
International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.1, March 2022

26

Detection of Similarity in Cross Version Binaries using

Raw Bytes

Nandish M.
Dept. of CSE, JNNCE, Shimoga

Mohan H.G.
Dept. of CSE, JNNCE, Shimoga

ABSTRACT

Binary code similarity detection (BCSD) technique compares

multiple parts of binary code like functions, basic blocks or

entire program to check for similarity or differences. Without

relying on the source code, binary code analysis allows

analysing code. BCSD is used for malware clustering,

software theft detection and bug search. Existing techniques

for BSCD problem includes Control Flow Graphs (CFG) and

deep learning models. Here, a new and simple approach based

on single feature to solve the cross-version BCSD problem is

proposed. Approach follows initial transformation from

functions to vectors and then computes the coefficient value.

Proposed approach works on the raw bytes which is

implemented and evaluated on a custom dataset having

around 23,451 samples. The result shows that the model

outperforms all other solutions and the recall of the approach

could reach 97.1%.

Keywords

Cross Version Binary, Control Flow Graph, Similarity

coefficient, Malware Detection

1. INTRODUCTION

Binary Code Similarity Detection (BCSD) is about deciding

that any two binary blocks are identical, similar, and

equivalent. The BCSD techniques are used for malware

detection [1] and vulnerability search. The major issues in

BCSD problems are binary codes can be generated using

different compilers, architectures and codes of different

versions. Cross-compiler binaries are generated when a source

code is compiled with different compiler algorithms. The

source codes compiled on different instruction set generates

cross-platform binaries. The cross-version binaries are

generated when the source codes are patched and evolved

over time [2]. The cross-compiler and cross-platform binaries

are said to be semantically equivalent if their functionality is

same but having different syntactic features. The cross-

version binaries are equivalent, since they are compiled in the

same platforms having same root. The cross-version binaries

still may have contrasting syntactic and semantic features.

The available techniques for BCSD problems depend on

binary functions graph-isomorphism and CFG methods [3].

Bindiff is predominantly used as a tool to compare binary

functions CFGs and to identify the similarity among them [4].

BinHunt and iBinHunt uses symbolic execution and taint

analysis to solve the BCSD problem [5]. In BinGo and Esh,

the CFG are split into separate blocks to process them, which

enhances the robustness of the model by evaluating the entire

CFG and CFG fragments similarities [6]. The computation

cost is reduced in Genius and Gemini method by extracting

numeric features from basic blocks or CFGs. The neural

network-based approach proposed by Gemini is used to

compute the embedding, where embedding is a numeric

vector derived from the CFGs of each binary blocks[7]. Here

the similarity detection is done by evaluating the distance

between the vectors of two blocks. This method shows very

good results [8].

DiscovRE [9] method pre-filters the numerical features of

CFGs and applies the KNN algorithm to find a list of

candidate functions. This method extracts the syntax level

features such as the number of arithmetic instructions/ call

instructions, these are lightweight in nature which speed up

the feature extraction process. Here the search efficiency is

increased by applying graph matching after pre-filtering on

function level features[10]. It is observed in Feng method [11]

that, the pre-filtering approach to detect similarity rely on

pairwise graph matching and is not highly reliable which

degrades the search accuracy and becomes inefficient. The

Genius approach [12] provides robustness against the code

variations by using the Attributed CFGs (ACFGs) which are

based on basic block features [13].

In this paper, Detection of Similarity in Cross Version

Binaries are presented. The remaining sections of the paper is

described as follows. The Section 2 gives an overview of

Binary Code Similarity are described. In Section 3, the

proposed method is explained along with an algorithm the

experiment is detailed in Section 4. Conclusions of proposed

method are drawn in Section 5.

2. VERSION BASED BCSD PROBLEM

The version based BCSD problem deals with the analysis of

two binaries B1 and B2 which are compiled from a same

project source code, that have evolved over time due to the

need of the user. The cross-version BCSD has following

computations:

 Function Matching: Finding the equivalent block for B1

in a function F1i for each function F2j having a binary

B2.

 Similarity Score: Evaluating the similarity score for each

pair of functions (F1i, F2j), the similarity score ranges

between (0, 1). This score indicates the equivalency

between the two binaries.

 Difference Identification: for each pair of functions (F1i,

F2j), If the Similarity Score < 1 then the differences can

be identified.

3. PROPOSED SYSTEM

The architecture of the proposed method is depicted in the

Figure 1. The binary functions are fed as input to the model.

