
International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.1, March 2022

37

Recognition of Handwritten Flowcharts using

Convolutional Neural Networks

C. David Betancourt
Montellano

Department of Computer Science,
National Polytechnic Institute,

UPIIZ,
P.C. 98160, Zacatecas,

Zacatecas, Mexico

C. Onder Francisco Campos
Garcia

Department of Computer Science,
National Polytechnic Institute,

UPIIZ,
P.C. 98160, Zacatecas,

Zacatecas, Mexico

Roberto Oswaldo Cruz Leija
Department of Computer Science,

National Polytechnic Institute,
UPIIZ,

P.C. 98160, Zacatecas,
Zacatecas, Mexico

ABSTRACT
Currently, artificial vision is used in an endless number of

tasks from domestic tasks to industrial and educational ones

since with it those tasks can be streamlined because of having

an automated process. This project explores the problem of

handwritten information recovery, specifically the flowcharts

used in the programming and designing of

algorithms,approaching a solution with artificial vision, and

proposes a pipeline able to recognize the elements of a

handwritten flowchart using convolutional neural networks in

order to generate code source in the C programming language

equivalent to the recognized diagram, in addition the

digitalized version of the flow diagram, thus automating the

various tasks, having as a final result a file with .c extension

with the source code, the compilation output and an image in

.png format with the digitization of the diagram.

General Terms

Computer Vision, Compilers, Pattern Recognition.

Keywords

Convolutional neural network, flowchart, grammar analysis,

image processing, object detection, sketches recognition

1. INTRODUCTION
A recognition pipeline was designed and implemented

highlighting the use of convolutional neural networks (CNN)

to test the accuracy in the recognition of figures, connectors,

and text, being these the components of a flowchart [1] and

with the help of grammar analysis verifies the structure of the

flowchartto detecterrors on it. Seeking to see the result of the

implemented pipeline usingPython (programming language),

it receives as input a digital image of the hand drawn

flowchart, processes the image, recognizes the elements of the

flowchart, analyzes the grammar, and finally returns the result

as an image of the flowchart once it has been reconstructed

into a digital image andgenerates its equivalent C source code.

This is only if the flowchart has been globally recognized with

a correct structure. It is also important to say that the C

generated programs follow the structured programming

paradigm and that a defined set of symbols is used for the

construction of the flowchart.

The specific reason for the development of the project is to

explore the application of CNNs in the task of recognition of

the elements of a handwritten flowchart under the off-line

approach [2], and why is it thought that it is necessary to

investigate? To seek higher accuracy in the overall

recognition of the flowchart, and why is higher accuracy

necessary? Because by ensuring a good enough effectiveness

it would be possible to apply the solution on a software

product that helps in the educational area, as in [3], or

scientific areas. For example, it is known that nowadays most

engineering curricula require students to be able to program at

some level [4]. As a visual representation of data flow,

flowcharts are useful for designing an algorithm and

explaining it to others, and/or enabling effective collaboration.

Thus, a flowchart can be used to spell out the logic behind a

program before coding begins, as well as to organize the

overall thinking and provide guidance when translating it into

a programming language. In that way, students will focus

more on problem-solving rather than on the syntax of a given

programming language, reducing the learning curve in the

early stages of learning programming.Currently there are

similar and different approaches, but mostly for online

approach [5, 6, 7] that wasalso a motivation for the realization

of the project where the focus is the offline approach.

2. PIPELINE
The implemented pipeline for recognition of handwritten

flowcharts (see Figure 1) receives an image as the input, then

the image is processed by two detectors, the shape-connector

detector, and the text detector. For text flow, the image is

binarized and the text is located usingKeras OCR and it is

classified with an implemented CNN+LSTM model, to

enhance the precision of the text detector, the technique called

continual learning is used,so after some trainings with the text

style of a certain user the model will improve the recognition

of text. On the other hand, for the flow of shapes and

connectors unsharp masking is used to highlight image

features then a Faster R-CNN model is used for object

detection,the feature extraction is with backbone VGG-16 [8].

