
International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.13, May 2022

26

A Systematic Mapping Study on UML Model based Test

Case Generation and Optimization Techniques

James Maina Mburu
Department of Information Technology, Murang’a

University of Technology, Kenya

John Gichuki Ndia
Department of Information Technology, Murang’a

University of Technology, Kenya

ABSTRACT
Test case generation is a significant step in software testing as

it ensures that, software produced is error free and is of high

quality. On the other hand, optimization techniques ensure

that ideal test cases are generated. In this paper, the

researchers present an overview of state-of- the- art research

on test case generation and optimization techniques. The

study included papers from google scholar, IEEE Xplore

digital library and springer that were published between 2010-

2022. The results indicate that most of the studies focused on

single UML models, and search techniques such as breadth

first search and depth first search, while there exists very few

studies on combinational UML models, and test case

optimization techniques such as metaheuristic search

algorithms. Further, case study remains the most popular

approach for validation of test case generation and

optimization techniques, but there are few studies focusing on

experimental validation.

General Terms
Systematic mapping study, UML, Model based test case

generation and optimization.

Keywords

Testing, Test case generation, optimization techniques, UML

models.

1. INTRODUCTION
 Software Testing is the one of the most important phases in

software development and consumes nearly 40 to 60% of

effort, time, and cost. Due to the end users urge to complete

the project in short span with high quality and defects free, the

testing activity must be started as early as possible to fix the

bugs at early stage. Generating an effective test case plays a

major role in software testing. Test generation process deals

with creation of a set of testing conditions which can be used

for validating the adequacy of the application [1]. Test cases

are planned for every software system and as the system

grows in complexity, more test cases are needed and

consequently the time and effort required for appropriate

testing are increased. Thus, optimizing the process of test case

generation is critical.

There are different techniques used for test case generation

such as model based technique which generates the test cases

from the UML models, search-based test generation which

uses meta heuristic techniques that direct the search towards

the potential areas of input space, random approaches that

generates test cases based on assumptions, Goal based test

data generation approach that cover a particular section,

statement or function, and specification based techniques that

generate test data based on the formal requirement

specifications. However, there are a myriad of challenges that

have not been addressed such as test optimization using

metaheuristic algorithms, use of combinational UML in test

case generation and the need to evaluate techniques through

experiments using large software.

Model based testing is a technique which is used for designing

and modelling the artifacts of the software system. In this

study, a model is a representation of the function (behavior) of

software under test and a function can be in terms of input,

output, action, events and many more. Software testing rely

on the models as the test cases remain the same even after

certain changes are made in the code. Test cases are generated

from the model that defines the functionality of the software

[2].

The development of automatic test case generation process

assists the software testing engineer and saves more time as

compared to manual testing. In addition, the cost of testing

decreases with the reduction of testing time. It is important to

note that most of the software’s are delivered without

sufficient testing, due to short duration to deliver the software

product and this eventually leads to loss of revenue. By

automating the test case generation process, manual efforts

can be eradicated, which can result to test time savings and

cost reductions of software development and maintenance [3].

UML is a general-purpose modelling language used to

visualize, analyze and document the components of a system

in form of a model or design. The UML diagrams are

classified into two, the structural diagrams and behavioral

diagrams. Structural diagrams describe the structure of the

software and represent the static aspect (fixed part) of the

system, while the behavioral diagrams describe the dynamic

aspects (moving and changing part) of the software [2].

The goal of this study was to identify existing test case

generation and optimization techniques, UML models used,

methods or algorithms applied, methods of evaluation,

strengths, and weaknesses of these approaches and the

research gaps of the study. The study was performed using

systematic mapping study (SMS) protocol presented in

Section 2 and it covered hundreds of scientific publications

from google scholar, IEEE digital library and springer.