The binary functions are preprocessed to extract the byte

values. These byte values are represented as numerical

vectors. The two numerical vectors are processed to identify

the similarity using a matching function described in section

2. The similarity coefficient of the matching function is used

to detect the degree of similarity of the two input functions.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.1, March 2022

27

Fig 1: Architecture of proposed BCSD method

The algorithm for the proposed BCSD method is as follows:

1. Input: Two Binary Codes say Z1 and Z2

2. Extract a Binary Function say F1i from the Z1

3. Extract a set of Binary Functions called Processing List

{F21, F22, …, F2j, …, F2n} from the Z2

4. Set the length of F1i as value for len i.e., size of the

binary block

5. foreach Binary Function in {F21, F22, …, F2j, …, F2n}

if length(F2j) < len then

 Remove F2j from the processing list

6. foreach F2j in Processing List

for x from 1 to len

Decompose F1i into x number of parts say P1,

P2,…, Px

foreach Pk in { P1, P2,…, Pi }

matchCount[] = compute

SimilarityCoefficient(Pk, F2j)

SCij[] = sumofall(matchCount) / x

7. Compute simT = ∑q=0 to len SCij[q] / q, where q is the

index of array SCij

8. Similarity value (F1i, F2j) = sigmoid(simT)

9. if Similarity value (F1i, F2j) > 0.5 then

Two Binary Functions F1i and F2j are similar

10. else Binary Functions F1i and F2j are different.

The proposed BCSD method compares two binary functions

to check for similarity. The method follows the sliding

window approach while comparing two series of binary byte

values. The method considers only those functions having

their byte length greater than the first function (F1i). Initially

partition size is set to one. Each partition of F1i is compared

with the F2j, here the comparison will be done at the byte

level. If the byte sequence are same then match count is

increased. Later the comparison window is moved by one byte

position for further comparison till one reach the end of F2j.

The process is repeated on subsequent partitions made on F1i

until one reach a stage where length of binary code on

partitioning is one byte.

The similarity between F1i and F2j is evaluated based on a

summation of scores obtained on each partition as described

in the Algorithm 1 and 2. The weighted sum is used to

compute the Similarity value so that the largest binary code

sized partition will have more weightage. The Binary

functions F1i and F2j are said to be similar if the Similarity

value is more than 0.5. The Similarity value is calculated by

applying a sigmoid function to normalize the values in the

range of (0,1).

The algorithm for finding Similarity Coefficient

1. SimilarityCoefficient(Pk, F2j)

2. MatchCount = 0

3. foreach byte pos from 0 till bytelength(F2j) –

bytelength(Pk)

4. Compare byte values of Pk and F2j at index pos

5. if byte values of Pk == F2j then

a. MatchCount = MatchCount + 1

b. return MatchCount

4. EXPERIMENT

4.1 Implementation and Setup
The proposed BCSD method is implemented in Python

Language on Intel i7 machine with 2.2GHz CPU having 8GB

of RAM. The method is run on Alpha-Diff Dataset. In this

dataset the binary functions can be clearly identified. There

are 2,489,793 positive samples (matching functions) in the

dataset from 66,823 pairs of cross-version binaries. These

binaries are from x86 Linux platform. For experimental test

data set, method used a batch command for random selection

and manual sample selection was avoided. 343,178 functions

are used in test data for cross-version matching, from 11,000

pairs of different-version binaries. The test dataset is divided

into small and big subsets.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.1, March 2022

28

4.2 Accuracy and Efficiency of Testing

Stage
In testing stage of proposed method, 11,000 pairs of different

version binaries which includes 343,178 positive samples are

used. The method is evaluated on the entire test dataset. The

Recall Rate is used as a metric to evaluate the performance of

the system. The Recall results are shown in Table 1. It is

evident from the experimental results that the proposed BCSD

method is successful in evaluating the similarity in cross-

version binary code.

From Fig.2, one can note that the test time is in standard

increase with increase in binary size and function size. The

method based on the coefficient of similarity of Jaccard stays

the most efficient. In the database, the length of the most

binary is shorter than 20,000 bytes and most functions are

shorter than 1,000 bytes, which means to test, the method can

get the same job within 4 seconds of multiple samples. In the

study at a large subset, after we have set the length of the

function, many jobs that do not meet the requirements are not

included. I the length of the slide window usually does not do

that exceed 100,000 bytes and the required time for running is

about few seconds. But in practice, if sliding window check

requires a large file size (alternative than 1MB), the operating

time of the algorithm is about tens of seconds, which is not

appropriate. However, we can split the large file into many

smaller files and use a distributed algorithm to improve

efficiency in future work.

