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ABSTRACT
The binary adder is a primary computational block in many arith-
metic processors and digital signal processing applications. Artifi-
cial Neural Network (ANN)s validate a group of neuron particles
to configure a feed-forward neural network, a perceptron that ex-
ecutes functionally accomplished basic logic gate operations and
provides a re-programmable, re-configurable, extensible comput-
ing system and FPGA board to form ANNs and make analyti-
cal findings. Different methodologies are analyzed, such as ANNs,
which are one of the most encouraging subsequent innovative de-
signs, and researchers are exploring and enhancing different trade-
off characteristics such as delay, dynamic power dissipation, and
area. With the constraint of purposeful computational time, the use
of the intended style of software implementation provides the ad-
vantages of easy programming and low cost. Hardware implemen-
tation can be used to control the limits of software perception in
neural networks. The proposed neural network hybrid adder’s ma-
jor goal is to design a low-energy-delay device with a small foot-
print. In this paper, first consider the design of basic logic gates
using neural networks followed by 1-bit hybrid full adder circuits,
which are the primary components in computing. The hybrid adder
designs are simulated and synthesized using Xilinx Vivado for the
XC7Z020clg400-1 configurable device and implemented on the
FPGA ZYBOZ7 board. The implementation findings reveal that, in
comparison to Proposed Full Adder and single layer perceptron hy-
brid adder, the proposed multi-layer perceptron hybrid adder design
achieved substantial refinement, with reductions of (60%, 60%) and
(30.8%, 28.2%) in dynamic power dissipation and EDP, respec-
tively.

Keywords
ANN hybrid adder, ANNs, Dynamic Power dissipation, EDP, Per-
ceptron

1. INTRODUCTION
Field Programmable Gate Array (FPGA) based Neural Network
(NN)s could potentially furnish tunable trade-offs between com-
plex systems such as delay, area, and power.The design of low
power full adder is discussed in [1].There has been a trend in recent
techniques toward the expansion of programmable modules, which

processors use to give flexibility and execution. The expansion of
cyberspace automation led to the myriad and exponential growth
of binary data. [2] Shows how neural networks can be used to cre-
ate logic gates. User-friendly electronic providers have boosted de-
mand for multi-operand adders with the shortest latency and lowest
power consumption to be incorporated into today’s portable sys-
tems. For Nano scale NNs, the nanoparticle computing architecture
[3] was created. In particular, deep learning neural networks seem
widely acquired as they manifest exactness for several analytical
categorizations on tasks (e.g., ML, AI, speech, etc.). Exploring and
building logic gates and half-adder modules [4] explains the con-
cept of neural networks. In [5], neural networks are used to show
the re-configurable constant coefficient multipliers. Models of NNs
are gaining extensive recognition as future advanced architectures
for computing systems. To date, the exploration of neural network
models has primarily focused on conceptual research and computer
simulations. The re-configurable threshold logic block described in
[6] is used to create an arithmetic logic unit. The fast training [7]
algorithm is shown to provide a Boolean logic minimization-based
approach to the creation of deep neural networks. However, actual
assurance for the utilization of the models lies in limited hard-
ware in specific microelectronic systems. Simulations of macro
scale networks on consecutive computers are unfortunately slow,
and only with tailored hardware can we desire to realize neural net-
work designs with momentum sufficient for applications. The con-
cept of a neural network is thoroughly defined in [8]. The FPGA
is used to implement the machine learning models [9].The most
optimistic perspective for accomplishing an electronic neural net
is to invent specifically intended VLSI chips. With today’s unifi-
cation compactness, macro scale numerous elementary processors
can be integrated on a single chip. [10] Investigates time multiplex-
ing and approximation computing. The arithmetic complexity is re-
duced using the quick winogral [11] technique. The desire to design
quick-witted systems, accompanied by the benefit of fewer delays
in computation, has manifested through simulation the competence
of ANN to delineate, prototyping, and categorizes linear systems.
[12] Describes an end-to-end FPGA-based convolution neural net-
work accelerator with all layers mapped on a single chip. Deep
neural network techniques are performed using advanced FPGA
technologies [13] . Digital performance is more desired as it has
the dominance of giant perfection, superior reiteration, lower sus-
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Fig. 1. Design flow of ANN’s on FPGA

