International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.9, June 2021

T.U.E.S.D.AY
(Translation Using machine learning from English
Speech to Devanagari Automated for You)

Varun Soni Rizwan Shaikh Sayantan Mahato
Don Bosco Institute of Technology Don Bosco Institute of Technology Don Bosco Institute of Technology
Mumbai, Mumbai, Mumbai,

Maharashtra, India

Maharashtra, India

Maharashtra, India

Shaikh Phiroj
Don Bosco Institute of Technology
Mumbai,
Mabharashtra, India

ABSTRACT

In today's globalized world, one thing that acts as a barrier to
healthy information exchange is language. On top of that, with the
onset of technologies such as YouTube and Facebook making it
easy to share knowledge with people all around the world, language
can impede that flow of information. If someone in India wants
to access a piece of content in written form from another coun-
try, they can make use of services such as Google translate. How-
ever, the same cannot be extended for any piece of content which is
rendered in an audio-visual medium since no such apparatus has
been developed which can help people comprehend the content
of that specific type. Specifically, students have experienced this
first-hand when they try to access content from other universities
but the medium of language is something that they are not well-
versed in. With these issues in mind, this group is trying to build
an automatic voice dubbing system: a speech-to-speech translation
pipeline which can help users easily understand other users without
the worry of language barrier. The model is called T.U.E.S.D.A.Y.
(Translation Using machine learning for English Speech to Devana-
gari Automated for You) and is divided into three conversion mod-
ules: English speech to English text, English text to Devanagari
text, and finally Devanagari text to Hindi speech. These modules
work together in tandem to ensure an integrated model as a whole.

General Terms

Machine Learning, Deep Learning, Speech Recognition, Machine Transla-
tion, Natural Language Processing

Keywords

Neural Networks, TensorFlow, DeepSpeech, Keras, FastSpeech

1. INTRODUCTION

Thanks to the constantly changing world humans are no longer liv-
ing in cultural silos. Each person from a different culture is interact-
ing with different people from different cultures around the world
to learn new perspectives on thinking and doing things. This has
been predominantly engineered by social networking websites cou-
pled with video streaming websites.

While more people are interacting through various different means,
the methods of interaction havent seen much progress. When it
comes to text-based content and messages, the user can make use
of services like Google Translate which produces a comprehensi-
ble translated piece of content. But when it comes to audio-visual
medium, users are not provided with options and mechanisms to
comprehend the source language. This gap can hinder a persons
quest to learn something new because of the language gap between
what the user knows and the original videos language.

To solve this problem the paper proposes an automatic voice-
dubbing pipeline system, where the source language will be trans-
lated to the target language that the listener wants to listen to. The
system will have real-time functionality and will convert and output
the audio with minimum lag so that users can comprehend.
Research in this domain has been very limited, hence the sys-
tem has been divided into three modules. These three modules are
speech-to-text, text-to-text, text-to-speech. For time being, only an
English-to-Hindi speech pipeline is implemented.

2. LITERATURE REVIEW

The system has been divided into three modules and the literature
review is done accordingly.

2.1 Speech to Text

In the research paper titled “Towards Structured deep neural net-
work for automatic speech recognition”[6]] written by Yi-Hsiu,

Lin-shan, it is proposed that the Structured Deep Neural Network
(structured DNN) be used as a structured and deep learning frame-
work. This approach can learn to find the best-structured object,
given a structured input, by globally considering the mapping rela-
tionships between the structures rather than item by item.

2.2 Text to Text

There are many available algorithms for text to text translation, but
currently, Google is the global leader when it comes to language
translation. Google uses a modified version of a neural machine
translation system, called Google Neural Machine Translation.

In the paper[8] written by Yonghui, Mike Schuster, Zhifeng, Quoc
V. Le, and Mohammad Norouzi, they discuss the strengths of
NMTs and their ability to learn directly and mapping from input
text to corresponding output text. NMTs have three weaknesses:
having a slow training speed, problems with dealing with rare
words and being unable to translate all the words accurately all the
time.

The GNMT takes care of all these problems. It uses 8 layers LSTM
RNNs to encourage gradient flow. To achieve parallelism, the bot-
tom layer of the decoder has an attention unit which is connected to
the top layer of the encoder LSTM. Slow training speeds are taken
care of by using low-precision arithmetic for inference. Rare words
are dealt with using sub-word units. They employ a beam search
technique that has a length normalization procedure to take care of
the words which do not get translated during decoding.

