
International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.11, May 2022

 41

An Algorithm for Testing a Signed Graph for Balance

Ioannis S. Xezonakis
Dept. of Electrical and Computer Engineering

Hellenic Mediterranean University
Heraklion, 71410, Greece

Danai Xezonaki
Faculty of Science

University of Amsterdam
1012 WX Amsterdam, The Netherlands

ABSTRACT
A signed graph consists of a graph together with a sign

characterizing each vertex. A fundamental concept of signed

graphs is that of balance. In this paper a programming

algorithm is presented in order to detect balance in signed

graphs. The algorithm traverses each vertex at most once and

uses two stacks for the implementation, each having a size of

at most the number of vertices of the graph. Moreover, the

graph need not be stored in computer's memory.

General Terms
Graphs Algorithms, Signed graphs, Balanced graphs

Keywords

Balanced graphs, Signed graphs

1. INTRODUCTION
A graph G=(V,E) is a representation of objects, connected by

links. The “objects” in graphs are called vertices, noted by

the finite set V in the above representation, while links are

called edges, noted by E in the same representation. A signed

graph is one whose edges are characterized by a sign σ, either

positive (+) or negative(-), so it in the following it will be

denoted as S=(G, σ) = (V, E, σ). The sign of a cycle in a

signed graph is the product of the signs of all the edges

participating in the cycle. A signed graph is called balanced

if the sign of every cycle in the graph is positive [1].

The first mathematical notion for signed graphs is found in

[2]. However, according to this paper, balanced signed graphs

“obey” to the following theorem:

Suppose that S is a signed graph. The next conditions are

equivalent:

i) S is balanced.

ii) Every cycle in S is positive

iii) All paths between every pair of dinstict vertices in V

have the same sign.

iv) The set V of vertices can be separated into two disjoint

sets of vertices, one of them may be empty. Every

positive edge joins vertices of the same set and every

negative edge joins vertices of different sets.

Thereafter, various references, as [3], [4] and [5], appear,

whereas signed graphs find application in many fields such as

psychology [6], turnover analysis [7] etc.

In [1] an algorithm is proposed, which uses a spanning tree of

the graph. In this algorithm, all the vertices of the graph are

examined, in order to obtain a sign. Subsequently, the edges

are tested for sign, which is correct if it is equal to the product

of the signs of the two adjacent vertices, else, a fault exists,

the graph is non balanced and the algorithm is terminated.

In [8], another algorithm is proposed, which is based on the

above condition (iii), examines each line of the graph at most

once through a breadth-first search (BFS) traversal and does

not require the graph to be stored in a computer’s memory,

since it examines the unused edges of a signed graph one at a

time as they are read and tests the graph for balance.

Obviouslsy, extended research has been done for signed

graphs. In recent papers, various related subjects are also

examined, such as signed distance [9] and powers of signed

graphs [10].

In this paper an algorithm is proposed, based also on the

above condition (iii), which is a variation of the algorithm

proposed in [8]. The algorithm uses two stacks. It is not

necessary to examine for sign all the vertices of the graph and

it is not based on the existence of closed subgraphs, as [8]

does; also it is not required for the graph to be stored in a

computer’s memory.

2. THE ALGORITHM
In the proposed algorithm a sign is attributed to each vertex

examined, in accordance to the sign of an edge adjacent to it.

Then, reaching the vertex following different paths, the sign

of the vertex is checked for consistency to the already

attributed one. If such consistency does not exist, the graph is

not balanced. The different paths, through which the

examined vertex are reached, are formed by a depth first

searching (DFS) traversal of the graph. Two stacks are used,

named (for the needs of this paper) as POS and NEG, in

which the numbers of the vertices examined are put.

As already mentioned, the examined vertices are

characterized by their sign as either positive (+) or negative (-

). Suppose that a vertex x obtains the sign σ(x). Departing

from x, we reach vertex z; z obtains its sign σ(z) by setting

σ(z) = σ(x) * σ(x,z), where σ(x,z) holds for the sign of the

edge adjacent to both x and z vertices. A vertex is also

characterized as R (reached) or NR (non-reached) if it has

already been reached or not, and as C (checked) or NC (non-

checked) if checking of correct sign has already been

performed to it or not. So, the status St of each vertex is

descibed by a triad of symbols; for example, the status of a

vertex k, denoted as St(k), would be expressed as St(k) = (+,

R, NC) or St(k) = (-, NR, NC) etc. When one (or more) of the

three symbols has not yet been attributed to some vertex k, or

its status does not matter, it is replaced by ?. So, the status of

some node may be St(k) = (?,?, NC), or St(k) = (?,R, ?) etc.

Obviously, an NC vertex is possible to be R; this occurs if we

the vertex has already been reached, but checking of correct

sign has not yet been completed. Sign is attributed only to R

vertices, since a vertex gains sign at the moment of visiting it,

that is, when its status changes from NR to R.

The algorithm is described as follows and is implemented in a

“quasi-C” pseudo-code form in Figure 1, where a variable

named bal is used; this variable has the value true when the

graph is balanced, else its value is false.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.11, May 2022

 42

Fig 1: Algorithm for balance checking

While NC vertices exist in the graph, a vertex (say x) is

arbitrarily chosen, which is characterized as positive (+). Its

status is changed from NR to R and is pushed to the POS

stack. The algorithm proceeds as below:

1. If POS is not empty, the vertex x, stored at the head of

POS, is recalled. This vertix is marked as C and

continue with step 3.