The rest of the paper is structured as follows. Section 2

describes the protocol for the systematic mapping study used

to find and evaluate papers in this study. The protocol is

described in detail for the purpose of replicability. Finally, the

section presents the research questions. In Section 3, the

results of the study are presented. Potential threats to the

validity of this study are discussed in Section 4, and finally in

Section 5, we present our conclusions.

2. THE SYSTEMATIC MAPPING

STUDY
This section describes the protocol used for the SMS. The

protocol is largely based on the one used in [4], but it has been

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.13, May 2022

27

modified according to the topic of this study.

2.1 Research Questions
The research questions (RQ) are as follows:

RQ1: Which UML models are used to generate test cases?

RQ2: Which techniques are used to generate and optimize test

cases?

RQ3: How are the techniques evaluated?

RQ4: What are the research gaps of studies?

2.2 Search Strategy for Primary Studies
This section presents our search strategy, which based on the

systematic literature review guidelines from [5] and [6].

2.2.1 Search terms
Table 1 lists the search terms used when searching for original

papers for this study. The search terms are derived from the

research questions

Table 1. Search terms with alternate spellings

Term Alternate spelling

Test case Test cases

Generation

optimization

UML Unified modelling language

Model Models

Diagrams Diagrams

Technique Techniques

Algorithm Algorithm

2.2.2 Search terms
The search terms listed in Table 1 were combined into two

search strings for use in the digital libraries. These are shown

in Table 2.

Table 2. Search strings

No Search String

1 Test case AND Generation AND Optimization

AND (Technique OR Techniques) AND (UML

OR Unified Modeling Language) AND (Model

OR Models).

2 Test case AND Generation AND Optimization

AND (Technique OR Techniques) AND (UML

OR Unified Modeling Language) AND (Diagram

OR Diagrams).

2.2.3 Databases
The search strings shown above were applied to the following

digital libraries

 IEEE Xplore

 Google Scholar

 Springer

The first search string was used for all two databases while

the second string was used to search abstracts in the IEEE

Xplore database only. This was done to reduce the number of

papers found.

Since the digital libraries have different possibilities for

defining search strings, the strings were customized to every

digital library. Duplicates were removed from the collected

results.

2.2.4 Study inclusion criteria
 The inclusion criteria for primary studies were as

follows;

 Written in English AND

 Published in a peer-reviewed journal, conference or

workshop covering the subjects of software

engineering

 Describing any one of the following;

o Models or diagrams in test case generation

o Techniques or methods used in test case

generation and optimization.

o Evaluation of existing test case generation and

optimization techniques.

o Research gaps or future work

2.2.5 Title and abstract level screening
The inclusion criteria were applied to publication title and

abstracts. The screening results were used as a starting point

for the full text screening.

2.2.6 Full text level screening
In this stage, the remaining papers were analyzed based on

their full text. To reduce biasness, two researchers were

involved in applying inclusion criteria on the full text. Here,

one of the researchers screened all the papers while the other

researcher screened the half of the papers due to the time

constrain. The results were compared and disagreements were

solved through discussion.

2.2.7 Study quality assessment checklist and

procedure
The selected papers were assessed based on their quality in

terms of contribution to test case generation and optimization.

Two researchers assessed the quality of the selected papers

with one research assessing all independently, while the other

researcher assessed the half of the paper. Then, thereafter

results were compared and disagreement resolved through

discussion between researchers.

Any paper not meeting minimum quality requirements as

described below, was excluded from the set of primary

studies.

Table 3 presents the checklist of the study quality assessment.

For each question in the checklist a three- level, numeric scale

was used [7]. The levels were True (2 points), partial (1 point)

and false (0 point). If the study scored 8 points or less, it was

discarded due to the lack of quality in relation to this study.

The research documented the obtained score of each

included/excluded study.

Table 3: Study quality assessment

NO Question

Theoretical Contribution

1 Is at least one of the questions addressed?

2 Was the study designed to address some of the

research questions?

3 Is a problem description for the research explicitly

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.13, May 2022

28

provided?

