
International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.12, May 2022

13

Web-based Visualization Tools to Demonstrate the

Working of Sorting and Pathfinding Algorithms

Shankar M. Patil
Department of

Information Technology
Bharati Vidyapeeth

College of Engineering,
Kharghar

Navi Mumbai, India

Ankit Joshi
Department of

Information Technology
Bharati Vidyapeeth

College of Engineering,
Kharghar

Navi Mumbai, India

Nikhil Sawant
Departmentof Information

Technology
Bharati Vidyapeeth

College of Engineering,
Kharghar

Navi Mumbai, India

Atharva Jagdale
Department of

Information Technology
Bharati Vidyapeeth

College of Engineering,
Kharghar

Navi Mumbai, India

ABSTRACT

This paper focuses on introducing web-based visualization

tools that demonstrates the working of famous sorting and

pathfinding algorithms. These tools aim toward providing

abstract thinking to different algorithms by making use of

animations and 3D models which will stimulate the working

of each separate algorithm in a unique way. To demonstrate

the working of path-finding algorithms, 3D visualization tool

having user-defined maze will be provided where each

algorithm will be animated in a unique way to show how it

traverses to find the shortest path between source and

destination This maze will be constructed using WebGL

libraries like react-three-fiber and external models like

building representing path blocks will be loaded using GLTF

(Graphics Language Transmission Format)Loaderprovided by

ThreeJS. The second tool focuses on sorting algorithms which

make use of each unique iteration of CSAlgorithms like

bubble sort and animate its working by making use of a bar

chart which will represent the array to be sorted. After

selecting a sorting algorithm, these bars will be compared,

swapped and animated to show working of these algorithms.

Both the tools will be highly customizable and user input

driven to provide them with a powerful and interesting tool to

learn and experiment with different CSAlgorithms. Both the

tools will be rendered in React DOM and work on principle

that once an algorithm is executed its iteration and flow logs

are captured which are used for performing animation using

JavaScript and TweenJS libraries.

Keywords

Data Structure, Pathfinding Algorithm , Sorting Algorithms ,

Visualization, Computer Science Algorithms,Animation, 3D

Models.

1. INTRODUCTION
Data structures and Path Finding algorithms are of paramount

importance in computer algorithms. Complete understanding

of all these concepts is of the utmost importance for students

which helps in developing problem-solving skills. It is

important for IT Developers to solve problems with the help

of programming languages, and data structures these are keys

to solving problems. Algorithms are the state of the art of

computer science. There are many ways to solve the same

problem, and some methods are better than others. Using the

right algorithm in the right place can save a lot of time and

money.

For example, there are at least three or four ways to find the

shortest path to reach the destination, but knowing that the A-

star algorithm is more efficient than the Dijkstra’s algorithm,

will lead to a much more efficient path-finding process, also

it’s fairly easy to implement a sequential or linear search

algorithm for a list of data, but knowing that the binary search

algorithm can sometimes be twice as efficient as the

sequential search will lead to a better program.

Thus, by understanding the importance of data structures and

pathfinding algorithms they have become an important part of

computer science and technical recruitment. There are

different learning methods like books, presentations, and

online classes which are used by students, teachers, and

developers to learn these algorithms. However, understanding

the complete working of these algorithms requires conceptual

thinking. To solve these problems recently there are various

new 2D virtual tools emerging which explain the working of

these algorithms step by step. However, understanding the

working of a complex algorithm like graph traversals 2D

faces some limitations. Taking advantage of advancements in

WebGL, it can be used to upgrade these tools to 3D to give

users in-depth working knowledge of these algorithms.

2. RESEARCH METHODS
There are three stages in conducting this study. In the first

phase, a literature review was conducted to find a model

based on existing related activities and theories. The basic

structures and their relationships needed to be first perceived

and understood before it could be used as a conceptual model

for tool design.

The second phase was designing the technologies that were to

be used, working on them to build the tool and discussing its

scope. The identified constructs had to be supported by the

tool, so later how they affected learning outcomes were

possible to be examined. Therefore, the tool had to be

designed and developed carefully so that it could support the

presence of all the identified constructs.

In the third phase, the tool was tested on learners to measure

to what extent the tool, as the representation of cognitive

support and engagement, influences learners’ outcomes.