After the detection of all elements of the flowchart the

bounding boxes (text, shape, and connector ones) are

encapsulated in nodes anda directed graph is constructed

using those nodes, the construction is supported using

grammar analysis. At this point the flow of the pipeline can

fail, maybe because the detected diagram has an incorrect

structure or a bad or missing detection by the models. Finally,

the outputs are the generated source code in C programming

language, its compilation output, and the digital reconstructed

diagram.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.1, March 2022

38

Fig1.Pipeline diagram. Source: Own elaboration

3. SHAPE MODEL
The object detection model used is Faster R-CNNwhich

efficiently uses the convolutional feature layers, this model

has a module called RPN with a classifier (object or non-

object) and a regressor to adjust the coordinates of the

bounding boxesThe backbone to extract features of the

imageisVGG-16[9].

Fig 2.Faster R-CNN modelarchitecture. Source: [8].

3.1 DATASET FLOWCHART 3B
A dataset, called “Flowchart 3B”, was compiled to develop

the project. It was necessary to take many photos of shapes

and connectors, moreover, draw several flowcharts as the

representation of some known algorithms such as compute the

factorial of a given natural number or calculate the nth

element of the Fibonacci sequence. Altogether there are 775

images and their respective annotation files (in Extensible

Markup Language format, XML), the Table 1 shows the

number of items per class, and the Table2 shows the set of

shapes and connectors allowed to compose the flowcharts, so

there are 9 different classes to locate and classify in detection

process by deep learning models. The dataset is oriented for

the off-line approach and was created mainly with help of

students of computer systems engineering bachelor’s in 2019

and 2020 years. It is important to say that the backgrounds

where the flowcharts were drawn are three different types:

white-blank, grid and lined paper. The dataset is divided into

two parts: Training and Validationsets.The dataset is available

to download on

Kagglehttps://www.kaggle.com/davbetm/flowchart-3b

Table 1. Dataset content, number of items per class.

Source: Own elaboration.

Class name Training set Test set

start_end 838 208

scan 741 196

decision 761 187

print 798 204

process 882 206

arrow_line_up 760 185

arrow_line_down 1020 249

arrow_line_right 799 197

arrow_line_left 763 187

Total 7362 1819

Graph construction + grammar analysis

Generation of digital

diagram

Generation of C source

code

Compile

Valid directed graph

Image processing:

Binarization
Image processing:

Focus masking

Image processing: Grayscale

Text flow Shapes and

connectors flow

Flowchart

image

Detection:Localization,

Keras OCR

Detection:Classification,

CNN+LSTM

Correct?

Detection: Object

detection, Faster R-CNN

Continual learning

No

Nodes

Yes

https://www.kaggle.com/davbetm/flowchart-3b

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.1, March 2022

39

Table 2.Flowchart elements. Source: Ownelaboration.

Class Graphic representation

Startend

Scan (input data)

Decision

Print

Process

Arrowlineup

Arrowlinedown

Arrowlineright

Arrowlineleft

4. TEXT MODEL
The model used for text recognition is an implementation of

the publishedpuigcerver model, see Figure 3.

Fig 3.Architecture of the puigcerver model neural

network. Source: [10]

The model architecture is constituted by convolution blocks

where each block contains a two-dimensional convolutional

layer, to reduce overfitting dropout is applied at the input of

some convolutional layers after each convolutional layer

batch normalization is applied, in addition to linear leaky

rectifier units as activation function in the convolutional

blocks. At the end, a maximum pooling layer to reduce the

dimensionality of the input images. After the convolution

blocks, recurrent blocks are applied which are formed by

bidirectional 1D-LSTM layers, dropout is applied again at the

output of the BLSTM blocks. Finally, after therecurrent

blocks, each column must be assigned to an output label.

5. GRAPH BUILDING AND CODE

GENERATION
The process to build the adjacency list of the graph that

represents the given flowchart uses the following Conway

diagram (see Figure 4) that describes the sequence that must

follow the flow of the process given any node, considering the

rules of the flowcharts.