4 Is the problem description supported by references of

other works?

5 Are the contribution research clearly described?

6 Are there assumptions, if any, clearly stated?

7 Is there sufficient evidence to support the claims of the

research?

Experimental evaluation

8 Is the research clearly described?

9 Is prototype, simulation or empirical study presented?

10 Is the experimental set up clearly described?

11 Are the results from multiple different experiment

included?

12 Are the results from multiple runs of each experiment

included?

13 Are the experimental results compared with other

approaches?

14 Are negative results if any presented?

15 Is the statistical significance of the results assessed?

16 Are the limitations clearly stated?

17 Are links between data, interpretation and conclusions

clear?

2.2.8 Data Extraction Strategy

The researchers used the form shown in Table 4 to extract

data from the primary studies. Two researchers extracted the

information from the papers with each researcher extracting

data from one third of the papers. After the data extraction,

the results were double-checked by the reviewing researchers.

The extracted data was then used for analysis, applying RQs

from Section II-A to obtain answers.

2.2.9 Synthesis of the Extracted Data
The extracted data from the papers was analyzed to obtain a

high-level view of the different aspects related to test case

generation and optimization. The papers were categorized and

collective results were extracted. The results from this phase

are presented and discussed in Section 3.

3. RESULTS
In this section, researchers present the main findings of the

research. They used search terms such as “test case

generation” and” optimization*” that are used in several

research contexts. Consequently, some findings were not

related to test case generation from UML models. For

example, some papers were related to structural testing or

white box testing, which are not related to the topic of this

paper.

As seen from table 5, the initial paper search produces a

number of the study included papers that were published

between 2010-2022. The researcher discarded papers not

relating to test case generation and optimization from other

domain e.g., structural test case generation. This study strictly

covered model (behavioral) based test case generation

approaches using UML

Table 4: Data extraction form

Data Item Value Note

General

Data extractor name

Data extraction Date

Study identifier (1,2,3…)

Bibliographic reference (Title, author,

year, journal/conference/workshop

Test case generation and

optimization

(RI) UML Models applied to generate

test cases (activity, sequential, state

chart, use case diagrams etc.

(R2) methods or algorithms for test

case generation and optimization

(R3) Strengths of the identified

techniques

(R4) Weakness of the identified

techniques

(R5) Evaluation methods

(R6) Research gaps

Table 5: Number of papers in each phase of the paper

search & screening

Phase No. of Papers

Initial search results 348

After Title & Abstract screening 115

After full text screening 86

After quality assessment 47

After initial paper search, there were 348 papers found. After

title & abstract screening, only 115 papers were included in

the next phase. After full text screening, there were 86 papers

which included in the next phase (Quality assessment) and

finally 47 papers were selected for the study. [Most of the

paper (29) were published in journals where 18 were

published in conference procedures.

As shown in Figure 1, the subject of test case generation &

optimization is trending toward greater interest over time. The

year 2021 had the highest (8) papers selected for the study,

2020 had 3 papers selected, 2019, 2018 and 2016 had each 4

papers selected, the year 2017 had 5 papers selected for the

study, the year 2015 and 2013, each had 6 papers selected for

the study, 2014 had 3 papers selected for the study while,2012

and 2010 had each 2 papers selected for the study. Lastly, the

year 2011 had 1 paper selected for the study.

Fig 1: Reviewed papers sorted by the year of publication

2
1

2

6

3

6

4
5

4 4
3

8

0

2

4

6

8

10

No. Reviwed Papers

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.13, May 2022

29

3.1 UML models used in test case

generation
 The idea behind RQ1 was to identify UML diagrams used in

producing test cases. According to the findings activity

diagram is the most studied in the literature, followed by the

UML combinational diagrams such as activity and sequence

diagrams or state chart and sequence diagrams.

Further, to this most of the work focused on producing test

cases from individual or single UML diagrams. Other types

of UML diagrams were not considered by the primary studies,

hence there is need to address this issue.