3. RELATED WORKS
Over the years, there have been numerous studies and papers

on the use of filtering techniques as visual aids. One is a

complete overview of how to do animation and do

mathematical analysis, while others focus on different

techniques aimed at further understanding of the same

animation. Several methods have been developed to deliver

algorithms in a tangible way that students can easily

understand. Visualization is a common approach to planning

and programming, a task that translates algorithms into

applications, taught using the following methods: traditional

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.12, May 2022

14

expressions and labs, robots, problem-based learning,

software visibility, and programming areas and support tools.

The learning-teaching process is still very tedious for

teachers, ranging from fine-tuning to multidisciplinary testing

among publications including support tools, 78.6% of CS

teaching-related techniques [3]. In 2011, Dr. Steven Halim

conceptualized a tool called visual algo which helps students

understand data structures and algorithms in an efficient

manner. This tool provides an interactive playground for the

users where they can give the input data structure, apply

constraints and visualize algorithm animation. While

animation of algorithms, the end user is also able to see the

pseudo code with steps which are executed at that particular

time which helps them to understand the algorithm in an

efficient way.

Research in Virtual reality technology has found that WebGL

libraries can be used to develop 3D scenes and develop web

guide systems [5]. Performance tests show that the much-

needed loading data for animation improves the quality of

user interaction information by reducing the amount of data

previously loaded. However, the number of animated tracks

and the size of the private animation data affect the setting of

this method [1]. There is a method based on 3DS MAX

technology to optimize the model memory. The modeling

methods are based on the basic modeling library, composite

modeling library, surface toads modeling library, polygon

modeling library, facets modeling library, NURBS modeling

library more than six types of model library and it identifies if

the model is duplicated. Although, the research on model

texture mapping technology still needs to be improved. It

should focus on the optimization of texture mapping [10].

Alternative to ThreeJS is provided by unity WebGL support

which allows developers to develop 3D scenes with a very

powerful game engine and simply make its build for the web.

Pathfinding algorithms can be used in unity for different

games and research applications [6].

There is research going on improving performance of 3D

scenes by simplification of the scene by removing objects that

are not currently visible or degrading the complexity of the

models from the distance of the observer and creating an

image from 2D and 3D objects. Consequently, the computer

graphics comes in with the employment of interface Open

Graphics Library (OpenGL) for Android and new Metal API

(Application Programming Interface) introduced with IOS8.

But the only issue here is level of detail (LOD) does not solve

a problem that is directly visible in the graphic chain but it is

perceptible in the complex scene [11].

The main advantage of rendered 3D maps is that some of the

maps like Mapbox use a few simplifications for speeding up

rendering. For example, when it is not possible to get the

height information of a building, but it can be estimated to be

4 stories tall, developers can tag those width buildings:

levelsis equal to four in OpenStreetMap Mapbox Streets

processing code will convert that to 12 meters in the vector

tiles since it approximates the height of one level as 3 meters

(about 10 feet) [2]. The optimization efficiency is not

significant for a 3D model that contains only one animation

track, and the animation data volume is small (e.g., less than

50 kb) if Java Applets are considered using Swings, and AWT

[4]. Direct Canvas mode has a great impact on performance

and memory. Indeed, it can be used to play WebGL games on

mobile and the TV smoothly. Also, the amount of 3D memory

decreased with Direct Canvas mode. That is because this

mode does not create intermediate buffers with the window

size anymore. But the only drawback is that there are already

optimized WebGL renderers present like ThreeJs (a

JavaScript library) which are specifically made for websites

[7]. WebGL programs consist of control code written in

JavaScript and shader code that is executed on a computer's

Graphics Processing Unit (GPU). As it is too complicated

programming with WebGL directly, the framework three.js

has been added to the system. Three.js allows the creation of

GPU accelerated 3D animations using the JavaScript language

as part of a website without relying on proprietary browser

plugins [8]. The logical structure and physical storage format

of the 3D spatial data, & can effectively divide and index the

3D scene. Results show that the proposed data structure can

save about 60%-80% disk space, and the improved index

structure is more sufficient [9].

4. DESIGN CONSIDERATIONS AND

IMPLEMENTATION
The main purpose of the tool is to provide users with easy to

use and interactive playgrounds to visualize different

algorithms and learn at their own pace. It's important to use a

well-defined tech stack to make these tools to achieve all the

functionalities easily and efficiently.

