function. Let the ith agent's location be 

represented as Xi = (xi
1, xi

2,…, xi
D). The following expression 

gives the force applied on the ith agent by the jth agent. 
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Mpi represents the passive mass of the ith agent, whereas Maj 
stands as the corresponding active mass of the jth agent, and α 
is a constant. G(t) equals to G0(t0/tmax)

ϕ, in which G0 
represents also a constant. Rij(t) means the Euclidean distance 
from agent i to agent j. The overall force applied by the group 
of agents over the ith agent in dimension d is as follows. 
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The inertial mass as well as the gravitational mass are 
estimated by evaluating the fitness function. The heavier the 

mass of an agent the more efficient the agent is. 
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In the above, ε is a limited constant, fiti(t) represents the 
fitness of agent i, whereas worst (t) / best (t) are as next. 
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Further, let's assume Mai, Mpi, Mii and Mi are all equal to each 
other. Based on the 2nd law of Newton, we conclude to the 
next formula. 
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In the above, the inertial mass of agent i is given by Mii, 
whereas the acceleration of agent i is given by and ai

d(t).  

2.2 Multi-level clustering setup 

As previously stated, the proposed approach has been 

developed on the basis of a hierarchical clustering protocol of 
multiple levels, named GC-GSA. First, we assume that the 
sensors and the gateway nodes spread at random over a large 
deployment area. The deployed sensors / gateways are also 
supposed to be static. Then, a two-phase network operation 
begins. In the first phase the necessary bootstrap and cluster 
formation procedures (for all the multiple levels) are 
completed. Initially, proper identities are assigned to all the 
sensors by the base station. Then, both the sensors and the 

gateway-nodes send their identities and other info to their 
neighbors using mac-level protocol. The gateway-nodes are 
finally informed with the identities of their neighbor sensors. 
Next, every gateway-node informs the base station with the 
collected info to complete the setup. The complete multi-level 
clustering routine is then run and all the sensors nodes get the 
necessary info with regard to their local CH. In the second 
phase the network starts to operate steadily; the sensed data 

are gathered by the top-level CHs and then by the gateway-
nodes, and they finally directed to the base station.  

3. CLUSTER FORMATION 

3.1 First Level Energy-Balanced Clustering 

With regard to the initial clustering, a suitable protocol based 
on multiple hops communication is adopted, aiming at 
building a robust hierarchy with controlled delay and 

sufficient coverage with respect to the secondary clustering 
(e.g. the size of the clusters and the positions of the selected 
cluster-heads). Further, the algorithm of [4] is primarily 
followed as the firstly applied clustering routine, whereas a 
proper adaptation has been incorporated (mainly in step 3) 
aiming at inheriting the main advantages of the approach 
described in [22,23]. The remaining energy of the sensors is 
chosen as the basic factor while building the clusters, so a 
sufficiently balanced cluster hierarchy is built, the energy-hole 

problem (near to the cluster-heads) is effectively handled, and 
eventually the operation of the network is prolonged. 
Specifically, our initial (first-level) cluster formation 
algorithm consists of the following basic steps: 

1. Initially, all the sensors in the network broadcast messages 
(including their residual energy and their ID) in a certain 
power, which ensures that nodes within a radius r will 
receive the message. Then, each node waits to receive 

such messages from all its 'neighboring' nodes. 

2. For every such received message, each node compares the 
residual energy in the message with its own energy, and 
then, if the energy in the message is larger it marks the 
node which sent the message as its new parent. 

3. If the node which received the message (let's name it v) 
has already a parent, and the node which sent the message 
has larger residual energy than its own (i.e. it's also a 

candidate parent), it computes the ratio 'Ediff(v)/Dist(v)'1 
for both its parent and the new candidate parent, and it 
chooses as its next parent the one who maximizes the 
above fraction.  

                                                             
1 Where 'Ediff(v)' is how much more energy has the candidate parent 

node than node v, and 'Dist(v)' is the Euclidean distance between node 

v and the candidate parent node.  