Figure 2 indicates that 14 primary studies covered activity

diagram, 11 primary studies used combinational UML

diagrams, 7 primary studies covered state chart diagram, 8

primary studies covered sequence diagram while use case

diagram was covered by 2 primary studies. Finally, the

collaboration diagram was covered by 3 primary study.

Fig 2: Number of UML Models

3.2 Techniques or methods used to

generate test cases
The idea behind RQ2 was to identify the test case generation

and optimization techniques with their strengths and

limitations.

The results show that most of the studies focused on

generating and optimizing test cases using search technique

such as DFS & BFS algorithm. These algorithms have

average time complexity. The most studied metaheuristic

technique was genetic algorithms while other metaheuristic

algorithms such as cuckoo search, bee colony, particle swarm

optimization were least studied.

Table 6 show that 14 primary studies used DFS and BFS to

generate and optimize test cases, 10 primary studies used

genetic algorithm generate and optimize test cases, 12

primary studies applied test case generation algorithms. These

techniques were proposed by the developers and did not focus

on test case optimization. A hybrid of cuckoo search (CS) and

bee colony (BC), bacterial foraging algorithm (BFA)-particle

swarm optimization (PSO)- genetic algorithm (GA), firefly

algorithm (FA)-bee colony (BC), Intelligent optimization

algorithm, adaptive cuckoo search algorithm, hybrid BC

algorithm, Prism and Dijkstra algorithm had each covered by

1 primary study.

Table 6: Test case generation and optimization techniques

Techniques/Meth

od

Count References

CS & BC

Algorithm

(CSBCA)

1 [1]

Hybrid BFA-

PSO-GA

1 [2]

DFS & BFS, DFS 14 [3][4][5][6]

[7][8][9][10][11][12][13]

[14][15][16]

Hybrid FA-BC 1 [17]

Test Case

Generation

Algorithms

12 [18][19][20][21][22][15][23]

[24][25][26][27][28]

Genetic

Algorithm

10 [23][29][30][31][32][33][34]

[35] [36] [37]

Intelligent

optimization

technique

1 [38]

Adaptive cuckoo

search algorithm

1 [39]

Prism and

Dijkstra

algorithm

1 [40]

Hybrid BC

algorithm

1 [41]

3.2.1 Strength of test case and optimization

techniques
The results indicates that most of studies are able to generate

test cases automatically but are not able to produce optimal

test cases, only few primary studies focused on generating and

optimizing test cases hence able to minimizing invalid test

paths and redundant data.

Figure 3 indicates that 72% of the primary studies focused on

test automation while 30% of the studies concentrated on test

optimization.

Fig 3: Strength of techniques

3.2.2 Limitations of test case and optimization

techniques
The findings shows that majority of primary studies did not

focus on test case optimization, automation of test case

generation process, and combinational UML diagrams which

increases the test coverage. Moreover, few of the studies have

not been evaluated, and those that have been evaluated are

using small programs and simple structures hence test cases

are not effectively evaluated.

Table 7 shows that 33 primary studies had their techniques

experiencing slow test case execution time, 31 studies had

their test cases being generated from an individual UML

diagram, then 4 primary studies had their techniques not

automated. Finally, the techniques in 2 primary studies were

not evaluated.

14

8
9

2

3

11

UML Model Usage

Activity diagram

State Chart

Diagram

Sequence

Diagram

Use case

Diagram

Collaboration

Diagram

Combinational

Diagram

72%

30%

0%

50%

100%

Test case automation Test case

Optimization

Strength of Techniques

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.13, May 2022

30

Table 7: Techniques limitation

Techniques Limitations Count References

Slow test case execution time 33 [18][23][4][19][15][10][31][5][20][21][6][7][12][42][38]

[8][11][42][15][3][9] [40][23][36][24][13][43][14][16][27][26][25][28]