4.1 Frontend
According to Statista, react is the most used framework for

the year 2021 where it states almost 40.14% of reported

software developers were using react. React is a JavaScript

web framework which allows developers to create reusable

models and have higher performance websites.

4.2 Backend and external tools
For the backend, NodeJS is the ideal option for the website to

provide high performing API’s. NodeJS is JavaScript runtime

framework which has gained huge popularity and is supported

by many NPM libraries which provides great utility for

developers. Blender is an open source and free 3D computer

graphics software which can help to make 3D models for the

visualization tool. These models can later be easily integrated

using react-three-fiber library in react.

4.3 User Interaction with the tool
Fig 1 shows how users interact with sorting and pathfinding

visualization tools. When interacting with visualization tools,

First users have to provide inputs like array, algorithm, speed

of animation and in case with 3D pathfinding visualization

tool, constructing the maze in 3D scene. Once inputs and

configurations are set, user can trigger visualization which

will start visualization of selected algorithm

Fig. 1: A block diagram showing interaction of user with

visualization tool

4.4 Implementation of the Sorting

Algorithms in visualization tool

All the algorithms discussed are visualized in web

applications by using bars. Each bar having height

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.12, May 2022

15

corresponding to its value represents an element of the array.

Once the animation starts, bars are swapped according to

algorithm iteration thus visualizing the working of the

algorithm. The bars which are in comparison will blink and

change into different colors. If the numbers in comparison

satisfy the condition, then accordingly the position of those

bars will be swapped. The animation speed of the tools can

further be adjusted according to the user. Once the

visualization of the algorithm finishes each iteration of the

algorithm is also printed.

As shown in fig 2 depicts the general flow of how animation

is produced for different sorting algorithms. First the user

gives the randomly generated array to the sorting algorithm.

The aim of the sorting algorithm is to efficiently sort the array

and create the animation array which contains actions

performed by algorithms while sorting the array. This log is

an array which stores information like comparisons indexes

and swap indexes. Later these animated arrays having logs are

given input to the animation engine which iterates through

logs and presents required animation for that log.

Fig. 2. Internal working of sorting visualization tool

Here are steps or pseudo code to generate this action array for

different algorithms. This action array is referred to as the

animation array below. Also with animation, an iteration array

is also generated for showing iterations to the end user.

A. Bubble Sort Algorithm for generating

animation array:
These are lists of variables used in steps.

1. auxillaryArray = Input array to be sorted

2. animations = algorithm action array to be used for

animation

3. iterationArray = Array containing iterations

performed by algorithm

Step 1: Define N = auxillaryArray.length, dummy[] and

iter=N-1

Step 2: While (iters> 0)

 Set swapped = false

Step 3: For i = 0 to iters

 animations.push(["comparision1", i, i + 1])

 animations.push(["comparision2", i, i + 1]

Step 4: If auxillaryArray[i] >auxillaryArray[i + 1]

 Set swapped = true

Step 5: animations.push(["swap", i, auxillaryArray[i + 1]])

 animations.push(["swap", i + 1, auxillaryArray[i]])

 swap(auxillaryArray, i, i + 1)

Step 6: dummy=auxillaryArray.slice()

 iterationArray.push(dummy)

 if (swapped === false) break

 iters--

Step 7: return {animations , iteratonArray}

B. Merge Sort Algorithm for generating

animation array:
These are list of variables used in steps

1. auxillaryArray = Input array to be sorted

2. animations = algorithm action array to be used for

animation

3. startIndex= first element index of the array

4. endIndex = last element index of the array

Steps for merge sort generating animation array

Step 1: if startIndex === endIndex

 return middleIndex = Math.floor((startIndex +

 endIndex)/2)

Step 2: Recursive Call function mergeSort(auxillaryArray,

startIndex, middleIndex, animations);

Step 3: Recursive Call function mergeSort(auxillaryArray,

middleIndex + 1, endIndex, animations)

Step 4: Call function merge(auxillaryArray, startIndex,

middleIndex, endIndex, animations)

Steps for merge sort helper function

Step 1: Define sortArray = [], i = startIndex, j = middleIndex

+ 1

Step 2: While(i <= middleIndex&& j <= endIndex)

 animations.push(["comparision1", i, j])

 animations.push(["comparision2", i, j])