4. When a node has received all its neighboring nodes 
messages and has made the necessary decisions, it sends a 
final 'join' message to its parent node, and marks itself as a 
'member' node for the rest of the protocol. If the node has 
no parent node, then it marks itself as a CH and broadcasts 

a relevant message. 

Thus, at the end of execution each node has as 'parent' a node 
that has quite larger residual energy than its own, in a 
sufficiently close distance too. Experimental results in [4,22-
23] show that the above kind of clustering algorithms 
effectively save the energy costs, lead to balanced energy 
consumption and prolong the lifetime of the network. 
Furthermore, the main goal of such algorithms is the creation 

of suitable (energy-balanced) clusters with not only high-
energy CHs, but also having energy-rich neighborhoods. In 
that way they effectively avoid energy holes around the CHs 
and naturally they become quite suitable for initial (first-level) 
clustering (as well as for energy-efficient data gathering using 
a MS, as shown and discussed in [22-23,34] in more details).  

On the basis of the above considerations, we have followed 
the use of the proposed modified algorithm as the first-level 

clustering protocol (as opposed to the use of the relevant 
watershed-based algorithm of [22-23] or the use of the much 
simpler but weaker protocol of [4]), mainly because it has the 
potential to perform and scale better for large and very large / 
huge numbers of sensor nodes and relevant deployment areas, 
in the context of this problem.  

3.2 Intermediate Levels Clustering 

The first level clustering algorithm described in the previous 
paragraph is then extended to allow more than one levels of 
clustering. Assume that there are h levels in the clustering 
hierarchy with level 0 being the lowest level and level h-1 
being the highest. In this clustered environment, the sensors 
communicate the gathered data to level-0 CHs. The level-0 
CHs communicate the gathered data to level-1 CHs and so on. 
Finally, the top level (h-1) CHs communicate the gathered 

data to the 'gateways' they have been assigned to, and the 
gateway-nodes forward the data to the base station.  

More concretely, the proposed hierarchical cluster formation 
algorithm works in a bottom-up fashion. The algorithm first 
elects the level-0 CHs, then level-1 CHs, and so on. The level-
0 CHs are chosen as described in par. 3.1, i.e. by applying the 
first-level energy balanced clustering method over all the 
sensor nodes. In the next phase, the same clustering algorithm 

is applied over the level-0 CHs to elect the level-1 CHs, with 
the effective transmission range (i.e. the transmission range 
used for control messages) properly adjusted. The latter is 
necessary to assure that sufficient number of level-0 CHs will 
be in the transmission range of each other, and the clustering 
procedure will act in the proper way. Level-2 CHs are elected 
in the same way, and so on, until the number of the top-level 
CHs become small enough, and the last-level GSA oriented 

gateways assignment procedure (see par. 3.3) may be applied 
effectively. In Fig. 1 a sample view of the final cluster 
hierarchy is given. It has been generated for h=3 cluster levels 
and it shows (as a typical example and without loss of 
generality) the construction of one such top-level CH which is 
then assigned to one of the available gateway-nodes of the 
network.  



International Journal of Computer Applications (0975 – 8887) 

Volume 183 – No. 7, June 2021 

33 

 
Fig 1. An example of the multi-level cluster hierarchy 

3.3 Last Level GSA-based Clustering 
Considering the last level of building the complete cluster 
hierarchy (including the gateway nodes), a GSA-based 
protocol has been adopted. The design of our protocol has 
been mainly based on the approach of [17] which has been 
suitably modified and applied over the total set of the 'top-
level' CHs elected in the previous phases. The fact that the set 
of the elected top-level CHs is of relatively small size allows 
the effective use of faster centralized evolutionary algorithms 
with high accuracy. In this context, the proposed GSA 

oriented scheme runs to associate sets of top-level CHs to 
specific gateway nodes for the eventual relaying of data to the 
base station. Since prolonging the network lifetime remains 
the main priority, the fitness function was further optimized 
and modified in order to keep the energy balanced over the 
gateway-nodes too, and gain more accurate results for large 
and very large / huge instances.  