ceptibility, better verifiable, higher pliability, and affinity with other
types of processors. [14] Proposes a design process for a ring oscil-
lator based on a re-configurable exclusive OR gate. [15] Describes
the mapping of convolution nets onto re-programmable FPGAs.
FPGA is an acceptable hardware for NN execution as it takes care
of parallel processing of the neurons in each layer and provides pli-
ability in re-programmable. Neural networks are relatively worth-
while for simulating digital systems. [16] Discusses the operation,
training, and overview of ANNs. The process of behavioral conver-
sion of digital circuits into neural networks is discussed in [17]. A
digital system’s output is an assembly of logic modules that can be
arranged in any desired pattern using a layout. [18] Uses a comple-
mentary metal oxide semiconductor transistor and created ANNS
to present a simplified technique. In [19], [20], It proposes a step-
by-step method for employing ANNs to create logic gates and XOR
gates. There is a contingency plan to build ANNs on FPGA in a
cost-effective and competent manner using FPGA re-configurable.
The goals of this study are to 1) provide a brief overview of subsys-
tem ANN implementation in FPGA hardware. 2) Takeover charac-
teristics and concerns that serve as guiding principles in such re-
alisations. 3) Investigate the most effective ways to use FPGA re-
programmable to implement ANNs.[21], [22] As a first step, a basic
node accelerator for convolution neural networks is implemented
on a mid-range FPGA. [23] Describes the creation of fundamen-
tal logic gates and an XOR gate using perceptron’s and threshold
elements. The Figure 1 illustrates a systematic representation for
imposing ANNs onto FPGA. The Maestro, who interprets supplied
ANN specifications into Verilog codes, is the most important step
in this representation. Verilog code is converted to a net list via
HDL synthesis. The net list data is used in the configuration file to
implement the design on the FPGA board. This study, which is a
considerable extension of [1, 2], is organized as follows: The es-
sential preliminaries required for current research happenings are
given in Section II. Section III explores more of the use of neural
networks to create logic gates. The development of three artificial
neural network adders is discussed in Section IV. Section V con-
tains the simulation results of three ANN adders. The performance
metrics evaluation is discussed in Section VI, followed by the con-
clusion.

2. PRELIMINARIES
The basics of neuron structure, ANNs, and trade-offs are explained
in this section.

2.1 Basics of Artificial Neural Network
The basic structure of neuron is shown in Figure.2.The cell body,
also known as the soma, gives diagnostic information and aids in
the development of neurons. Dendrites are an add-on to the cell
body that is unique. They collect information from other cells and
pass it on to the cell body. The axon, also known as a nerve fiber,
is responsible for separating nerve impulses from the soma. A
synapse is a structure that allows nerve impulses to pass between
two nerve cells. Artificial neurons mimic the biological neuron’s
soma, dendrites, axon, and synapse, which allude to nodes, inputs,
outputs, and weights, respectively.The block diagram of ANN is

Fig. 2. Basic structure of neuron

Fig. 3. Block diagram of ANN’s

shown in Figure.3. An artificial neuron’s mathematical model com-
prises three main components. (1) Input signals are given weights.
2) To combine weighted input signals, a summing block is em-
ployed. 3) A ”squashing function” for limiting an output’s range.
In essence, whatever a neuron does is add up the components of
numerous inputs, assign a weighted number to each, and display
an output when the sum of the weighted inputs reaches a prede-
termined threshold. Excitatory (positive) or inhibitory (negative)
inputs are possible in NNs. A negative feedback loop emerged in
Renshaw’s cell, which connects two nerve cells. As a result, it acts
as a preventive against extreme agitation. The ANN mathematical
equation is as follows:

