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ABSTRACT 
Currently, artificial vision is used in an endless number of 

tasks from domestic tasks to industrial and educational ones 

since with it those tasks can be streamlined because of having 

an automated process. This project explores the problem of 

handwritten information recovery, specifically the flowcharts 

used in the programming and designing of 

algorithms,approaching a solution with artificial vision, and 

proposes a pipeline able to recognize the elements of a 

handwritten flowchart using convolutional neural networks  in 

order to generate code source in the C programming language 

equivalent to the recognized diagram, in addition the 

digitalized version of the flow diagram, thus automating the 

various tasks, having as a final result a file with .c extension 

with the source code, the compilation output and an image in 

.png format with the digitization of the diagram. 
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1. INTRODUCTION 
A recognition pipeline was designed and implemented 

highlighting the use of convolutional neural networks (CNN) 

to test the accuracy in the recognition of figures, connectors, 

and text, being these the components of a flowchart [1] and 

with the help of grammar analysis verifies the structure of the 

flowchartto detecterrors on it. Seeking to see the result of the 

implemented pipeline usingPython (programming language), 

it receives as input a digital image of the hand drawn 

flowchart, processes the image, recognizes the elements of the 

flowchart, analyzes the grammar, and finally returns the result 

as an image of the flowchart once it has been reconstructed 

into a digital image andgenerates its equivalent C source code. 

This is only if the flowchart has been globally recognized with 

a correct structure. It is also important to say that the C 

generated programs follow the structured programming 

paradigm and that a defined set of symbols is used for the 

construction of the flowchart. 

The specific reason for the development of the project is to 

explore the application of CNNs in the task of recognition of 

the elements of a handwritten flowchart under the off-line 

approach [2], and why is it thought that it is necessary to 

investigate? To seek higher accuracy in the overall 

recognition of the flowchart, and why is higher accuracy 

necessary? Because by ensuring a good enough effectiveness 

it would be possible to apply the solution on a software 

product that helps in the educational area, as in [3], or 

scientific areas. For example, it is known that nowadays most 

engineering curricula require students to be able to program at 

some level [4]. As a visual representation of data flow, 

flowcharts are useful for designing an algorithm and 

explaining it to others, and/or enabling effective collaboration. 

Thus, a flowchart can be used to spell out the logic behind a 

program before coding begins, as well as to organize the 

overall thinking and provide guidance when translating it into 

a programming language. In that way, students will focus 

more on problem-solving rather than on the syntax of a given 

programming language, reducing the learning curve in the 

early stages of learning programming.Currently there are 

similar and different approaches, but mostly for online 

approach [5, 6, 7] that wasalso a motivation for the realization 

of the project where the focus is the offline approach. 

2. PIPELINE 
The implemented pipeline for recognition of handwritten 

flowcharts (see Figure 1) receives an image as the input, then 

the image is processed by two detectors, the shape-connector 

detector, and the text detector. For text flow, the image is 

binarized and the text is located usingKeras OCR and it is 

classified with an implemented CNN+LSTM model, to 

enhance the precision of the text detector, the technique called 

continual learning is used,so after some trainings with the text 

style of a certain user the model will improve the recognition 

of text. On the other hand, for the flow of shapes and 

connectors unsharp masking is used to highlight image 

features then a Faster R-CNN model is used for object 

detection,the feature extraction is with backbone VGG-16 [8]. 

After the detection of all elements of the flowchart the 

bounding boxes (text, shape, and connector ones) are 

encapsulated in nodes anda directed graph is constructed 

using those nodes, the construction is supported using 

grammar analysis. At this point the flow of the pipeline can 

fail, maybe because the detected diagram has an incorrect 

structure or a bad or missing detection by the models. Finally, 

the outputs are the generated source code in C programming 

language, its compilation output, and the digital reconstructed 

diagram. 
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Fig1.Pipeline diagram. Source: Own elaboration 

3. SHAPE MODEL 
The object detection model used is Faster R-CNNwhich 

efficiently uses the convolutional feature layers, this model 

has a module called RPN with a classifier (object or non-

object) and a regressor to adjust the coordinates of the 

bounding boxesThe backbone to extract features of the 

imageisVGG-16[9]. 

Fig 2.Faster R-CNN modelarchitecture. Source: [8]. 

