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ABSTRACT 
A signed graph consists of a graph together with a sign 

characterizing each vertex. A fundamental concept of signed 

graphs is that of balance. In this paper a programming 

algorithm is presented in order to detect balance in signed 

graphs. The algorithm  traverses each vertex at most once and 

uses two stacks for the implementation, each having a size of 

at most the number of vertices of the graph. Moreover, the 

graph need not be stored in computer's memory. 
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1. INTRODUCTION 
A graph G=(V,E) is a representation of objects, connected by 

links. The “objects”  in graphs are called vertices, noted by 

the finite set V in the above representation, while links are 

called edges, noted by E in the same representation.  A signed 

graph is one whose edges are characterized by a sign σ, either 

positive (+) or negative(-), so it in the following it will be 

denoted as S=(G, σ) = (V, E, σ). The sign of a cycle in a 

signed graph is the product of the signs of all the edges 

participating in the cycle. A signed graph is called balanced 

if the sign of every cycle in the graph is positive [1]. 

The first mathematical notion for signed graphs is found in 

[2]. However, according to this paper, balanced signed graphs 

“obey” to the following theorem: 

Suppose that S is a signed graph. The next conditions are 

equivalent: 

i) S is balanced. 

ii) Every cycle in S is positive 

iii) All paths between every pair of dinstict vertices in V 

have the same sign. 

iv) The set V of vertices can be separated into two disjoint 

sets of vertices, one of them may be empty. Every 

positive edge joins vertices of the same set and every 

negative edge joins vertices of different sets. 

Thereafter, various references, as [3], [4] and [5], appear, 

whereas signed graphs find application in many fields such as 

psychology [6], turnover analysis [7] etc. 

In [1] an algorithm is proposed, which uses a spanning tree of 

the graph. In this algorithm, all the vertices of the graph are 

examined, in order to obtain a sign. Subsequently, the edges 

are tested for sign, which is correct if it is equal to the product 

of the signs of the two adjacent vertices, else, a fault exists, 

the graph is non balanced and the algorithm is terminated. 

In [8], another algorithm is proposed, which is based on the 

above condition (iii), examines each line of the graph at most 

once through a breadth-first search (BFS) traversal and does 

not require the graph to be stored in a computer’s memory, 

since it examines the unused edges of a signed graph one at a 

time as they are read and tests the graph for balance. 

Obviouslsy, extended research has been done for signed 

graphs. In recent papers, various related subjects are also 

examined, such as signed distance [9] and powers of signed 

graphs [10].  

In this paper an algorithm is proposed, based also on the 

above condition (iii), which is a variation of the algorithm 

proposed in [8]. The algorithm uses two stacks. It is not 

necessary to examine for sign all the vertices of the graph and 

it is not based on the existence of closed subgraphs, as [8] 

does; also it is not required for the graph to be stored in a 

computer’s memory. 

2. THE ALGORITHM 
In the proposed algorithm a sign is attributed to each vertex 

examined, in accordance to the sign of an edge adjacent to it. 

Then, reaching the vertex following different paths, the sign 

of the vertex is checked for consistency to the already 

attributed one. If such consistency does not exist, the graph is 

not balanced. The different paths, through which the 

examined vertex are reached, are formed by a depth first 

searching (DFS) traversal of the graph. Two stacks are used, 

named (for the needs of this paper) as POS and NEG, in 

which the numbers of the vertices examined are put.    

As already mentioned, the examined vertices are 

characterized by their sign as either positive (+) or negative (-

). Suppose that a vertex x obtains the sign σ(x). Departing 

from x, we reach vertex z; z obtains its sign σ(z) by setting 

σ(z) = σ(x) * σ(x,z), where σ(x,z) holds for the sign of the 

edge adjacent to both x and z vertices. A vertex is also 

characterized as R (reached) or NR (non-reached) if it has  

already been reached or not, and as C (checked) or NC (non-

checked) if checking of correct sign has already been 

performed to it or not. So, the status St of each vertex is 

descibed by a triad of symbols; for example, the status of a 

vertex k, denoted as St(k), would be expressed as St(k) = (+, 

R, NC) or St(k) = (-, NR, NC) etc. When one (or more) of the 

three symbols has not yet been attributed to some vertex k, or 

its status does not matter, it is replaced by ?.  So, the status of 

some node may be St(k) = (?,?, NC), or   St(k) = (?,R, ?) etc. 