Z = f(y) (1)

Each artificial neuron contains inputs, weights, and bias values. The
equation for each artificial neuron is as follows:

y =

n∑
i=1

XiWi + b (2)

Where Xi denotes the input values, Wi denotes the input weights,
and b denotes the bias value. Artificial neuron models are simpli-
fied versions of biological neurons at their core. A perceptron is the
popular name for this artificial neuron. As shown in the diagram, a
typical perceptron will have numerous inputs, each of which is in-
dividually weighted.The mathematical model of ANN is shown in
Figure 4. There are various constraints to implementing the ANN
on hardware.
1) Synapse
• Network wiring: As the number of neurons increases, so does the
number of synapses.
• Synaptic weight: Weights must be defined precisely to ensure the
algorithm’s correct convergence.
2) Neuron
• Neuronal state: It is necessary to perform a weighted input sum-
mation.
• Activation function: Decisions based on a high threshold func-
tion.
From equ.3, if the sum of the inputs exceeds a certain threshold,
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Fig. 4. ANN mathematical model

Fig. 5. NN classifiers for ((i) OR gate (ii) AND gate (iii) NAND gate

the activation function will generally output ”1,” otherwise ”0.”

Z =

{
f(y), if y ≥ Φ

0, otherwise
(3)

2.2 Power dissipation, delay, and cell count
A digital circuit’s power dissipation is consists of two elements: a
static component and a dynamic component. The leakage current
flowing via the supply voltage causes static power consumption in
MOS transistors (Vdd). The load capacitance, operating frequency,
supply voltage, and switching activity factors leads to the dynamic
power dissipation of MOS transistors. The time it takes for a signal
to flow from input to output is known as the propagation delay of
a digital circuit. The propagation delay of a digital circuit can be
used to measure its speed. The number of cells necessary to create
any logic circuit is defined as the area of this study.

3. DESIGN OF BASIC GATES USING NN
All electronic digital circuits and embedded systems are made pos-
sible by digital logic gates, which are the fundamental building
blocks. In contrast to conventional based capabilities, the decades-
long obsession with threshold components and logic has resulted in
a wide range of functionally enhanced capabilities. The threshold
logic elements can be used as the basis for ANN squashing func-
tions. In terms of structure, ANNs are based on the feed-forward
network principle, which involves layer-by-layer processing from
the network’s input to output. The neural network can categorize
based on the conditions of AND, OR, and NAND gates using the
straight line equation illustrated in the Figure 5. A neural network
classifier for two input OR, AND, and NAND gates is shown in the
Figure 5. In Figure 5, the red circle represents a false condition,
while the blue cross represents a valid condition for fundamen-
tal logic gates. The NN-based output computations for all logic
gates are built using the perceptron approach for weights and the
NN classifier[2] for output logic functionality. When the threshold
function is utilized as the neuron output function and binary input

Fig. 6. Mathematical model of AND gate

Fig. 7. Mathematical model of OR gate

values of 0 and 1 are assumed, the basic logic gates AND, OR,
NAND, and NOT of two variables can be formed by choosing ap-
propriate weights and threshold values.

3.1 Neural Network AND logic unit
The AND gate’s functional table is used as training data for the neu-
ral network in this part. The neuron’s X and Y inputs are connected.
To design the AND function, the threshold on Z and the weights can
be set according to the following requirements. To match the needs
of its functional table, the NN AND logic unit[2] has a training data
weight of 2 and a threshold value of 3. The Mcculloch-Pitts neuron
model is the same as threshold logic. It calculates the weighted sum
of its inputs and compares them to the threshold value provided in
equation 4.The ANN model of equ.4 is shown in Figure 6.