More concretely, the initialization of the basic group of agents 

(NA) first takes place (note that each agent potentially stands 
as a part of the solution). Specifically, in the context of this 
stage of clustering the agents represent the associations of 
cluster-heads to corresponding gateway-nodes. If we assume 
that Ai stands as the agent i, every item xi

d(t) associates the 
relevant cluster-head to some gateway and 1 ≤ i ≤ NA, whereas 
also 1 ≤ d ≤ D (note that D equals to c). So, each agent may be 
denoted in the following form [17,33], whereas our modified 

GSA protocol should then run as follows. 

)](),...,(),(),([ 321 txtxtxtxA D

iiiii   

 

The Gateway-level GSA-based Clustering Algorithm 

Input:  

 Group of (top-level) CHs: H = {h1, h2, h3, … , hc} 

 Set of gateway nodes: G = {g1, g2, g3, … , gm}  

 Initial group of agents with size equal to NA 

 Agent's dimensions = # of (top-level) CHs = c 

Output: 

The optimal (top-level) CHs associations to gateway-nodes  

Description of the algorithm: 

Agent Ai  is initialized, i, 1<=i<= NA  

The mapping function is defined (for every hd to a gk) 

do   /* initially assume that  t=0 */ 

   for i=1 to NA 

      Fitness (Ai) is computed 

      The best/worst fitness values are updated of all agents 

      Mi(t), ai
d(t) are computed of each agent of the system 

      The velocity and the position of Ai are updated 

   endfor 

while the criteria for termination are not satisfied 
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3.4 Choosing the Fitness Function 

The definition of fitness function (f) has to be suitably 
specified considering not only (i) the residual energy of the 
gateway-nodes, but also (ii) the distance between the top-level 

CH and the gateway-node as well as between the latter and 
the base station. The gateway-nodes of high remaining energy 
reserves should be elected. Thus, the energy consumption is 
suitably balanced and the lifetime of the network is prolonged. 
Moreover they should be the ones having the less distance 
too. These requirements could be further described as follows 
(Εgj stands as the remaining energy of gj, and lij equals to the 
number of gateway-nodes in the neighborhood of hi). 

Fitness Function: 

Object. 1: Maximize f1 = 
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Through the above function we propose an optimized 
approach to the one of [17], aiming at the maximum possible 
balance on the actual behavior of the two main factors. Note 
that α,β and t1,t2 are residual-energy/distance dependent and 
independent constants respectively, whereas the final value of 
the function is restricted adequately between 0 and 1 to 

normalize and optimize the result. The new proposed fitness 
function not only balances the weight of the two main factors 
(energy and distance) in the final computation, but also allows 
the designer to normalize (through α,β) conveniently the 
unpredictable (non-canonical) gaps caused by the potentially 
different measure units. It gives also the flexibility to take in 
account (through t1,t2) during the optimization process other 
significant parameters too (like data rates, transmission range, 
initial energy and energy consumption rates etc.). 

3.5 Discussion and Extensions 

As it comes out of the literature, almost all the existing 
clustering protocols suffer from several shortcomings when 
applied over very large scale WSNs (either relevant to the hot 
spot problem or to undesired routing overheads, and generally 
lead to not sufficiently scalable solutions. As a consequence a 
proper solution could be given by combining appropriately 
clustering protocols with specific features into corresponding 

multi-level hierarchical schemes trying to gain efficiency and 
extent the scalability of the total scheme. In the above context, 
with the use of the GSA oriented scheme as the upper level 
cluster formation routine, we get over the related 
disadvantages, due to the fact that it operates on a quite 
restricted number of nodes/cluster-heads. Thus, we may gain 
from its efficient behavior over such WSNs (of restricted 
size), and finally get outstanding performance gains if we use 

it in large / huge WSNs together with a lower level cluster 
formation scheme of similar efficiency (considering the 
balance of energy consumption), like the protocol used for the 
first and intermediate levels clustering in our case. 
Specifically, as it is also referred in section 4, the GSA 
oriented scheme behaves with great efficiency when applied 
over a set of e.g. up to 100-500 sensors. As a consequence, 
our combined approach may behave similarly over e.g. up to 

100-500 cluster-heads, thus having the potential to lead to 
excessive total performance for large / huge networks of 
5000-10000, 20000 and even more sensors. 