2.3 Text to Speech

Under this domain, there have been various methods based on con-
catenative, statistical parametric and end-to-end neural network-
based networks. Out of all these, neural networks give the best
results but it takes a longer period of time to give output. For a
real-time system, this is a major drawback. To tackle this issue of
time various models have been proposed taking neural networks
as its base architecture and improving upon it by adding further
functionalities. Out of the various models Fast Speech was chosen
which gives faster results without compromising on speed.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhou,
Tie-Yan Liu in “Fast Speech: Fast, Robust and Controllable Text
to Speech”[[7] have proposed a new system that generates Mel-
spectrograms in parallel. Generating them in parallel gives faster
speeds which are crucial for any real-time application. They have
also added functionality called length regulator which matches the
source phoneme sequence to Mel- spectrogram sequence. This al-
lows greater control over the generated audio as well as proper au-
dio output from text to audio.

3. PROPOSED ARCHITECTURE
3.1 System Architecture

There are three main modules in the S2ST system: automatic
speech recognition (ASR), machine text-to-text (TTT) translation,
and text-to-speech (TTS) synthesis.

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.9, June 2021

Audio

Rendering

Speech Machine ot to Soeech
Audio Recognition Translation t

Audio

Fig. 1. Entire System Architecture

3.2 Speech to Text

The model has been trained to take an audio sample as input and
gives its transcription as an output. As noticed in Fig. 2, the core
of the speech-to-text model is a recurrent neural network (RNN).
The First 3 being non-recurrent layers. For the very first layer, the
output at each time depends on the MFCC (Mel-frequency cepstral
coefficients) frame. The other 2 non-recurrent layers function on
independent data for each time frame. The hidden units for these
3 non-recurrent layers is a clipped rectified-linear (ReLu) activa-
tion function. The fourth layer is a recurrent layer which includes
a set of hidden units with forward recurrence. Also, the units at
this layer must be computed sequentially. The fifth layer (non-
recurrent) takes the forward units as inputs. The output layer is stan-
dard logits that correspond to the predicted character probabilities
for each time slice and character. Once computed the prediction,
CTC loss is computed to measure the errors in prediction. Figure 2
shows the complete RNN Deep-Speech[1] model.

C A T
_.wﬂmax. [softmax 'snﬂmax:
) o Y

Y s [}

I N Va \‘_ e b N
ReLU | ReLU | ReLU |
, A __/" S A

i S B . i i
LSTM LSTM | | LSTM |

f 1 t
i Y / N
| ReLU | RelU | | ReLU |
\ / N N

f kN 1
rd "__ ™ / ™
| ReLU | RelU | | ReLU |
\ y N N4

t i t
N TN TN
| RelU | RelU | [ReLU |
™ ! NS N S

t t t

Fig. 2. Deep-speech RNN Model

3.3 Text to Text

The figure given below is the model architecture for text-to-text
machine translation. The model is a neural network made up of 7
layers: two input layers, two embedding layers, two LSTMs and
finally a dense layer.

‘ “input_1": InpuiLayer ‘

Input Sequence l

‘ ‘embedding”: Embedding Layer ‘ ‘

“input_2" InputLayer

Output used for teacher forcing
Encoder LSTM

‘ "embedding_1": Embedding Layer

‘ "lstm” LSTM ‘
Nﬁ/
‘ “Istm_1" LSTM ‘
Quiput sequence is the predicied
translation

‘ ‘dense”™ Dense Layer ‘

Fig. 3. Text-to-Text Model Architecture

The first input layer provides the input sequence to the first em-
bedding layer. The other input layer is used for teacher forcing and
its output is supplied to the second embedding layer. The first em-
bedding layer is connected to the LSTM layer, which acts as an
encoder. This encoder LSTMs output will be a vector of the size
which is the same as the vocabulary size, representing the probabil-
ity distribution of each word in that vocabulary. The second LSTM
acts as the decoder LSTM, whose initial states are the final states
of the encoder. For teacher enforcing, the actual translation is sup-
plied to the second input layer. The overall loss is calculated on
the predicted output, given by the final Dense Layer. The dense
layer calls the decoder LSTM in a loop and generates one word at
a time. The loop breaks when the machine predicts an _END token.
So the model has two outputs, the actual Hindi translation and the
predicted output sequence (dense layers output).

3.4 Text to Speech

For the text to speech module, a transformer based model is used
with an overlay of feed-forward network which helps to generate
mel-spectrograms in parallel. This increases the overall efficiency
and speed of generating audio output from the text.

T Training
Nx FFT Block Add & Norm
Positional

Encoding

Duration
Extractor

[Length Regulator |
L

P Add & Norm]

Multi-Head
Autention
Positional
Encoding
Phoneme Embedding f

Phoneme

Nx

(a) Feed-Forward Transformer (b) FFT Block (c) Length Regulator (d) Duration Predictor

Fig. 4. Text-to-Speech Model Architecture

This Feed-forward transformer consists of blocks which contain a
self-attention and 2-layer 1D convolution network with Relu acti-
vation function. Multiples of these FFT blocks are placed on both
phoneme and mel-spectrogram sides.