Fig 4.Conway diagram showing the grammar to construct

the flowchart. Source: Own elaboration.

Given the nodes generated by the detection models, which can

be either shape or text nodes, both nodes contain the points of

the bounding box in the 2D image space, and a value that

differs depending on the node, if it is a shape node contains

the label given by the shape model, on the other hand if it is a

text node then contains the text recognized by the text model,

the first step is to find and append to shape nodes the text

value of all the text nodes whose points are inside the shape

nodes or if the shape node are labeled by "arrow" the text

node may be in the vicinity of the shape node, this process

generate a new set of nodes whose data contains the bounding

box position, the label and now if it is the case also contain a

text value, that allows to generate the graph using only a set of

nodes, the next step is find the node labeled by "start_end"

and text value with “inicio” or “start” (Spanish or English

language), once found, an iterative process is started, for

every node there are possible successors which are selected

following the intrinsic rules from handwritten flowchart

described in Conway Diagram, the process finishes when all

the nodes are traversed.

6. RESULTS
In this section, we present the results of the implementation

start_end

*_arrow

decision

print

process

scan

*_arrow

*_arrow

*_arrow

start_end

inicio fin

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.1, March 2022

40

and tuning of each element of the pipeline, the results of the

deep learning models used in the project on their own, as well

as the algorithm, used to build the graph and the source code

in C. In this way, we can measure the performance of the

elements on their own and toconsider the pros and cons.

6.1 SHAPE MODEL RESULTS
The following plot shows the average accuracy obtained by

each classusing validation dataset, taking as true positive

when the bounding box of the object recognized has an

Intersection over Union (IoU) of 50% with the ground truth.

The arrow classes of up, down, and left have the relative

lowest values, all other classes have almost perfect average

precision.

Fig 5.Average precision per class. Source: Own

elaboration

Most (75%) of the tested images from a set of 56 flowcharts

images were completely recognized. The model could not

recognize mainly arrows and some flowcharts as a special

case, such as colored lines and faint strokes, that is a signal

that with a better data centric approach it could be better.

6.2 TEXT MODEL RESULTS
About classification of text, the dataset used was IAM [11],

and evaluating the model the precision achieved was 66.7%

and with Character error rate (CER) metricwas 91.8%.

Detection of text was a hard task to solve, in order to improve

the rate of completed executions of pipeline a technique called

continual learning was used.

6.3 PIPELINE RESULTS
The performance of the pipeline is measured with compliance

of all the parts in it, therefore the output must be a file with C

source code, its compilation output, and an image with a

digital version of the flowchart in the input image.

Of the total number of tests performed, 60% of the cases

generated the desired directed graph, of which 75% of these

generated the expected output.Figure 6shows an example of

an input image, the outputs of the pipeline for that input are:

the C code generated code (see Figure 8), the corresponding

digital flowchart image (see Figure 7) and the compilation

output that was correct so there are no output errors.

Table 3. Tabular results as a big picture of pipeline

executions. Source: Own elaboration.

Result % of tests
% of tests with

complete execution

Correct graph 60 45

Incorrect graph 40 0

This brings a useful insight, the fact that even that a valid

directed graph was generated, other errors raised by different

causes such as run time errors generating source code, those

lowered the percentage in 15%.

Fig 6. Input image, flowchart describing a Fibonacci

sequence generator. Source: Own elaboration

Fig 7. Output image, digital flowchart. Source: Own

elaboration

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.1, March 2022

41

There is space for presentation improvements, for instance,

using the same type of arrows as in the input image and the

spatial disposition of elements.Curved linesare used on the

output image,however, the shape model was not trained to

recognize curved or more complex/ freehand oneslike in [12].

#include<stdio.h>

intmain(){

 intans=0, n=0;

 int a=0, b=1, count=2;

 scanf("%d", &n);

 while(count<n){

 ans=a+b;

 a=b;

 b=ans;

 count=count+1;

 }

 printf("%d", ans);

 return0;

}
Fig 8. Source code output.Source: Own elaboration

Looking at the code generated, it could be improved in code

style, such as inserting blank spaces to separate control

structures from the rest of the code or when declaring

variables at both sides of equal operator.