Z =

{
1, if 2X + 2Y > 3

0, otherwise
(4)

3.2 Neural Network OR logic unit
This section explains how to make a two-input OR gate with a NN
classifier. The following is the condition for the NN OR logic unit
with NN classifier:

Z =

{
1, if 2X + 2Y > 1

0, otherwise
(5)

Equ.5 defines the design connection for the NN OR logic unit,
which is a fundamental gate. The NNOR logic unit has a training
data weight of 2 and a threshold value of -1 to match the conditions
of its functional table. The NN OR gate output equals one when
at least one of the inputs equals one; otherwise, the output equals
zero. The ANN model of a neural network OR logic unit is shown
in Figure 7. Equ.5 is used to check the function table of the two-
input OR gate in Table 1. The ANN model of a two-input OR gate
based on equ.5 is shown in Figure 7.

3.3 Neural Network NAND logic unit
NN functional table of two input OR gate

Z =

{
1, if 2X + 2Y < 3

0, otherwise
(6)
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Table 1. NN functional table of two input OR gate
Inputs Weights Sum= X*W1+Y*W2 Threshold function (Sum > 1) Output

X Y W1 W2
0 0 2 2 0 false 0
0 1 2 2 2 true 1
1 0 2 2 2 true 1
1 1 2 2 4 true 1

Fig. 8. Mathematical model of NAND gate

Fig. 9. Mathematical model of NOT gate

The two inputs of the NN NAND logic unit design have weights of
-2 and -2, respectively, to match the requirements of its truth table,
and a threshold value of 3. The ANN model for equ.6 is shown in
Figure 8.

3.4 Neural Network NOT logic unit
The single input NOT gate is defined using the perceptron tech-
nique. The functional equation for the NN NOT gate is as follows:

Z =

{
0, if 2X > 1

1, otherwise
(7)

If X equals zero, Z equals one; otherwise, it equals zero, and the
outcome is the same as a single input NOT gate. The ANN model
of the NN NOT gate is shown in Figure 9.

3.5 Neural Network MUX logic unit
A digital multiplexer is a combinational circuit that chooses binary
data from one of several input lines based on a single input line and
reroutes it to a single output. The output of 2×1 MUX is stated as
the following Boolean equation:

Y = (S̄)I0 + SI1 (8)

Where, I0 I1 are inputs. S is select line. The design connection for
the NN MUX logic unit, which is a fundamental data selector, is
defined by equ.8.

4. ANN HYBRID ADDER DESIGNS
One of the most commonly used component in computing pro-
cesses is full adder. Multiplication, subtraction, and division are
all handled by this module’s logic operations. The 1-bit full adder
circuit is a critical component in the design of application-specific
integrated circuits.

Fig. 10. Logic diagram of CHA

Fig. 11. RTL diagram of ANNCHA

4.1 Conventional Hybrid Adder (CHA) using ANN
The conventional binary adder is divided into three sections. Mod-
ule 1 is an exclusive OR between the two inputs a and b. Further-
more, the output of the first module is used as an input for modules
2 and 3. The three logical expressions that can be rewritten are as
follows:

P = āb+ ab̄ (9)

S = P̄ ci + P c̄i (10)

Co = Pci + ab (11)

The logic diagram of a conventional hybrid full adder formed from
logical equ.9, 10, and 11 is shown in Figure 10. The conven-
tional artificial neural network adder is made up of basic neural
network logic units like AND, OR, and NOT. The conventional hy-
brid adder is thus named as the ANN Conventional Hybrid Adder
(ANNCHA). The ANNCHA RTL diagram is shown in Figure 11.
The ANNCHA features thirteen cells, five input/output ports, and
sixteen nets, as shown in Figure 11.
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Fig. 12. Logic diagram of conventional and proposed XOR gate

Fig. 13. Logic diagram of PFA[1]