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.9, June 2021

To make the outputs streamline the model uses a length regulator
and duration prediction which helps to map each phoneme to its
generated mel-spectrograms. This mapping helps in generating ac-
curate outputs as well as provides more control to the user

4. IMPLEMENTATION
4.1 Speech to Text

With the help of a deep-speech model and a punctuator, an accuracy
of 5.6% WER is achieved on Librivox clean test.

The extracted audio from the video is fed to a deep speech model
which is mainly composed of an Acoustic model and decoder. The
decoder uses a beam search algorithm to output textual transcript.
The output is then passed to a punctuator model which punctuates
the transcript. The final output can be a JSON file with timestamps
and also a regular text file. For compatibility, the text file is passed
to the next module.

4.2 Text to Text Translation
The working of Encoder-Decoder Structure in the NMT:

y ~ Y Y
; A # \‘
the cat likes \ # A el gato le gusta
to eat pizza ‘ ‘ (" [} | - Dacoder ‘ comer pizza
C] YV
\Q Jk,.-/

Fig. 5. Encoder-Decoder Structure

Using Tensorflow [3]], specifically Keras [3], the encoder is fed each
word of the input sentence periodically. After every time period (t),
the model will update a hidden vector (h) which keeps the informa-
tion about the input word, while also keeping the old information
from previous time periods. Some weight matrices are also fed to
the machine to improve the accuracy while training. At the final
step, the hidden vector produced as output is called the thought vec-
tor and is fed to the decoder as an input. The decoder gets a <SOS>
tag as the first input, after which it updates the time- period to t=1.
It uses an additional weight matrix to create a probability of all the
words in the output vocabulary. Hence, the word with the highest
probability becomes the first word of the sentence.

latent_dim = 300

Encoder

encoder_inputs = Input(shape=(None,))

enc_emb = Embedding(num_encoder_tokens+1, latent_dim, mask_zero = True)(encoder_inputs)
encoder_lstm = LSTM(latent_dim, return_state=True)

encoder_outputs, state_h, state_c = encoder_lstm(enc_emb)

Discard ‘encoder_outputs” and only keep the states.
encoder_states = [state_h, state_c]

Fig. 6. Encoder Algorithm

Decoder

decoder_inputs = Input(shape=(None,))

dec_emb_layer = Embedding(num_decoder_tokens+1, latent_dim, mask_zero = True)
dec_emb = dec_emb_layer (decoder_inputs)

Decoder returns full output sequences and internal states as well.

Return states not used in the training model, but later in inference.

decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)

decoder_outputs, _, _ = decoder_lstm(dec_emb,
initial_state=encoder_states)

decoder_dense = Dense(num_decoder_tokens, activation='softmax")

decoder_outputs = decoder_dense(decoder_outputs)

Fig. 7. Decoder Algorithm

4.3 Text to Speech

The FastSpeech model has been implemented using Python as the
base language. The model has been trained on LJ Speech dataset
which comprises of more than 13,000+ short audio clips. The
model is able to generate English speech successfully , but unfor-
tunately, it is not able to generate Hindi speech for which it was
proposed. Further research needs can help rectify its working.

5. RESULTS

The system can translate any video which has clear speech and lim-
ited vocabulary. Below is the result obtained from the system when
an input video is passed. The actual transcription from the video is
as follows:

’Eat food that’s good for you good food helps your
bones to grow, it makes you strong and it stops you
getting sick.

First, the code is run, then the video to be translated it selected and
the model runs inference:

LN) 0 tmp — -zsh — 89x34

() rizwans@Ri MacBook-Air tmp % python main.py

Enter file name(with extension): example-1.mp4

MoviePy - Writing audio in result_audio.wav

MoviePy - Done.

Loading model from file deepspeech-@.9.3-models.pbmm

TensorFlow: v2.3.0-6-g23ad988fcd

DeepSpeech: v@.9.3-0-gf2e9c858

2021-05-10 16:18:04.626723: I tensorflow/core/platform/cpu_feature_guard.cc:142] This Ten
sorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN)to use the fo
1lowing CPU instructions in performance-critical operations: AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flag
s.

Loaded model in 0.0154s.

Loading scorer from files deepspeech-0.9.3-models.scorer

Loaded scorer in 0.00334s.

Warning: original sample rate (44100) is different than 16008hz. Resampling might produce
erratic speech recognition.

Running inference.

Inference took 10.475s for 15.608s audio file.

brt

Moviepy - Building video translated-videoexample-1.mp4.

MoviePy - Writing audio in translated-videoexample-1TEMP_MPY_wvf_snd.mp3

MoviePy - Done.

Moviepy - Writing video translated-videoexample-1.mp4

Moviepy - Done !
Moviepy - video ready translated-videoexample-1.mp4
) rizwansG@Ri: MacBook-Air tmp % [

Fig. 8. Running the code

After this, we get two output text files, *output.txt’” has the English
transcripts and ’text-hindi-output.txt’ has the Devanagari transla-
tion from the English output file.