Step 3: if auxillaryArray[i] <= auxillaryArray[j]

 sortArray.push(auxillaryArray[i++])

 else

 sortArray.push(auxillaryArray[j++])

Step 4: while(i <= middleIndex)

 animations.push(["comparision1", i, i])

 animations.push(["comparision2", i, i])

 sortArray.push(auxillaryArray[i++])

Step 5: while(j <= endIndex)

 animations.push(["comparision1", j, j])

 animations.push(["comparision2", j, j])

 sortArray.push(auxillaryArray[j++])

Step 6: For i = startIndex to endIndex

 animations.push(["comparision1", i, i - startIndex])

 animations.push(["overwrite", i, sortArray[i - startIndex]])

 animations.push(["comparision2", i, i - startIndex])

 auxillaryArray[i] = sortArray[i - startIndex]

Step 7: End

Animation action array generated in the above algorithm is a

2D array containing swapping information in each iteration

the schema of the array contains the names of comparisons

and comparing indexes as shown in fig 3.

Fig. 3: Schema of algorithm action array

This array is processed by a custom animator function which

iterates through these arrays in a timeout interval to get

animation instruction, For example, based on comparison

name two indexes are given the same color as shown in fig 4

or name of comparison can also suggest that swapping is

required. In this way a unique animation cycle is generated for

each sorting algorithm giving the user the best experience for

learning.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.12, May 2022

16

Fig. 4: Animation to show how two elements in array are

compared by giving different color

4.5 Implementation of the 3D grid using

ThreeJS and react-three-fiber

Instead of using divs and spans, the react-three-fiber

(R3F) helps to supply three objects.js such as matches, lights,

cameras, and shades. It provides 3D items to the requirements

of users in the marketplace with the help of Three.js key code

under the lid and in the same way that react provides access to

the DOM archives using ref, the react-three-fiber allows

access to ThreeJS artifacts if control is needed. The easy

configuration of the scene camera allows an immersive 3D

experience for users.

In order to visualize path-finding algorithms, a 3D grid is

used to represent different square nodes. This grid is rendered

using GridHelper provided by react three fiber and later

geometry and material is applied to these grid Geometry is a

representation of mesh, line, or point geometry. It includes

vertex positions, face indices, normal, colors, UVs, and

custom attributes within buffers, reducing the cost of passing

all this data to the GPU. Grid geometry is determined by the

geometric category of the plane provided by ThreeJS. It takes

different parameters like width, length, sections of width,

half-length. Material defines the appearance of an object. It

includes color, combination, etc.

Fig. 5: Grid rendered using GridHelper provided by

react-three-fiber library

Fig. 6: Grid after applying geometry and material

The nodes of the grid can represent either start

position , destination position , path or walls. Start and end

position can be predefined or user input driven. By default,

except start and destination nodes are path nodes. Path blocks

are represented as buildings which are rendered using gltf

loader. This external 3D model of the building is spawned

once the user clicks on the node. For faster loading of similar

.glb models copy of its geometry is done after its first load

which is used to render the next building.

Grid can be constructed in three ways, manually clicking on

the grid node, randomly generating maze and recursive maze

generation. Random wall is generated using the Math,

Random function. Each node in the grid can be accounted as a

2D array. This 2D array is iterated and is assigned with a wall

or path. Here in figure 7 the building represents the path

block.

Fig. 7: Result taken after a random maze was generated

The third way to generate a maze is recursive strategy. The

depth-first search algorithm of maze generation is frequently

implemented using backtracking. This can be described with

the following recursive routine. Here is an algorithm for

recursive strategy.

1. Given a current cell as a parameter.

2. Mark the current cell as visited.

3. While the current cell has any unvisited neighbor

cells.

● Choose one of the unvisited neighbors.
● The wall between the current cell and the

chosen cell will be removed.
● Invoke the routine recursively for a chosen

cell which is invoked once for any initial cell

in the area.

Fig. 8: Maze generated using recursive strategy

Next step is to visualize the algorithm in a 3D maze. Grid

nodes are mapped with terrain array containing nodes

information like position, value and 3D models

configurations. This array will be kept in synchronization with

another 2D array which will be processed by algorithms to

process and generate animation instructions. The animation is

divided into two parts. First is animating the nodes traversal

performed by algorithm and second is for animating the

shortest path from start to end position. Let’s take an example

of how the Dijkstra algorithm will be animated in this maze.