4.2 Proposed Full Adder without Neural Network
The XOR module of the proposed binary adder circuit is respon-
sible for the majority of the dynamic power consumption of the
unified adder circuit. In adders and compressors, XOR gates help
with huge area and dynamic power dissipation. As a consequence,
the logical equation of the XOR module is rearranged using the
logic decomposition method.
The logic diagrams of the conventional XOR gate and the proposed
XOR gate are shown in Figure 12. Without affecting functionality,
the proposed XOR gate uses only three logic gates instead of the
typical XOR gate’s five logic gates. The Boolean expression of
a proposed full adder is determined using the full adder circuit’s
functional table. A three-input digital logic circuit that creates a
sum and an output carry is known as a full adder.

P = (ā+ b̄)(a+ b) (12)

S = (P̄ + c̄i)(ci + P ) (13)

Co = Pci + ab (14)

The logic diagram of a Proposed Full Adder based on Boolean
equ.12,13 and 14 is shown in Figure 13.

4.3 Single Layer Perceptron Hybrid Adder (SLPHA)
design

The proposed single layer perceptron hybrid adder circuit was built
by using the basic logic gates NN classifiers on a conventional hy-
brid full adder circuit. Figure 14 illustrates the SLPHA logic dia-
gram, which is based on Boolean equ.12, 13, and 14. The single
layer perceptron hybrid adder is made up of basic neural network
logic units like AND, OR, and NAND. The Proposed Full Adder[1]
is thus defined as single layer perceptron hybrid adder. The RTL di-
agram of SLPHA is shown in Figure 15. The SLPHA features seven
cells, five input/output ports, and ten nets, as shown in Figure 15.

Fig. 14. Logic diagram of SLPHA

Fig. 15. RTL diagram of SLPHA

Fig. 16. Logic diagram of MLPHA

4.4 Multi Layer Perceptron Hybrid Adder (MLPHA)
design

The Multi Layer Perceptron Hybrid Adder (MLPHA) is designed
based upon the multi-layer perceptron [24] method. Figure 16 il-
lustrates the MLPHA logic diagram, which is developed based on
Boolean equ.12, 13, and 14. The RTL diagram of MLPHA is shown
in Figure 17.
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Fig. 17. RTL diagram of MLPHA

Fig. 18. Simulation result of ANN adder

Fig. 19. Implementation of ANN adder on FPGA board when input=010

5. SIMULATION AND IMPLEMENTATION
RESULTS

To build Verilog codes for three ANN Hybrid adders, we utilised
the Xilinx Vivado SDK 2017.2 for Zynq-7000, device xc7z020, and
package clg400 with speed grade-1. The Xilinx Vivado Zynq 7000
target device’s behavioural simulation is used to show the func-
tional verification of all three ANN adders. The behaviour of three
ANN adders was validated for all conceivable test vectors, and here
shown simulation results of the ANN adder for 010 and 011 com-
binations. The simulation results of ANN hybrid adder is shown in
Figure 18. All three ANN Hybrid adders are implemented on the
FPGA ZYBOZ7 board. On this board, the user switches G15, P15,
and W13 are mapped to inputs (cin, b, and a). The user LEDs M14
and M15 are allocated to the outputs (sum, cout). We use logic 1 as
an input when the switch is turned on, and logic 1 as an output when
the LED glows, and vice versa. The LED M14 is activated and M15
is turned off when the input combination 010 is used, resulting in
an output of 01 as shown in Figure 19. As seen in Figure 20, in-
put 011 is likewise transmitted to 10. The implementation results
of three ANN Hybrid adders are shown in Figure 21. Figure 21
demonstrates that the ANNCHA has 213mW of power dissipation
(dynamic and static) with a 6.99nsec delay, whereas from Figure 22
the SLPHA has 173mW with a 6.919nsec delay and MLPHA ab-
sorbs 156mW with a minor increase in delay shown in Figure 23.
On the basis of implementation findings, Table 2 shows compar-