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.9, June 2021

® [] output.txt

Each food that good for you good food
helps your bones to grow, it makes
you strong and it stops you getting
sick.

Fig. 9. Text converted to English

[] [] text-hindi-output.txt

A9h Q7 3BT HioM ol HATIp A7 =BT Wier
H9hr BEal B set § Heg @eal &, IE HUH!
oG &1 € 3R I8 A9 R g9 ¥ W
Bl

|

Fig. 10. Hindi translation of the English output

As one can notice, the translation results are not 100% accurate,
with the model mistaking the word ’eat’ for "each’. However, other
than some small mistakes, the model is pretty accurate, with sen-
tences which are, for the most of it, semantically correct.
Similarly, for another test case, these were the output text files:

[] [] output.txt

I been Amazon when it was one person me
when it was ten people when it was a
hundred people, when it was a thousand
people, and to day when it's, you know,
more than seven hundred thousand
people.

Fig. 11. Text converted to English

® ® text-hindi-output.txt

W 3o N g o9 UE U afd o SI9 U§ <H
d 59 Ug TP O @ d, 99 I TP IR
g, 3k A #, 39 e €, 99 9 &

Fig. 12. Hindi translation of the English output

As mentioned before, the model could not generate Hindi speech
but it could generate English speech sounds. The following screen-
shots from Google Colab[2] and Tensorboard shows its successful
working.

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.9, June 2021

h
torch.hub. 1oad(nvidia/DeepLearningexanples: torchhub’, *nvidia waveglo')

i /i 2ip" to /root/.cache/torch/hub/torchhub. zip
d [v2/nodels/nuid foa2/versions/1/files/nvidia aveglowayt £032.

<matplotlib.collections.PolyCollection

] ipd.Audio(audio_numpy,

> 000/0:08 e @) i

Fig. 13. Successful English speech output in Colab

TensorBoard scaARs mAGes. sugmve rC 8O

Fig. 14. Tensorboard graphs displaying the various parameters related to
training

6. CONCLUSION AND FUTURE WORK

We were able to make individual models to carry out respective
translation tasks. The results are semantically correct, with some
grammatical errors. This project let us learn about natural language
processing and the different algorithms involved in machine trans-
lation specifically. We also learnt how to handle, clean, and nor-
malise data sets in order to use them for the respective models.
However, the modules are yet to be integrated and implemented as
a whole.

Coming to the future scope, firstly, the system has yet to integrate
all the models together successfully so as to have an entire system
translating videos from English to Hindi. Next, to increase the ac-
curacy, larger data sets need to be found and used. The system can
be extended to be used with a broad set of vocabulary and noisy
speech. Furthermore, support for different languages can be added.

7. REFERENCES

[1] Deepspeech - an open-source speech-to-text engine. https:
//github.com/mozilla/DeepSpeech. Accessed: 2020-05-
13.

[2] Google colab - a python development environment that runs
in the browser using google cloud. https://research.
google.com/colaboratory/. Accessed: 2020-05-13.

[3] Keras - an open-source software library for artificial neural net-
works. https://keras.io/. Accessed: 2020-05-13.

https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
https://research.google.com/colaboratory/
https://research.google.com/colaboratory/
https://keras.io/

(4]

(3]

(6]

(7]

(8]

Tensorboard - tensorflow’s visualization toolkit. https://
www.tensorflow.org/tensorboard, Accessed: 2020-05-
13.

Tensorflow - a free and open-source software library for ma-
chine learning. https://www.tensorflow.org/| Accessed:
2020-05-13.

Yi-Hsiu Liao, Hung-yi Lee, and Lin-shan Lee. Towards struc-
tured deep neural network for automatic speech recognition. In
2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), pages 137-144. IEEE, 2015.

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou
Zhao, and Tie-Yan Liu. Fastspeech: Fast, robust and control-
lable text to speech, 2019.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mo-
hammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan
Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva Shah,
Melvin Johnson, Xiaobing Liu, ukasz Kaiser, Stephan Gouws,
Yoshikiyo Kato, Taku Kudo, Hideto Kazawa, Keith Stevens,
George Kurian, Nishant Patil, Wei Wang, Cliff Young, Jason
Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. Google’s neural ma-
chine translation system: Bridging the gap between human and
machine translation, 2016.

International Journal of Computer Applications (0975 - 8887)
Volume 183 - No.9, June 2021

https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/tensorboard
https://www.tensorflow.org/

	Introduction
	Literature Review
	Speech to Text
	Text to Text
	Text to Speech

	Proposed Architecture
	System Architecture
	Speech to Text
	Text to Text
	Text to Speech

	Implementation
	Speech to Text
	Text to Text Translation
	Text to Speech

	Results
	Conclusion and Future Work
	References