3.1 DATASET FLOWCHART 3B 
A dataset, called “Flowchart 3B”, was compiled to develop 

the project. It was necessary to take many photos of shapes 

and connectors, moreover, draw several flowcharts as the 

representation of some known algorithms such as compute the 

factorial of a given natural number or calculate the nth 

element of the Fibonacci sequence. Altogether there are 775 

images and their respective annotation files (in Extensible 

Markup Language format, XML), the Table 1 shows the 

number of items per class, and the Table2 shows the set of 

shapes and connectors allowed to compose the flowcharts, so 

there are 9 different classes to locate and classify in detection 

process by deep learning models. The dataset is oriented for 

the off-line approach and was created mainly with help of 

students of computer systems engineering bachelor’s in 2019 

and 2020 years. It is important to say that the backgrounds 

where the flowcharts were drawn are three different types: 

white-blank, grid and lined paper. The dataset is divided into 

two parts: Training and Validationsets.The dataset is available 

to download on 

Kagglehttps://www.kaggle.com/davbetm/flowchart-3b 

Table 1. Dataset content, number of items per class. 

Source: Own elaboration. 

Class name Training set Test set 

start_end 838 208 

scan 741 196 

decision 761 187 

print 798 204 

process 882 206 

arrow_line_up 760 185 

arrow_line_down 1020 249 

arrow_line_right 799 197 

arrow_line_left 763 187 

Total 7362 1819 
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Table 2.Flowchart elements. Source: Ownelaboration. 

Class Graphic representation 

Startend 
 

Scan (input data) 
 

Decision 

 

Print 
 

Process 
 

Arrowlineup 

 

Arrowlinedown 

 

Arrowlineright 

 

Arrowlineleft 

 

 

4. TEXT MODEL 
The model used for text recognition is an implementation of 

the publishedpuigcerver model, see Figure 3.  

Fig 3.Architecture of the puigcerver model neural 

network. Source: [10] 

The model architecture is constituted by convolution blocks 

where each block contains a two-dimensional convolutional 

layer, to reduce overfitting dropout is applied at the input of 

some convolutional layers after each convolutional layer 

batch normalization is applied, in addition to linear leaky 

rectifier units as activation function in the convolutional 

blocks. At the end, a maximum pooling layer to reduce the 

dimensionality of the input images. After the convolution 

blocks, recurrent blocks are applied which are formed by 

bidirectional 1D-LSTM layers, dropout is applied again at the 

output of the BLSTM blocks. Finally, after therecurrent 

blocks, each column must be assigned to an output label. 

 

5. GRAPH BUILDING AND CODE 

GENERATION 
The process to build the adjacency list of the graph that 

represents the given flowchart uses the following Conway 

diagram (see Figure 4) that describes the sequence that must 

follow the flow of the process given any node, considering the 

rules of the flowcharts. 

 
Fig 4.Conway diagram showing the grammar to construct 

the flowchart. Source: Own elaboration. 

Given the nodes generated by the detection models, which can 

be either shape or text nodes, both nodes contain the points of 

the bounding box in the 2D image space, and a value that 

differs depending on the node, if it is a shape node contains 

the label given by the shape model, on the other hand if it is a 

text node then contains the text recognized by the text model, 

the first step is to find and append to shape nodes the text 

value of all the text nodes whose points are inside the shape 

nodes or if the shape node are labeled by "arrow" the text 

node may be in the vicinity of the shape node, this process 

generate a new set of nodes whose data contains the bounding 

box position, the label and now if it is the case also contain a 

text value, that allows to generate the graph using only a set of 

nodes, the next step is find the node labeled by "start_end" 

and text value with “inicio” or “start” (Spanish or English 

language), once found, an iterative process is started, for 

every node there are possible successors which are selected 

following the intrinsic rules from handwritten flowchart 

described in Conway Diagram, the process finishes when all 

the nodes are traversed. 

6. RESULTS 
In this section, we present the results of the implementation 
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and tuning of each element of the pipeline, the results of the 

deep learning models used in the project on their own, as well 

as the algorithm, used to build the graph and the source code 

in C. In this way, we can measure the performance of the 

elements on their own and toconsider the pros and cons. 

6.1 SHAPE MODEL RESULTS 
The following plot shows the average accuracy obtained by 

each classusing validation dataset, taking as true positive 

when the bounding box of the object recognized has an 

Intersection over Union (IoU) of 50% with the ground truth. 