Fig. 20. Implementation of ANN adder on FPGA board when input=011

Fig. 21. Synthesis results of ANNCHA

Fig. 22. Synthesis results of SLPHA

Fig. 23. Synthesis results of MLPHA
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Table 2. Implementation results comparison among ANN adders
Type of ANN Adder Pdynamic (mW) Pstatic (mW) Delay (nsec)

Signal Logic I/O
CHA 2 1 89 121 6.969

PFA[1] 1 <1 89 121 7.106
SLPHA 1 <1 51 121 6.919

MLPHA 1 <1 35 120 7.051

Table 3. Comparison among ANN adders based on performance metrics
Type of ANN Adder Pavg (mW) Pdynamic (mW) Delay (nsec) FOM PDP(nJ) EDP(10−18×nJ)

CHA 106.5 92 6.969 0.742 0.641 4.47
PFA[1] 105.5 90 7.106 0.749 0.639 4.54
SLPHA 86.5 52 6.919 0.598 0.359 2.48

MLPHA 78 36 7.051 0.549 0.235 1.78

ison among three adders. Table 2 indicates that with a little delay
change, the proposed MLPHA has minimum power dissipation.

6. EVALUATION OF PERFORMANCE METRICS
Performance indicators for ANN Hybrid adder designs, such as
PDP, EDP, and FOM, can also be assessed. It is simple to deter-
mine the ideal design for advanced architecture based on these per-
formance indicators. The dynamic power dissipation of digital cir-
cuits alone is no longer sufficient to determine the performance of
digital systems in today’s technology. As a result, the Power Delay
Product (PDP) is defined as the product of dynamic power dissipa-
tion and delay in a digital circuit.

PDP = Pd ∗ tpd (15)

A digital circuit’s Figure of Merit (FOM) is also a crucial parameter
for determining the optimum design. A digital logic circuit’s FOM
is determined by the average power dissipation and propagation
latency.

FOM = Pavg ∗ tpd (16)

However, in computation, a digital logic circuit with a low PDP
may be slow. The Energy Delay Product is an important measure
that should be used (EDP). The EDP is the sum of the PDP and the
time it takes to complete specific processes.

EDP = PDP ∗ tpd (17)

Based on equ.15, 16, and 17, Table 3 illustrates the estimated per-
formance metrics for three ANN Hybrid adders. As shown in Table
3, the Proposed MLPHA outperforms in terms of FOM, PDP, and
EDP, When contrasted to the PFA[1] and single layer perceptron
hybrid adder designs. Figure 24 presents a graphical representation
of the proposed ANN Hybrid adder in terms of percent improve-
ment in performance trade-offs over PFA[1] and SLPHA.

7. CONCLUSION
In this paper, SLP and MLP approaches are introduced to design
arithmetic circuits. The novel method proposes each neuron as a
unique instance of a Boolean equation, including variables that can
be employed to achieve solid realization. This is accomplished by a
set of reprogrammable Verilog algorithms that can be easily trans-
lated into FPGA realizations using appropriate EDA tools. The use
of NNs in this study is used to present a modern digital circuit de-
sign. The proposed architecture introduces a innovative approach to
minimizing EDP of digital NN computing circuits. Finally, FPGA

Fig. 24. Performance metrics comparison in terms of percentage w.r.t.
MLPHA

realization approach is used to evaluate dynamic power dissipa-
tion, resulting in a (60%, 28.2%) improvement in dynamic power
dissipation of the proposed method over PFA[1] and single layer
perceptron hybrid adder.The estimation of dynamic power dissi-
pation is important because it helps the user to identify the level
of dynamic power dissipation occurs that is expected in real-time
applications. Furthermore, the multi-operand computing architec-
tures can be employed with the NN-based single bit hybrid adder.
FPGA devices with artificial neural networks is more useful to
design high performance computing architectures and processors.
The proposed MLP hybrid adder is more suitable for present mod-
ern machine learning computations.
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