Generates test cases from an

individual UML diagram

31 [39][4][19][29][31][5][20][21][32][33][12][44][45][28]

[34][35][8][11][42][36][24][39][13][37][46][43][14][16][26][27][25]

Not automated 4 [18][23][29][31]

Not evaluated 2 [30][3]

3.3 Evaluation of the methods/ algorithm
The results shows that the test case generation methods were

majorly evaluated using case studies. However, few of the

primary studies evaluation were done by performing an

experiment. Most of the papers did not conduct an experiment

to compare the test case and optimization techniques with

other existing methods. The few that conducted an experiment

only evaluated the techniques with small programs and simple

structure.

Figure 4 indicates 32 primary studies focused on case studies

while 5 primary studies evaluated their results using an

experiment. Only 1 study that focused on simulation method.

Fig 4: Evaluation methods

3.4 Research gaps
Most of the primary studies about 70% suggested the need to

combine a single UML model with other behavioral UML

diagrams so that the technique can be able to handle different

types of errors. Secondly, 65% of primary studies suggested

the need to optimize test cases to reduce execution time and

redundant data, while 27% of primary studies suggested a

hybrid method to improve their performance. Finally, 13% of

primary studies suggested that techniques need to be

automated to improve their efficiency as indicated in figure 5.

Fig 5: Research Gaps

4. THREATS TO VALIDITY
A threat to validity of this study is that only research papers

from three databases i.e., IEEE Explorer, Springer and Google

scholar were included. Some relevant papers from other

databases may have been left out. However, the use of google

scholar minimized the threat since it was able to link to papers

in other databases such as ACM.

Another threat to validity is that the screening phases were

performed partially by different persons. While one researcher

followed the entire protocol from beginning to end, the

remaining researcher had varying influence on the screening

phases. These researchers may have had different views

regarding paper relevancy, causing relevant papers to be

excluded. In all phases where two researchers were involved,

except for the data extraction phase, one researcher completed

the entire phase independently, while the other two divided

the workload evenly between them. Since the workload was

divided, some papers may have been excluded because of

differing criteria for relevance.

In the data extraction phase, each of the researchers extracted

data from one third of the papers. Although each set of

extracted data was double-checked by other researcher, there

is a risk that some data may have been missed.

Finally, the researchers pointed out that after each phase in the

protocol, consensus discussions were held and that any

disagreements were resolved. Therefore, the researchers feel

that any threats posed to protocol execution were minimized.

Table 8: Primary studies included, with corresponding

references

ID Reference ID Reference

S1 [1] S25 [5]

S2 [2] S26 [20]

S3 [3] S27 [21]

S4 [22] S28 [6]

S5 [17] S29 [12]

S6 [40] S30 [7]

S7 [18] S31 [9]

S8 [23] S32 [32]

S9 [39] S33 [12]

S10 [4] S34 [34]

S11 [19] S35 [35]

S12 [29] S36 [11]

S13 [10] S37 [42]

S14 [30] S38 [15]

S15 [31] S39 [30]

S16 [44] S40 [45]

S17 [38] S41 [36]

S18 [24] S42 [39]

S19 [13] S43 [37]

S20 [46] S44 [43]

S21 [14] S45 [16]

S22 [25] S46 [27]

38

6
1

0

20

40

Case Studies Experiment Simulation

Evaluation methods

78%

71%

13%

27%

0% 50% 100%

Combinatio

nal UML …

Test case

optimizat…

tests

automation

Hybrid

method

Research gaps

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.13, May 2022

31

S23 [26] S47 [28]

S24 [41]

5. CONCLUSIONS
The researchers have presented a systematic mapping study

on test case generation and optimization. In their findings,

several papers used activity diagram, state chart diagram and

sequence diagrams in test case generation. Majority of studies

have concentrated on generating test cases from individual

UML model. Thus, the test cases produced will not be

effective in fault detection since different types of faults can

be detected using diverse kinds of UML models.