4. SIMULATION RESULTS 

In this section, our extended simulation experiments are 

presented, in which the proposed approach is shown to 
achieve high efficiency and scalability. Also our approach is 

compared to the original GSA oriented scheme given in [17] 
without any modifications. Specific sets of experiments have 
also been executed to show the suitability of the newly 
designed fitness function, as well as its superiority over other 
multi-level / large-scale clustering protocols of the literature 
[26-27,31,35]. The experiments have been completed with the 
use of Castalia (a WSN simulator based on OMNeT++ [25]), 
and they focus on measuring the corresponding in each case 
protocol's efficiency (measuring the consumption of energy 

and lifetime of the WSN), over very large networks and 
deployment areas. In order to have a right comparison, the 
radio model used is the same as in [8,17].  

4.1 Comparing to the native GSA scheme 

Trying to compare the proposed combined scheme to the 
original GSA oriented scheme of [17], specific experiments 
have been run, considering different numbers of sensor nodes 

(n equal to 500, 1500, 2500), deployed at random in a grid 
area with its side taking values between 200m and 500m (i.e. 
deployment areas of 200x200m2, 360x360m2, 480x480m2). 
The two first parameter values (500, 200x200m2) represent 
the main setup size chosen in the experimental evaluation of 
[17]. Based on the remaining two setup parameter values an 
approximate scale of 3x and 5x is simulated with respect to 
the experiments of [17]. With regard to the network setup 
factors considered in our simulations we have used the same 

values as given in the experiments of [17], mainly for 
comparison reasons. We've also defined 0, 1 or 2 intermediate 
levels in our cluster hierarchy depending to the value of n. 
The corresponding results are given in Fig. 2-5. By observing 
Fig. 2-4 one can easily conclude that considering the 
consumption of energy for each node, our proposed approach 
is definitely superior to the native GSA-EEC approach when n 
is equal to 1500 and 2500. On the other hand, it achieves 

slightly worse performance when n is equal to or less than 500 
nodes. Specifically, for n equal to 1500, GC-GSA is shown to 
have a decrement of 16,5% with respect to the energy 
consumed on average, and this decrement becomes equal to 
28% for n equal to 2500 sensor nodes. Instead, GSA-EEC has 
an almost ideal behaviour when n is equal to 500 sensor 
nodes, and its behaviour becomes gradually worse and worse 
as the WSN increases in size. Moreover, Fig. 5 presents the 

lifetime of the network with respect to the various test 
scenarios addressed above. One may easily observe that the 
GC-GSA approach leads to significant increments of the 
WSN lifetime when considering large networks (up to 30% - 
and even more - when n is equal to 2500 nodes). 

 

Fig 2. Average energy consumption for n=500 
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Fig 3. Average energy consumption for n=1500 

 

Fig 4. Average energy consumption for n=2500 

 

Fig 5. Network lifetime for varying 'n' 

4.2 Evaluating the scalability of GC-GSA 

Moreover, in order to further examine the high efficiency and 
scalability of our combined protocol (GC-GSA algorithm) 
with use of the optimized fitness function of section 3.4, we've 
run additional experiments for very large WSN deployments - 

up to n = 10000 sensors. Specifically, we've examined the 
behavior of the GC-GSA protocol (in terms of energy 
consumption and network lifetime) for 4000, 6000, 8000 and 
10000 sensors, over corresponding progressively growing 
deployment areas – from 800x800m2 to 2000x2000m2 (i.e. 
800x800m2,1200x1200 m2,1600x1600m2 and 2000x2000m2 
terrains). We've also defined the use of 2 or 3 intermediate 
levels in the proposed cluster hierarchy, depending to the 
value of n. Moreover, we've used as the base for comparison 

the network lifetime achieved for 1500/2500 sensor nodes, 
which is approximately equal (see also Fig. 5 as well as the 
relevant discussion) to 5000 rounds.  

