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ABSTRACT 

Binary code similarity detection (BCSD) technique compares 

multiple parts of binary code like functions, basic blocks or 

entire program to check for similarity or differences.  Without 

relying on the source code, binary code analysis allows 

analysing code. BCSD is used for malware clustering, 

software theft detection and bug search. Existing techniques 

for BSCD problem includes Control Flow Graphs (CFG) and 

deep learning models. Here, a new and simple approach based 

on single feature to solve the cross-version BCSD problem is 

proposed. Approach follows initial transformation from 

functions to vectors and then computes the coefficient value. 

Proposed approach works on the raw bytes which is 

implemented and evaluated on a custom dataset having 

around 23,451 samples. The result shows that the model 

outperforms all other solutions and the recall of the approach 

could reach 97.1%.  
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1. INTRODUCTION 

Binary Code Similarity Detection (BCSD) is about deciding 

that any two binary blocks are identical, similar, and 

equivalent. The BCSD techniques are used for malware 

detection [1] and vulnerability search. The major issues in 

BCSD problems are binary codes can be generated using 

different compilers, architectures and codes of different 

versions. Cross-compiler binaries are generated when a source 

code is compiled with different compiler algorithms. The 

source codes compiled on different instruction set generates 

cross-platform binaries. The cross-version binaries are 

generated when the source codes are patched and evolved 

over time [2]. The cross-compiler and cross-platform binaries 

are said to be semantically equivalent if their functionality is 

same but having different syntactic features. The cross-

version binaries are equivalent, since they are compiled in the 

same platforms having same root. The cross-version binaries 

still may have contrasting syntactic and semantic features. 

The available techniques for BCSD problems depend on 

binary functions graph-isomorphism and CFG methods [3].  

Bindiff is predominantly used as a tool to compare binary 

functions CFGs and to identify the similarity among them [4]. 

BinHunt  and iBinHunt  uses  symbolic execution and taint 

analysis to solve the BCSD problem [5]. In BinGo and Esh, 

the CFG are split into separate blocks to process them, which 

enhances the robustness of the model by evaluating the entire 

CFG and CFG fragments similarities [6]. The computation 

cost is reduced in Genius and Gemini method by extracting 

numeric features from basic blocks or CFGs. The neural 

network-based approach proposed by Gemini is used to 

compute the embedding, where embedding is a numeric 

vector derived from the CFGs of each binary blocks[7]. Here 

the similarity detection is done by evaluating the distance 

between the vectors of two blocks. This method shows very 

good results [8].  

DiscovRE [9] method pre-filters the numerical features of 

CFGs and applies the KNN algorithm to find a list of 

candidate functions. This method extracts the syntax level 

features such as the number of arithmetic instructions/ call 

instructions, these are lightweight in nature which speed up 

the feature extraction process. Here the search efficiency is 

increased by applying graph matching after pre-filtering on 

function level features[10]. It is observed in Feng method [11] 

that, the pre-filtering approach to detect similarity rely on 

pairwise graph matching and is not highly reliable which 

degrades the search accuracy and becomes inefficient. The 

Genius approach [12] provides robustness against the code 

variations by using the Attributed CFGs (ACFGs) which are 

based on basic block features [13].  

In this paper, Detection of Similarity in Cross Version 

Binaries are presented. The remaining sections of the paper is 

described as follows. The Section 2 gives an overview of 

Binary Code Similarity are described. In Section 3, the 

proposed method is explained along with an algorithm the 

experiment is detailed in Section 4.  Conclusions of proposed 

method are drawn in Section 5.  

2. VERSION BASED BCSD PROBLEM 

The version based BCSD problem deals with the analysis of 

two binaries B1 and B2 which are compiled from a same 

project source code, that have evolved over time due to the 

need of the user. The cross-version BCSD has following 

computations: 

 Function Matching: Finding the equivalent block for B1 

in a function F1i for each function F2j having a binary 

B2. 

 Similarity Score: Evaluating the similarity score for each 

pair of functions (F1i, F2j), the similarity score ranges 

between (0, 1). This score indicates the equivalency 

between the two binaries. 

 Difference Identification: for each pair of functions (F1i, 

F2j), If the Similarity Score < 1 then the differences can 

be identified. 

3. PROPOSED SYSTEM 

The architecture of the proposed method is depicted in the 

Figure 1. The binary functions are fed as input to the model. 