 Many papers have used DFS and BFS algorithm in test cast

generation and optimization. These algorithms have average

time complexity, meaning that more time is spent in test case

execution. Moreover, most of the studies are able to generate

test cases automatically. However, many studies have not

focused on test case generation and optimization using

metaheuristic techniques hence leading to slow time

execution. Use of metaheuristic techniques can be applied to

produce optimal test cases and saving test execution time.

Finally, several studies are evaluated using case studies.

However, there are few studies focusing on experimental

validation. In addition, test cases are generated from small

programs and simple structures hence the need to generate test

cases from large software. The said techniques are therefore,

challenged for their application in test case production and

optimization. Future studies should focus on generating test

cases from combinational UML models using metaheuristic

algorithms and evaluate their performance through

experiments

6. REFERENCES
[1] P. Lakshminarayana and T. V. Sureshkumar, “Automatic

Generation and Optimization of Test case using Hybrid

Cuckoo Search and Bee Colony Algorithm,” J. Intell.

Syst., vol. 30, no. 1, pp. 59–72, 2020, doi: 10.1515/jisys-

2019-0051.

[2] A. T. , Et. al., “Bio Inspired Approach for Generating

Test data from User Stories,” Turkish J. Comput. Math.

Educ., vol. 12, no. 2, pp. 412–419, 2021, doi:

10.17762/turcomat.v12i2.826.

[3] Y. Tian, B. Yin, and C. Li, “A Model-based Test Cases

Generation Method for Spacecraft Software,” pp. 373–

382, 2021, doi: 10.1109/dsa52907.2021.00057.

[4] R. Singh, “Automating the test case generation for

Object Oriented Systems using Activity Diagrams,” Int.

J. Eng. Comput. Sci., vol. 4, no. 9, pp. 14164–14171,

2015, doi: 10.18535/ijecs/v4i9.17.

[5] V. Panthi and D. P. Mohapatra, “ACO based embedded

system testing using UML Activity Diagram,” IEEE Reg.

10 Annu. Int. Conf. Proceedings/TENCON, pp. 237–242,

2017, doi: 10.1109/TENCON.2016.7847997.

[6] R. Gupta and V. Jaglan, “Test case generation for UML

behavioral diagram by traversal algorithm,” Int. J. Innov.

Technol. Explor. Eng., vol. 8, no. 10, pp. 3262–3266,

2019, doi: 10.35940/ijitee.J1190.0881019.

[7] S. P. Jain, K. S. Lalwani, N. K. Mahajan, and B. J.

Gadekar, “Automatic test case generation using uml

models 1,” no. 6, pp. 30–34, 2014.

[8] V. Panthi and D. P. Mohapatra, “Automatic test case

generation using sequence diagram,” Adv. Intell. Syst.

Comput., vol. 174 AISC, no. June 2014, pp. 277–284,

2013, doi: 10.1007/978-81-322-0740-5_33.

[9] M. Lafi, T. Alrawashed, and A. M. Hammad,

“Automated Test Cases Generation from Requirements

Specification,” 2021 Int. Conf. Inf. Technol. ICIT 2021 -

Proc., pp. 852–857, 2021, doi:

10.1109/ICIT52682.2021.9491761.

[10] Meiliana, I. Septian, R. S. Alianto, Daniel, and F. L.

Gaol, “Automated Test Case Generation from UML

Activity Diagram and Sequence Diagram using Depth

First Search Algorithm,” Procedia Comput. Sci., vol.

116, pp. 629–637, 2017, doi:

10.1016/j.procs.2017.10.029.

[11] M. H. J. Thanki and P. S. . Shinde, “Test Case

Generation and Minimization using UML Activity

Diagram in Model Driven Environment,” Int. J. Comput.

Orgnanization Trends, vol. 9, no. 1, pp. 41–44, 2014,

doi: 10.14445/22492593/ijcot-v9p309.