The arrow classes of up, down, and left have the relative 

lowest values, all other classes have almost perfect average 

precision.  

 
Fig 5.Average precision per class. Source: Own 

elaboration 

Most (75%) of the tested images from a set of 56 flowcharts 

images were completely recognized. The model could not 

recognize mainly arrows and some flowcharts as a special 

case, such as colored lines and faint strokes, that is a signal 

that with a better data centric approach it could be better. 

6.2 TEXT MODEL RESULTS 
About classification of text, the dataset used was IAM [11], 

and evaluating the model the precision achieved was 66.7% 

and with Character error rate (CER) metricwas 91.8%. 

Detection of text was a hard task to solve, in order to improve 

the rate of completed executions of pipeline a technique called 

continual learning was used. 

6.3 PIPELINE RESULTS 
The performance of the pipeline is measured with compliance 

of all the parts in it, therefore the output must be a file with C 

source code, its compilation output, and an image with a 

digital version of the flowchart in the input image. 

Of the total number of tests performed, 60% of the cases 

generated the desired directed graph, of which 75% of these 

generated the expected output.Figure 6shows an example of 

an input image, the outputs of the pipeline for that input are: 

the C code generated code (see Figure 8), the corresponding 

digital flowchart image (see Figure 7) and the compilation 

output that was correct so there are no output errors. 

 

 

 

 

Table 3. Tabular results as a big picture of pipeline 

executions. Source: Own elaboration. 

Result % of tests 
% of tests with 

complete execution 

Correct graph 60 45 

Incorrect graph 40 0 

 

This brings a useful insight, the fact that even that a valid 

directed graph was generated, other errors raised by different 

causes such as run time errors generating source code, those 

lowered the percentage in 15%.  

 
 

Fig 6. Input image, flowchart describing a Fibonacci 

sequence generator. Source: Own elaboration 
 

 

Fig 7. Output image, digital flowchart. Source: Own 

elaboration 
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There is space for presentation improvements, for instance, 

using the same type of arrows as in the input image and the 

spatial disposition of elements.Curved linesare used on the 

output image,however, the shape model was not trained to 

recognize curved or more complex/ freehand oneslike in [12]. 

#include<stdio.h> 

intmain(){ 

    intans=0, n=0; 

    int a=0, b=1, count=2; 

    scanf("%d", &n); 

    while(count<n){ 

        ans=a+b; 

        a=b; 

        b=ans; 

        count=count+1; 

    } 

    printf("%d", ans); 

    return0; 

} 
Fig 8.  Source code output.Source: Own elaboration 

Looking at the code generated, it could be improved in code 

style, such as inserting blank spaces to separate control 

structures from the rest of the code or when declaring 

variables at both sides of equal operator. 

7. CONCLUSIONS 
In this paper it was proposed a pipeline for the task of 

handwriting flowchart recognition to obtain their respective 

C-code source and a digitized flowchart image.An object 

detection model (Faster R-CNN) was trained to recognize and 

classify the shapes on the flowchart, Keras OCRwas used to 

localize text anda CNN+LSTM model was trained for text 

classification. Experimental results show that the designed 

and implemented pipeline performs its function andthat the 

implemented deep learning models using convolutional neural 

networkscan detect the components of a handwritten 

flowchart so it was demonstrated that is possible to construct 

software applications, because the whole implementation it 

can be seen as an image to code traductor, taking advantage of 

the graphs as mathematical structures. 

In future work, it could be improved the generated digital 

flowchart, text detection and the data used, for the next 

reasons respectively,it was used a “print” shape different from 

the defined set and the spatial arrangement of the shapes could 

be better;  the second one is, two different models were used, 

instead of a unified one, which make the implementation slow 

and costly when training; and finally, because the 

classification model was trained with images taken in 

controlled conditionscompared to those used in real life where 

there are also faint strokes and colored lines, those cases 

caused low precision because they are causing data drift. 

 

8. ACKNOWLEDGMENTS 
Thanks to all colleagues and friends who helped us a lot to 

create the dataset, to computer science professors in UPIIZ, 

especially to our advisors M. Sc. Roberto Oswaldo Cruz and 

M. Ed. Karina Rodríguez Mejía. Moreover, not less 

important, to our families by all the support while planning, 

designing, and implementing this challenging project to us. 

You can find the repository of code on GitHub: 

https://github.com/dbetm/handwritten-flowchart-with-cnn 
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