Algorithm to generate animation array:
Step 1: Select the source node as the initial node and other

nodes to have infinite path

Step 2: Collect all the unvisited nodes.

Step 3: Iterate through these unvisited nodes

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.12, May 2022

17

Step 4: In this iteration the first step is to select the closest

node among all neighbors connected nodes and ensure it is not

a path block.

Step 5: Check distance of selected closest node if it is infinity,

return false to stop loop.

Step 6: If the distance is not infinity, Push closest node is in

animation array

Step 7: Update neighbors’ nodes distance. If it is target node

loop is stopped

Step 8: Iterate Step 4 to 6 until loop is break or all unvisited

nodes are visited

The animation array generated here will be used to do node

traversal animation using TweenJS library on the 3D grid.

Next part is to generate a backtracking array containing nodes

of the final shortest path.

Algorithm to generate animation array for

backtracking final path
Step 1: mark the current node as previous of finish node to

exclude it from animation

Step 2: Push the current node in the animation array at the

end.

Step 3: Point the current node to its previous node

Step 4: Repeat step 2 and 3 until previous of current node is

not start node

This backtracking array of nodes will be used for animating

the final path.

5. RESULTS AND DISCUSSIONS

5.1 Interaction with sorting visualizer

tool

The goal of the sorting visualizer tool is to make use of bars

and their comparisons to help understand sorting algorithms.

This is user flow which shows how sorting visualizer tools

can be used.

Step 1: User clicks on Random Array Generator Button to

generate a random array which will be used for visualization.

These generated a random array which is represented by a bar.

Step 2: Selecting the animation speed by the speed progress

bar which allows users to learn at their own preferred speed.

Fig. 9: Random Array bars generated after clicking the

generate new array button.

Step 3: Once speed and random array is selected next step is

select algorithm which user wants to visualize

Step 4: After clicking on the algorithm animation starts

playing where the user can see how the selected algorithm is

sorting the randomly generated array.

Fig. 10: Result taken during visualization of merge sort.

Fig. 11: Result taken after visualization of merge sort was

completed

This is significant to see how the movement of data can

change depending on what algorithms have already affected

it. It can also lend a different perspective on how the

algorithms perform on semi-sorted data compared to the given

ordering options.

Table 1. Table for Time-Taken by the Tool to Complete

Sorting Visualization

No. of

elements

in array

Algorithm visualization time (sec)

Bubble

sort

Selectio

n sort

Insertion

sort

Quick

sort

Merge

sort

Heap

sort

25 4.5 3.7 3 3.5 5 1.3

50 18.5 13.2 10 6.5 7.7 5.4

75 42.5 28.9 23.5 11 12.5 9.3

100 75 50 41 17 17.5 13.5

Fig. 12: Time-taken for visualizing sorting algorithms

Sorting Visualization tool can also be used to compare

different algorithms and get useful insights as shown in Table

1.It shows time taken by each algorithm for visualization with

respect to the number of array elements that were to be sorted.

Theoretical time complexities can be harder to compare

different algorithms. Thus, by comparing the visualization

time taken by algorithms, users can get a better understanding

of the performance of each algorithm. Further these data can

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.12, May 2022

18

visually be represented as shown in fig 12, Thus it is much

easier to conclude from Fig 12 that heap sort was the best

performer among other sorting algorithms considered during

this experiment.

5.2 Interaction with Pathfinding

visualization tool

The aim of the pathfinding visualization tool is to provide an

interactive and highly user customizable playground to

understand how different pathfinding algorithms work. Below

are the steps how a user can use a pathfinding algorithm

visualizer.

Step 1: Select the algorithm from the dropdown.

Step 2: Select the maze type. Once selected, users can see

how the selected maze is being constructed on a 3D grid.

Step 3: There are additional configuration options like

animation speed, resetting maze, setting up view which the

user can do before visualization.
Step 4: Once all the configurations are done and maze-in

constructed, the visualize button is enabled automatically by

the system and the user can press it to start visualization. The

dark blue colored node on the grid will represent the starting

node and red node as the destination node. Once animation

starts the user can view the grid in all three x, y and z planes.