Furthermore, we've also chosen progressively growing 
deployment areas in order to test our approach in more 
realistic/practical cases; note here that if the size of the 
deployment area had been kept the same (i.e 480x480m2 as it 
was for 2500 sensors) our combined approach would normally 

lead to almost equal measurements, since our base-level 
clustering protocol is not influenced significantly (by its 
nature - see also [22-23] with respect to the quite similar 
watershed-based clustering protocol) by the increased density 
of sensors within the deployment area.  

As it is shown in Fig. 7 there is a progressive decrease in the 
network lifetime when the number of the deployed sensors 
increase, which is more clear/significant for 10000 sensor 
nodes (over a 2000x2000 terrain). More concretely, the 
corresponding decrease for 4000, 6000, 8000 and 10000 
sensors is approximately equal to 1.5%, 5,2%, 8.5% and 
11.5% respectively. This decrease may not be considered 
insignificant, (at least for 8000 and 10000 sensors), however it 

is quite expected due to the large extent of the corresponding 
deployment areas. Due to the progressively growing 
deployment area the number of CHs and their sizes increase 
with a much less structured way, thus making much more 
difficult to keep the desired balance in energy consumption.    

The observed decrease in the network lifetime is mainly 
caused by the relevant increase in the energy consumed by the 
sensor nodes (in average), as it is shown in more details in 

Fig. 6. More concretely, one can easily observe (staring 
specifically at the curves for 8000 and 10000 sensors) that the 
average energy consumption increases slightly till the 
execution of approximately 4000 rounds (due to the reasons 
referred above), and progressively more sharply afterwards, as 
the result of the energy exhaustion of some sensors and the 
end of network lifetime in every case. Overall, we can say that 
the proposed GC-GSA algorithm scales quite well even for 

very large number of sensors and deployment areas, thus 
making itself a promising choice for such extent realistic 
applications. Moreover, as it was also discussed in subsection 
3.5, it can be easily combined and integrated with one or more 
(mobile or not) sinks/collectors, thus forming a robust and 
flexible data gathering solution for very large-scale WSN 
based application environments.    

 

Fig 6. Average energy consumption for very large WSNs 

 

Fig 7. Network lifetime for very large WSNs 
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4.3 Comparing to other approaches  

Furthermore, in order to have a more clear sense of the 
performance of our multi-level clustering protocol we've 
performed additional experiments comparing the proposed 

approach to other clustering approaches of the literature, such 
as (a) TL-LEACH [26] and EEHC [27], which  are  two of the 
most known multi-level clustering protocols, (b) the protocol 
presented in [31] which is one two of the most valuable recent 
clustering approaches for large-scale WSNs, and (c) the work 
of [35] which is a previous work of ours, using a similar (but 
restricted in one base level only) node clustering scheme. 
Specifically, we've run experiments for n=2500 sensors (and 2 
intermediate levels in the cluster hierarchy) over a 

480x480m2 terrain (which is a representative case of a very 
large WSN instance), and we've compared the performance of 
all the protocols over that instance. The corresponding results 
with regard to the energy consumption of all protocols in 
average, are given in Fig. 8. In Fig. 9, the lifetime of the 
network for all the algorithms is shown (with additional 
measurements taken for n=1500 sensors and 1 intermediate 
level over a 360x360m2 for comparison reasons).  

In [26] the authors propose a hierarchical protocol that 
consists of two levels of clustering (TL-LEACH), aiming at 
managing the consumed energy in a more efficient way. The 
protocol rotates both the first-level and second-level cluster-
heads at random. In this way a two-level hierarchy is built, 
where it is possible, thus leading to a more efficient 
distribution of the energy reserves between the sensor nodes. 
Moreover, it is shown to perform much better than LEACH in 

terms of energy consumption and network lifetime. In [27], a 
random cluster-based hierarchy is proposed to organize the 
sensor nodes in a distributed manner. Their basic algorithm is 
then extended (EEHC) towards the construction of additional 
levels of cluster-heads, and finally a significant increase is 
observed with respect to the consumed energy. Ιn [31], the 
efficient solution of the 'hot spot' problem is the main 
objective of the authors. Their effort is based on the suitable 