Table 1. The recall accuracy on Alpha-Diff Dataset

 Small Dataset Big Dataset

Recall @1 0.9552 0.9011

Recall @2 0.9722 0.9422

Fig 2: Efficiency evaluation on Alpha-Diff dataset

5. CONCLUSION

The approach for BCSD mentioned in this paper identifies the

similarity in two binary functions generated by cross-version

source code. The method can be implemented efficiently since

it do not involve any complex algorithmic computations

unlike other methods mentioned in section 1. The method is

applied on raw bytes directly without using any complex

graphical methods or Deep Learning methods. The more

vulnerable firmware images can be identified using this

method. The method can be extended to identify the cross-
architecture and cross-compiler binaries. The area of BCSD is

still in evolving to identify the semantic similarity purely

based on the binary code irrespective of how they are

generated.

6. REFERENCES
[1] Hui Guo , Shuguang Huang, Cheng Huang, Min Zhang,

Zulie Pan, Fan Shi, Hui Huang1, Donghui Hu And

Xiaoping Wang , “Lightweight Cross-Version BCSD

Based on Similarity and Correlation Coefficient

Features”, IEEE Access, pp. 120501 - 120512, Vol 8,

June 2020.

[2] X. Hu, T.-C. Chiueh, and K. G. Shin, „„Large-scale

malware indexing using function-call graphs‟‟, in Proc.

16th ACM Conf. Comput. Commun. Secur., 2009, pp.

611–620.

[3] J. Gao, X. Yang, Y. Fu, Y. Jiang, and J. Sun,

“VulSeeker: A semantic learning based vulnerability

seeker for cross-platform binary” in Proc. 33rd

ACM/IEEE Int. Conf. Automated Softw. Eng. (ASE).

New York, NY, USA: Association Computing

Machinery, 2018, pp. 896–899.

[4] Y. David, N. Partush, and E. Yahav, „„Statistical

similarity of binaries,‟‟ ACM SIGPLAN Notices, vol. 51,

no. 6, pp. 266–280, Aug. 2016.

[5] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T.

Holz, “Crossarchitecture bug search in binary

executables”, in Proc. IEEE Symp. Secur. Privacy, May

2015, pp. 709–724.

[6] L. Massarelli, G. A. D. Luna, F. Petroni, L. Querzoni,

and R. Baldoni, “SAFE: Self-attentive function

embeddings for binary similarity”, in Proc. 16th Conf.

Detection Intrusions Malware Vulnerability Assessment

(DIMVA), 2019, pp. 309–329

[7] M. Chandramohan, Y. Xue, Z. Xu, Y. Liu, C. Y. Cho,

and H. B. K. Tan, “BinGo: Cross-architecture cross-OS

binary search”, in Proc. 24th ACM SIGSOFT Int. Symp.

Found. Softw. Eng. (FSE), 2016, pp. 678–689.

[8] F. Zuo, X. Li, P. Young, L. Luo, Q. Zeng, and Z. Zhang,

“Neural machine translation inspired binary code

similarity comparison beyond function pairs”, in Proc.

Netw. Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[9] S. H. H. Ding, B. C. M. Fung, and P. Charland, “Asm2

Vec: Boosting static representation robustness for binary

clone search against code obfuscation and compiler

optimization”, in Proc. IEEE Symp. Secur. Privacy (SP),

May 2019, pp. 472–489.

[10] J. Ming, M. Pan, and D. Gao, “IBinHunt: Binary hunting

with interprocedural control flow”, in Proc. Int. Conf.

Inf. Secur. Cryptol. Berlin, Germany: Springer, 2012, pp.

92–109.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.1, March 2022

29

[11] D. Gao, M. K. Reiter, and D. Song, “Binhunt:

Automatically finding semantic differences in binary

programs”, in Proc. Int. Conf. Inf. Commun. Secur.

Berlin, Germany: Springer, 2008, pp. 238–255.

[12] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao

Li,Feng Li,Aihua Piao,Wei Zou, “αDiff: Cross-Version

Binary Code Similarity Detection with DNN” , ACM,

pp. 667- 678 , September 3–7, 2018.

[13] S. Eschweiler, K. Yakdan, and E. Gerhards-Padilla,

“DiscovRE: Efficient cross-architecture identification of

bugs in binary code”, in Proc. Netw. Distrib. Syst. Secur.

Symp., 2016, pp. 1–15.

IJCATM : www.ijcaonline.org