This gives an immersive 3D experience for the users. This

animation makes sure to show how the algorithm is traversing

different nodes in a maze and finding the shortest destination.

In the figure 13 green colored nodes represent nodes visited

during traversal for finding the shortest path.

Fig. 13: Result taken during visualization of Dijkstra

algorithm

Step 5: Once the traversing animation of nodes reaches the

final node. Next phase of animation begins where

backtracking is used to animate the path between start and

final node. This final path will be colored differently as

shown in fig 14.

Fig. 14: Result taken after visualization of Dijkstra

algorithm was completed

These animations and 3D grid can help users to play with

different algorithms and compare each other in different

constraints. 3D scenes and animation will help them relate

these algorithms to real life applications.

Table 2. Table for time -taken by the tool to complete

pathfinding visualization

Maze Type

Algorithm visualization time (sec)

Dijkstra A-star BFS DFS

Random Maze 22.4 18.3 NA NA

Recursive

Maze
27 26 NA NA

Maze with no

weights
14.51 5.70 14.5 50.95

Accuracy of

shortest path
99% 99% 99% 5%

Path finding algorithm visualization tool can also be used to

analyze and compare performance of each algorithm as shown

in table 2. For these analysis, Dijkstra and A-Star algorithm

were visualized with slow animation speed in the same

random and recursive maze on a grid of dimensions [20 , 20]

where start node was at position [5 , 5] and destination node

was at position [18 , 19] to calculate time taken to find and

traverse to destination node from start position also at same

time keeping track of accuracy of shortest path. From the

results as shown in table 2 , it can be concluded that both

algorithms find the shortest path with similar accuracy;

however, A-star takes less time as compared to Dijkstra.

Table 2 also shows performance of unweighted algorithms

like Breadth first search (BFS) and Depth first search (DFS)

algorithm with their time taken and accuracy of shortest path

when there were no path blocks in the maze.

Below Table 3 shows performance analysis using different

parameters of the 3D pathfinding visualization tool page in

mobile and desktop by using Lighthouse. Lighthouse is an

open source and automated tool for monitoring the quality of

web pages. Following parameters were measured while

calculating final performance score by lighthouse

● First Contentful Paint is the time taken for first

image or text to paint

● Speed Index shows time taken to visibly populate

content of the page

● Largest Contentful paint is time taken for largest

image or text to paint

● Time to Interactive is time taken by page to become

fully interactive

● Total Blocking Time sum of time period between

first Contentful paint and time to interactive

● Cumulative Layout shift calculates movement of

visible elements in viewport

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.12, May 2022

19

Table 3. Table showing performance metrics given by

lighthouse for the 3D Pathfinding Visualization tool web

page

Performance

parameter

Time Weighting

considered for

calculating final

performance score
Desktop Mobile

First Contentful

Paint
0.9s 3.5s 10%

Speed Index 2.4s 5.9s 10%

Largest

Contentful Paint
1.4s 6.4s 25%

Time to

interactive
1.3s 5.8s 10%

Total Blocking

Time
60ms 330 ms 30%

Cumulative

Layout Shift
0 0 15%

Based on results shown in Table 3 , final performance score

given by lighthouse was 90 for the desktop and 55 for mobile

out of 100 .According to lighthouse, Performance score in

range 90-100 is considered best which is currently observed

for 3D pathfinding visualization tool page when it loads on

desktop devices. Since this tool uses WebGL libraries which

use GPU power for executing graphical commands, a

performance score of 55 for mobiles can still be considered

good because of their lower end GPU.

Fig. 15: Result taken through mobile for 3D pathfinding

visualization tool
6. CONCLUSION
Sorting and path-finding visualization tools are successful in

giving end users in depth knowledge and application of data

structure and pathfinding visualization algorithms through 3D

perspective and a platform where users can experiment and

make analysis for different algorithm performance. Modern

WebGL technology used for these tools like ThreeJS, React-

three-Fiber and TweenJS helped efficiently to do 3D

animations, render external 3D assets and good performance

on lower end devices and mobiles. These tools can also be

used to analyze and compare different algorithms. Based on

the 3D visualization tool logs, it also showed in path finding

algorithm, Dijkstra Algorithm, A-star, BFS, and DFS has

99%, 99%, 99%, and 05% respectively. Among these, A-star

is most accurate and took less time to execute.Thus, being

better than Dijkstra, depth first and breadth first search in

most scenarios, In these way users can play in playground and

do analysis by creating their own custom maze. Sorting

algorithms are very useful for different scenarios. Imagine

how much time it would take for a human to sort a list of

thousands of names to make a phonebook, or a list of

thousands of recipes, etc. Sorting visualization tools can help

developers understand these algorithms more efficiently.