Obviously, an NC vertex is possible to be R; this occurs if we 

the vertex has already been reached, but checking of correct 

sign has not yet been completed. Sign is attributed only to R 

vertices, since a vertex gains sign at the moment of visiting it, 

that is, when its status changes from NR to R. 

The algorithm is described as follows and is implemented in a 

“quasi-C” pseudo-code form in Figure 1, where a variable 

named bal is used; this variable has the value true when the 

graph is balanced, else its value is false. 
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Fig 1: Algorithm for balance checking 

While NC vertices exist in the graph, a vertex (say x) is 

arbitrarily chosen, which is characterized as positive (+). Its 

status is changed from NR to R and is pushed to the POS 

stack. The algorithm proceeds as below: 

1. If POS is not empty, the vertex x, stored at the head of 

POS, is recalled. This vertix is marked as C and 

continue with step 3. 

2. If POS is empty, the vertex x, stored at the head of 

NEG, is recalled. This vertix is marked as C and 

continue with step 3. 

3. Departing from vertex x, there are visited one by one 

the vertices, to whom we arrive through edges having 

the same sign as x. For each such vertex z: 

a) If z is marked as R and belongs in the NEG stack, 

the graph is not balanced and the algorithm 

terminates. 

b) If z is marked as C, it is ignored. 

c) If z is marked as R and belongs in the POS stack, 

it is also ignored. 

d) If z is marked as NR, then the sign + is attributed 

to it, it is marked as R and is pushed in POS. 

4. Departing from vertex x, there are visited one by one 

the vertices, to whom we arrive through edges having 

the opposite sign than x. For each such vertex z: 

a) If z is marked as R and belongs in the POS stack, 

the graph is not balanced and the algorithm 

terminates. 

b) If z is marked as C, it is ignored. 

c) If z is marked as R and belongs in the NEG stack, 

it is also ignored. 

d) If z is marked as NR, the sign - is attributed to it, 

it is marked as R and is pushed in NEG. 

After following all the above steps, the non existence of NC 

vertices means that the graph is balanced. 

In Figure 2 a signed graph is presented:  

 
Fig 2: Signed graph 

In the six sub-figures of Figure 3, the proposed algorithm is 

step by step applied for the graph of Figure 2. In each step, 

the vertices already checked for sign are shadowed. Each 

subgraph is accompanied by a matrix, having three columns; 

the first stands for the already checked vertices, while the 

second and the third ones stand for the contents of POS and 

NEG stacks (vertices in them are all reached (R) and non 

completed (NC)). 

 

Fig. 3a: Step a    

 

Fig. 3b: Step b 

bal = true; 

St(x) = (+, R, NC); 

push (x, POS); 

x = pop (POS); 

while (St(x) == (?, ?, NC)) { 

      St(x) = (?, R, C)); 

      while (St(z) == (?, ?, NC)) { 

           if (σ(x) * σ(x, z) > 0) { 

 if (St(z) == (?, R, ?) and (z in NEG)) {  

      bal = false; 

      break; } 

 if (St(z) == (?, NR, ?)) { 

                     St(z) = (+, R, ?); 

      push (z, POS); } } 

           if (σ(x) * σ(x, z) < 0) { 

 if (St(z) == (?, R, ?) and (z in POS)) { 

    bal = false; 

    break; } 

        if (St(z) == (?, NR, ?)) { 

                     St(z) = (-, R, ?); 

      push (z, NEG); } } 

   next (z); } 

   if (bal == false) 

        break; 

   if (POS not empty) 

 x = pop (POS); 

   if ((POS empty) and (NEG not empty)) 

 x = pop (NEG); } 

if (bal == true) 

    Graph is balanced; 

else 

    Graph is not balanced; 
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Fig. 3c: Step c 

 

 

Fig. 3d: Step d 

 

 

 

Fig. 3e: Step e 

 

 

Fig. 3f: Step f 

In Figure 3f the algorithm ends; accessed from 7, vertex 6 

must belong to POS, since σ(7) < 0 and σ(7, 6) < 0. In 

contradiction, vertex 6 belongs to NEG, so the graph is non-

balanced. 
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3. RESULTS 
The algorithm proposed, has obviously space complexity 

Θ(V). It is uses two stacks and has not to search for closed 

loops in order to decide whether the graph is balanced or not. 

It is not needed also to store the graph in memory. For all 

these reasons, the algorithm is considered as very effective. 

Moreover, the algoritmh has been checked using C 

programming language 

Usung the proposed algorithm, the balanced power signed 

graphs can be a subject for further research. 
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