2. If POS is empty, the vertex x, stored at the head of

NEG, is recalled. This vertix is marked as C and

continue with step 3.

3. Departing from vertex x, there are visited one by one

the vertices, to whom we arrive through edges having

the same sign as x. For each such vertex z:

a) If z is marked as R and belongs in the NEG stack,

the graph is not balanced and the algorithm

terminates.

b) If z is marked as C, it is ignored.

c) If z is marked as R and belongs in the POS stack,

it is also ignored.

d) If z is marked as NR, then the sign + is attributed

to it, it is marked as R and is pushed in POS.

4. Departing from vertex x, there are visited one by one

the vertices, to whom we arrive through edges having

the opposite sign than x. For each such vertex z:

a) If z is marked as R and belongs in the POS stack,

the graph is not balanced and the algorithm

terminates.

b) If z is marked as C, it is ignored.

c) If z is marked as R and belongs in the NEG stack,

it is also ignored.

d) If z is marked as NR, the sign - is attributed to it,

it is marked as R and is pushed in NEG.

After following all the above steps, the non existence of NC

vertices means that the graph is balanced.

In Figure 2 a signed graph is presented:

Fig 2: Signed graph

In the six sub-figures of Figure 3, the proposed algorithm is

step by step applied for the graph of Figure 2. In each step,

the vertices already checked for sign are shadowed. Each

subgraph is accompanied by a matrix, having three columns;

the first stands for the already checked vertices, while the

second and the third ones stand for the contents of POS and

NEG stacks (vertices in them are all reached (R) and non

completed (NC)).

Fig. 3a: Step a

Fig. 3b: Step b

bal = true;

St(x) = (+, R, NC);

push (x, POS);

x = pop (POS);

while (St(x) == (?, ?, NC)) {

 St(x) = (?, R, C));

 while (St(z) == (?, ?, NC)) {

 if (σ(x) * σ(x, z) > 0) {

 if (St(z) == (?, R, ?) and (z in NEG)) {

 bal = false;

 break; }

 if (St(z) == (?, NR, ?)) {

 St(z) = (+, R, ?);

 push (z, POS); } }

 if (σ(x) * σ(x, z) < 0) {

 if (St(z) == (?, R, ?) and (z in POS)) {

 bal = false;

 break; }

 if (St(z) == (?, NR, ?)) {

 St(z) = (-, R, ?);

 push (z, NEG); } }

 next (z); }

 if (bal == false)

 break;

 if (POS not empty)

 x = pop (POS);

 if ((POS empty) and (NEG not empty))

 x = pop (NEG); }

if (bal == true)

 Graph is balanced;

else

 Graph is not balanced;

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.11, May 2022

 43

Fig. 3c: Step c

Fig. 3d: Step d

Fig. 3e: Step e

Fig. 3f: Step f

In Figure 3f the algorithm ends; accessed from 7, vertex 6

must belong to POS, since σ(7) < 0 and σ(7, 6) < 0. In

contradiction, vertex 6 belongs to NEG, so the graph is non-

balanced.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.11, May 2022

 44

3. RESULTS
The algorithm proposed, has obviously space complexity

Θ(V). It is uses two stacks and has not to search for closed

loops in order to decide whether the graph is balanced or not.

It is not needed also to store the graph in memory. For all

these reasons, the algorithm is considered as very effective.

Moreover, the algoritmh has been checked using C

programming language

Usung the proposed algorithm, the balanced power signed

graphs can be a subject for further research.

4. REFERENCES
[1] F. Harary, and J. A. Kabell, 1980. A simple algorithm

to detect balance in signed graphs. Mathematical Social

Scienses 1, 131-136.

[2] F. Harary, 1953-1954. On the Notion of Balance of a

Signed Graph. Michigan Mathematical Journal 2, 143-

146.

[3] F. Harary, R.Z. Norman, and D. Cartwright, 1965.

Structural Models: An Introduction to the Theory of

Directed Graphs. Wiley.

[4] T. Zaslavsky, 1981. Characterization of Signed Graphs.

Journal of Graph Theory, 5, 401-406.

[5] C. Hoede, 1992. A Characterization of Consistent

Marked Graphs. Journal of Graph Theory, 16(1), 17-23.

[6] F. Heider, 1946. Attitudes and Cognitive Organization.

The Journal of Psychology, 21, 107-112.

[7] B. Vasanthi et al., 2015. Applications of Signed Graphs

to Portfolio Turnover Analysis. Procedia – Social and

Behavioral Sciences, 211, 1203-1209.

[8] E. Loukakis, 2003. A Dynamic Programming

Algorithm to Test a Signed Graph for Balance. Intern.

J. Computer Math., 80(4), 499-507.

[9] S. Hameed et al., 2020. Signed Distance in Signed

Graphs. Linear Algebra and its Applications, 608, 236-

247.

[10] T. V. Shijin et al., 2022. On the powers of signed

graphs. Communications in Combinatorics and

Optimization. 7 (1), 45-51.

IJCATM : www.ijcaonline.org