The binary functions are preprocessed to extract the byte 

values. These byte values are represented as numerical 

vectors. The two numerical vectors are processed to identify 

the similarity using a matching function described in section 

2. The similarity coefficient of the matching function is used 

to detect the degree of similarity of the two input functions.  
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Fig 1: Architecture of proposed BCSD method 

The algorithm for the proposed BCSD method is as follows: 

1. Input: Two Binary Codes say Z1 and Z2  

2. Extract a Binary Function say F1i from the Z1 

3. Extract a set of Binary Functions called Processing List 

{F21, F22, …, F2j, …, F2n} from the Z2 

4. Set the length of F1i as value for len i.e., size of the 

binary block 

5. foreach Binary Function in {F21, F22, …, F2j, …, F2n} 

if length(F2j) < len then 

        Remove F2j from the processing list 

6. foreach F2j in Processing List 

for x from 1 to len 

Decompose F1i into x number of parts say P1,  

P2,…, Px 

foreach Pk in { P1, P2,…, Pi } 

matchCount[] = compute  

SimilarityCoefficient(Pk, F2j)  

SCij[] = sumofall(matchCount) / x 

 

7. Compute simT = ∑q=0 to len SCij[q] / q, where q is the 

index of array SCij 

8. Similarity value (F1i, F2j)  = sigmoid(simT) 

9. if Similarity value (F1i, F2j) > 0.5 then 

Two Binary Functions F1i and F2j are similar 

10. else Binary Functions F1i and F2j are different. 

The proposed BCSD method compares two binary functions 

to check for similarity. The method follows the sliding 

window approach while comparing two series of binary byte 

values. The method considers only those functions having 

their byte length greater than the first function (F1i).  Initially 

partition size is set to one. Each partition of F1i is compared 

with the F2j, here the comparison will be done at the byte 

level. If the byte sequence are same then match count is 

increased. Later the comparison window is moved by one byte 

position for further comparison till one reach the end of F2j. 

The process is repeated on subsequent partitions made on F1i 

until one reach a stage where length of binary code on 

partitioning is one byte.  

The similarity between F1i and F2j is evaluated based on a 

summation of scores obtained on each partition as described 

in the Algorithm 1 and 2. The weighted sum is used to 

compute the Similarity value so that the largest binary code 

sized partition will have more weightage. The Binary 

functions F1i and F2j are said to be similar if the Similarity 

value is more than 0.5. The Similarity value is calculated by 

applying a sigmoid function to normalize the values in the 

range of (0,1). 

The algorithm for finding Similarity Coefficient 

1. SimilarityCoefficient(Pk, F2j) 

2. MatchCount = 0 

3. foreach byte pos from 0 till bytelength(F2j) – 

bytelength(Pk) 

4. Compare byte values of Pk and F2j at index pos 

5. if byte values of Pk == F2j then 

a. MatchCount = MatchCount + 1 

b. return MatchCount 

4. EXPERIMENT 

4.1 Implementation and Setup 
The proposed BCSD method is implemented in Python 

Language on Intel i7 machine with 2.2GHz CPU having 8GB 

of RAM. The method is run on Alpha-Diff Dataset. In this 

dataset the binary functions can be clearly identified. There 

are 2,489,793 positive samples (matching functions) in the 

dataset from 66,823 pairs of cross-version binaries. These 

binaries are from x86 Linux platform. For experimental test 

data set, method used a batch command for random selection 

and manual sample selection was avoided. 343,178 functions 

are used in test data for cross-version matching, from 11,000 

pairs of different-version binaries. The test dataset is divided 

into small and big subsets. 
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4.2 Accuracy and Efficiency of Testing 

Stage 
In testing stage of proposed method, 11,000 pairs of different 

version binaries which includes 343,178 positive samples are 

used. The method is evaluated on the entire test dataset. The 

Recall Rate is used as a metric to evaluate the performance of 

the system. The Recall results are shown in Table 1. It is 

evident from the experimental results that the proposed BCSD 

method is successful in evaluating the similarity in cross-

version binary code. 

From Fig.2, one can note that the test time is in standard 

increase with increase in binary size and function size. The 

method based on the coefficient of similarity of Jaccard stays 

the most efficient. In the database, the length of the most 

binary is shorter than 20,000 bytes and most functions are 

shorter than 1,000 bytes, which means to test, the method can 

get the same job within 4 seconds of multiple samples. In the 

study at a large subset, after we have set the length of the 

function, many jobs that do not meet the requirements are not 

included. I the length of the slide window usually does not do 

that exceed 100,000 bytes and the required time for running is 

about few seconds. But in practice, if sliding window check 

requires a large file size (alternative than 1MB), the operating 

time of the algorithm is about tens of seconds, which is not 

appropriate. However, we can split the large file into many 

smaller files and use a distributed algorithm to improve 

efficiency in future work.  

Table 1. The recall accuracy on Alpha-Diff Dataset 

 Small Dataset Big Dataset 

Recall @1 0.9552 0.9011 

Recall @2 0.9722 0.9422 

 

 
Fig 2: Efficiency evaluation on Alpha-Diff dataset 

5. CONCLUSION 

The approach for BCSD mentioned in this paper identifies the 

similarity in two binary functions generated by cross-version 

source code. The method can be implemented efficiently since 

it do not involve any complex algorithmic computations 

unlike other methods mentioned in section 1. The method is 

applied on raw bytes directly without using any complex 

graphical methods or Deep Learning methods. The more 

vulnerable firmware images can be identified using this 

method. The method can be extended to identify the cross- 
architecture and cross-compiler binaries. The area of BCSD is 

still in evolving to identify the semantic similarity purely 

based on the binary code irrespective of how they are 

generated. 
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