[12] W. Rhmann and V. Saxena, “Test Case Generation from

UML Sequence Diagram for Aadhaar Card Number

based ATM System,” Int. J. Appl. Inf. Syst., vol. 11, no.

4, pp. 37–43, 2016, doi: 10.5120/ijais2016451599.

[13] A. Tripathy and A. Mitra, “Test case generation using

activity diagram and sequence diagram,” Adv. Intell.

Syst. Comput., vol. 174 AISC, pp. 121–129, 2013, doi:

10.1007/978-81-322-0740-5_16.

[14] M. Dhineshkumar and P. G. Scholar, “An Approach to

Generate Test Cases from Sequence Diagram,” pp. 7–11,

2014, doi: 10.1109/ICICA.2014.77.

[15] G. Kaur, “Test Case Generation Using UML Diagram,”

Int. J. Emerg. Technol. Eng. Res., vol. 1, no. 2, pp. 23–

25, 2015, [Online]. Available:

www.ijeter.everscience.org.

[16] M. Khandai, “A Novel Approach of Test Case

Generation for Concurrent Systems Using UML

Sequence Diagram,” pp. 157–161.

[17] S. S. Panigrahi, P. K. Sahoo, B. P. Sahu, A. Panigrahi,

and A. K. Jena, “Model-driven automatic paths

generation and test case optimization using hybrid FA-

BC,” 2021 Int. Conf. Emerg. Smart Comput. Informatics,

ESCI 2021, pp. 263–268, 2021, doi:

10.1109/ESCI50559.2021.9396999.

[18] S. Jagtap, V. Gawade, R. Pawar, S. Shendge, and P.

Avhad, “Generate Test Cases From UML Use Case and

State Chart Diagrams,” Int. Res. J. Eng. Technol., vol. 3,

no. 10, pp. 873–881, 2016, [Online]. Available:

www.irjet.net.

[19] Z. Shi, X. Zeng, T. Zhang, L. Han, and Y. Qian, “UML

diagram-driven test scenarios generation based on the

temporal graph grammar,” KSII Trans. Internet Inf. Syst.,

vol. 15, no. 7, pp. 2476–2495, 2021, doi:

10.3837/tiis.2021.07.010.

[20] R. Shetty, “Generation of Test Cases for Object Oriented

Software using UML State Machine Diagram,” Int. J.

Innov. Eng. Technol., vol. 8, no. 2, pp. 142–148, 2017,

doi: 10.21172/ijiet.82.020.

[21] A. Monim, R. Nor, and H. Nor, “An Automated Test

Case Generating Tool Using UML Activity Diagram,”

Int. J. Eng. Technol., vol. 7, pp. 58–63, 2018, [Online].

Available: www.sciencepubco.com/index.php/IJET.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.13, May 2022

32

[22] S. K. Swain, D. P. Mohapatra, and R. Mall, “Test Case

Generation Based on Use case and Sequence Diagram,”

Int. J. Softw. Eng., no. JANUARY, pp. 21–52, 2010.

[23] N. Khurana and R. S. Chillar, “Test Case Generation and

Optimization using UML Models and Genetic

Algorithm,” Procedia Comput. Sci., vol. 57, pp. 996–

1004, 2015, doi: 10.1016/j.procs.2015.07.502.

[24] T. Y. K. and S. H. LEE, “Combustion and Emission

Characteristics of Wood Pyrolysis Oil-Butanol Blended

Fuels in a Di Diesel Engine,” Int. J. …, vol. 13, no. 2, pp.

293–300, 2012, doi: 10.1007/s12239.

[25] P. E. Patel, “Testcases Formation using UML Activity

Diagram,” pp. 884–889, 2013, doi:

10.1109/CSNT.2013.191.

[26] A. C. D. Iagrams, F. O. R. Uml, and B. A. T. Esting,

“Jurnal Teknologi A UTOMATIC G ENERATION OF T

EST C ASES FROM,” vol. 13, pp. 37–48, 2015.