rotation of the role of cluster-head between al the sensors, as 
well as adjusting appropriately the size of the formed clusters. 
The proposed protocol (UCF) first selects as probable CHs the 
sensors that have more residual energy in the local area. Next, 
a fuzzy-logic technique is employed for the adjustment of the 
radius of the cluster. Simulation results show that the above 
protocol achieves significant improvements in the basic 
performance metrics. Finally, in [35] a relevant work of ours 

is presented, introducing a similar cluster formation scheme 
that preserves energy balancing at the base level only, and 
leads to very good results for large-scale WSNs.  

As it is shown in Fig. 8 the energy consumption of the GC-
GSA algorithm is less in average than all the competing 
protocols. The network lifetime (Fig. 9) is also steadily kept in 
high levels (around 5000 rounds), and its superiority over the 
other protocols is clear for both 1500 and 2500 sensors. The 
performance of TL-LEACH [26] is quite satisfactory, 

especially for 1500 sensors. However, although it also uses 
(among else) localized coordination to enable scalability, it 
employs a probability model for CH selection and so its 
energy efficiency can't be maximized. As a result it cannot 
preserve competitive efficiency comparing to GC-GSA for 
large and very large number of sensors. The EEHC protocol 
has similar behaviour with TL-LEACH since it's a 
randomized approach too; Moreover, it performs slightly 

better due to its modular nature and the fact that it pays more 
attention in energy efficiency than TL-LEACH (stochastic 
geometry techniques). However for the same reasons it's also 

not highly competitive comparing to GC-GSA for large and 
very number of sensors. The best performance among the 
other protocols is given by the UCF protocol [31], as well as 
by our previous approach presented in [35]. They both lead to 
similar (slightly worse) network lifetime and average energy 

consumption with the multi-level GC-GSA. The fact that no 
other factors than the residual energy are taken in account for 
CH selection in [31], as well as the uncertainty nature of the 
fuzzy logic procedure makes UCF not scaling the same well 
for very large numbers of sensors (1500 and 2500 sensors) as 
for smaller in size networks. On the other hand, the fact that 
our previous approach presented in [35] restricts the cluster 
hierarchy to two levels only (attempting energy balancing 

over a huge single/base level area), leads practically to similar 
behaviour (slightly better) as UCF. As a result it cannot scale 
the same well for very large numbers of sensors, since its 
energy balancing structure becomes less tight as the network 
size and the deployment area increase.  

 

Fig 8. Average energy consumption for GC-GSA, TL-

LEACH, EEHC, UCF and [35] (for 2500 sensors) 

 

Fig 9. Network lifetime for GC-GSA, TL-LEACH, EEHC, 
UCF and [35] (for 1500 and 2500 sensors) 

5. CONCLUSION 
Throughout this paper the worth of using a novel hybrid 
clustering scheme that completes in multiple hierarchical 
phases is outlined. The proposed approach first constructs 
multi-hop clusters of evenly distributed energy reserves, in 
which the sensor nodes energy gets larger as coming closer to 
the cluster head. Thus, since the sensors near to the cluster 
head are more exhausted because of data forwarding, keeping 
the residual energy of those sensors high guarantees the 

prolonged and seamless operation of the WSN. The above 
scheme is then extended to generate a hierarchy of cluster-
heads with the same characteristics. Finally, a suitable 
protocol based on the GSA runs to associate sets of cluster 
heads to specific gateway nodes for the eventual relaying of 
data to the base station. A fitness function was appropriately 
chosen and optimized considering both the distance from the 
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cluster heads to the gateway nodes and the remaining energy 
of the gateway nodes. Extended simulated experiments have 
been completed to show the high efficiency and scalability of 
the proposed scheme over very large WSNs, as well as its 
superiority over other known approaches of the literature, 

including a relevant work of ours of very promising behavior 
with a two-level hierarchy.  
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