Based on the sorting visualizer tool logs, it is found that heap

sort is most efficient. Thus, this tool can be used to understand

how algorithms work in different scenarios allowing them to

learn and choose the right algorithm. Performance of the tool

in mobile devices can be further improved like desktops by

optimizing rendering of 3D assets. These tools can be further

extended to animate more complex algorithms with unique

animations, integrate VR for a more immersive maze

experience which will help students and developers to analyze

algorithms efficiently and relate them to real life use cases.

7. REFERENCES
[1] L. Li, X. Qiao, Q. Lu, P. Ren and R. Lin, "Rendering

Optimization for Mobile Web 3D Based on Animation

Data Separation and On-Demand Loading," in IEEE

Access, vol. 8, pp. 88474-88486, 2020, doi:

10.1109/ACCESS.2020.2993613.

[2] G. Qiu and J. Chen, "Web-based 3D map visualization

using WebGL," 2018 13th IEEE Conference on

Industrial Electronics and Applications (ICIEA), 2018,

pp. 759-763, doi: 10.1109/ICIEA.2018.8397815.

[3] D. B. Silva, R. d. L. Aguiar, D. S. Dvconlo and C. N.

Silla, "Recent Studies About Teaching Algorithms (CS1)

and Data Structures (CS2) for Computer Science

Students," 2019 IEEE Frontiers in Education Conference

(FIE), 2019, pp. 1-8, doi:

10.1109/FIE43999.2019.9028702.

[4] Tao Chen and T. Sobh, "A tool for data structure

visualization and user-defined algorithm animation," 31st

Annual Frontiers in Education Conference. Impact on

Engineering and Science Education. Conference

Proceedings (Cat. No.01CH37193), 2001, pp. TID-2, doi:

10.1109/FIE.2001.963845.

[5] C. Peng, "The research and design Of 3D Web guide

system based On WebGL," The 26th Chinese Control

and Decision Conference (2014 CCDC), 2014, pp. 4052-

4054, doi: 10.1109/CCDC.2014.6852890.

[6] Z. He, M. Shi and C. Li, "Research and application of

path-finding algorithm based on unity 3D," 2016

IEEE/ACIS 15th International Conference on Computer

and Information Science (ICIS), 2016, pp. 1-4, doi:

10.1109/ICIS.2016.7550934.

[7] H. Kim, S. Nam, J. Park and D. Ko, "Direct canvas:

Optimized WebGL rendering model," 2018 IEEE

International Conference on Consumer Electronics

(ICCE), 2018, pp. 1-3, doi:

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.12, May 2022

20

10.1109/ICCE.2018.8326257.

[8] P. Li, X. Yu and J. Wang, "Progressive compression and

transmission of 3D model with WebGL," 2016

International Conference on Audio, Language and Image

Processing (ICALIP), 2016, pp. 170-173, doi:

10.1109/ICALIP.2016.7846665.

[9] J. Chen and W. Fang, "An Improved Spatial Data

Structure for Web-based Large-scale 3D Scene," 2019

IEEE 10th International Conference on Software

Engineering and Service Science (ICSESS), 2019, pp.

681-684, doi: 10.1109/ICSESS47205.2019.9040768.

[10] H. Yutong, F. Wenlong and F. Yinshuang, "Research on

model optimization based on 3DS max modeling," 2018

IEEE International Conference on Applied System

Invention (ICASI), 2018, pp. 726-729, doi:

10.1109/ICASI.2018.8394362.

[11] Marek T., Krejcar O. (2015) Optimization of 3D

Rendering in Mobile Devices. In: Younas M., Awan I.,

Mecella M. (eds) Mobile Web and Intelligent

Information Systems. MobiWIS 2015. Lecture Notes in

Computer Science, vol 9228. Springer, Cham.

https://doi.org/10.1007/978-3-319-23144-0_4.

IJCATM : www.ijcaonline.org