7. CONCLUSIONS
In this paper it was proposed a pipeline for the task of

handwriting flowchart recognition to obtain their respective

C-code source and a digitized flowchart image.An object

detection model (Faster R-CNN) was trained to recognize and

classify the shapes on the flowchart, Keras OCRwas used to

localize text anda CNN+LSTM model was trained for text

classification. Experimental results show that the designed

and implemented pipeline performs its function andthat the

implemented deep learning models using convolutional neural

networkscan detect the components of a handwritten

flowchart so it was demonstrated that is possible to construct

software applications, because the whole implementation it

can be seen as an image to code traductor, taking advantage of

the graphs as mathematical structures.

In future work, it could be improved the generated digital

flowchart, text detection and the data used, for the next

reasons respectively,it was used a “print” shape different from

the defined set and the spatial arrangement of the shapes could

be better; the second one is, two different models were used,

instead of a unified one, which make the implementation slow

and costly when training; and finally, because the

classification model was trained with images taken in

controlled conditionscompared to those used in real life where

there are also faint strokes and colored lines, those cases

caused low precision because they are causing data drift.

8. ACKNOWLEDGMENTS
Thanks to all colleagues and friends who helped us a lot to

create the dataset, to computer science professors in UPIIZ,

especially to our advisors M. Sc. Roberto Oswaldo Cruz and

M. Ed. Karina Rodríguez Mejía. Moreover, not less

important, to our families by all the support while planning,

designing, and implementing this challenging project to us.

You can find the repository of code on GitHub:

https://github.com/dbetm/handwritten-flowchart-with-cnn

9. REFERENCES
[1] O. CairóBattistutti, Metodología de la programación, 3rd

ed. México, D.F.: Alfaomega, 1995, pp. 3, 4-8.

[2] W. Szwoch and M. Mucha, “Recognition of Hand Drawn

Flowcharts” Advances in Intelligent Systems and

Computing Image Processing and Communications

Challenges 4, vol. 184, pp. 65–72, 2013.

[3] J. I. Herrera Camara, "Flow2Code: from hand-drawn

flowcharts to code execution", master thesis, Texas

A&M University, 2017.

[4] M. Mccracken, et al., “A multi-national, multi-

institutional study of assessment of programming skills

of first-year CS students,” Working group reports from

ITiCSE on Innovation and technology in computer

science education - ITiCSE-WGR 01, 2001.

[5] Wang, C., Mouchère, H., Viard-Gaudin, C., Jin, L.:

Combined segmentation and recognition of online

handwritten diagrams with high order Markov random

field, 2016.

[6] Wu, J., Wang, C., Zhang, L., Rui, Y.: Offline sketch

parsing via shapeness estimation.2015.

[7] Yun, X.L., Zhang, Y.M., Ye, J.Y., Liu, C.L.: Online

handwritten diagram recognition with graph attention

networks. 2019.

[8] Faster R-CNN: Towards real-time object detection with

region proposal networks, S Ren, K He, R Girshick, J

Sun - Advances in neural information processing

systems, 2015.

[9] Karen Simonyan, Andrew Zisserman,Very

DeepConvolutional Networks for Large-Scale Image

Recognition, 2015.

[10] J. Puigcerver, "Are Multidimensional Recurrent Layers

Really Necessary for Handwritten Text Recognition?"

2017 14th IAPR International Conference on Document

Analysis and Recognition (ICDAR), Kyoto, 2017, pp.

67-72, doi: 10.1109/ICDAR.2017.20.

[11] U. Marti and H. Bunke. The IAM-database: An English

Sentence Database forOff-line Handwriting Recognition.

Int. Journal on Document Analysis and

Recognition,Volume 5, pages 39 - 46, 2002.

[12] Schäfer, B., Keuper, M. &Stuckenschmidt, H. Arrow R-

CNN for handwritten diagram recognition. IJDAR 24, 3–

17, 2021.

IJCATM : www.ijcaonline.org