[27] Y. Yin, Y. Xu, W. Miao, and Y. Chen, “An Automated

Test Case Generation Approach based on Activity

Diagrams of SysML,” vol. 13, no. 6, pp. 922–936, 2017,

doi: 10.23940/ijpe.17.06.p13.922936.

[28] A. Kaur and V. Vig, “Automatic test case generation

through collaboration diagram : a case study,” Int. J. Syst.

Assur. Eng. Manag., 2017, doi: 10.1007/s13198-017-

0675-8.

[29] P. Kaur and R. Kaur, “Approaches for Generating Test

Cases Automatically to Test the Software,” Int. J. Eng.

Adv. Technol., no. 3, pp. 2249–8958, 2013.

[30] M. Lusiana, C. Dewi, and A. Chandra, “Optimization of

test case generation from uml Activity diagram and

sequence diagram By using genetic algorithm,” ICIC

Express Lett., vol. 13, no. 7, pp. 585–591, 2019, doi:

10.24507/icicel.13.07.585.

[31] V. M. Sumalatha, “An Model Based Test Case

Generation Technique Using Genetic Algorithms,” Int. J.

Comput. Sci. Appl., pp. 46–57, 2009, [Online]. Available:

http://www.journalofcomputerscience.com/2012Issue/No

vember12/V1No9Nov12P008.pdf.

[32] W. Rhmann, T. Zaidi, and V. Saxena, “Use of Genetic

Approach for Test Case Prioritization from UML

Activity Diagram,” Int. J. Comput. Appl., vol. 115, no. 4,

pp. 8–12, 2015, doi: 10.5120/20137-2232.

[33] T. A. Alrawashed, A. Almomani, A. Althunibat, and A.

Tamimi, “An automated approach to generate test cases

from use case description model,” C. - Comput. Model.

Eng. Sci., vol. 119, no. 3, pp. 409–425, 2019, doi:

10.32604/cmes.2019.04681.

[34] A. Jaffari, C. J. Yoo, and J. Lee, “Automatic test data

generation using the activity diagram and search-based

technique,” Appl. Sci., vol. 10, no. 10, pp. 9–13, 2020,

doi: 10.3390/APP10103397.

[35] S. S. Basa, S. K. Swain, D. P. Mohapatra, C. Science, C.

Science, and C. Science, “UML ACTIVITY DIAGRAM-

BASED TEST CASE,” vol. 5, no. 8, pp. 834–844, 2018.

[36] M. Shirole and R. Kumar, “A hybrid genetic algorithm

based test case generation using sequence diagrams,”

Commun. Comput. Inf. Sci., vol. 94 CCIS, no. PART 1,

pp. 53–63, 2010, doi: 10.1007/978-3-642-14834-7_6.

[37] A. K. Jena and S. K. Swain, “Test Case Creation from

UML Sequence Diagram : A Soft Computing Approach,”

2012, doi: 10.1007/978-81-322-2012-1.

[38] P. Mahali, “Model based test case prioritization using

UML behavioural diagrams and association rule mining,”

Int. J. Syst. Assur. Eng. Manag., 2018, doi:

10.1007/s13198-018-0736-7.

[39] R. K. Sahoo, M. Derbali, H. Jerbi, D. van Thang, P. P.

Kumar, and S. Sahoo, “Test Case Generation from UML-

Diagrams Using Genetic Algorithm,” Comput. Mater.

Contin., vol. 67, no. 2, pp. 2321–2336, 2021, doi:

10.32604/cmc.2021.013014.

[40] S. Shah, R. Shahzad, S. Bukhari, and M. Humayun,

“Automated Test Case Generation Using UML Class &

Sequence Diagram,” Br. J. Appl. Sci. Technol., vol. 15,

no. 3, pp. 1–12, 2016, doi: 10.9734/bjast/2016/24860.

[41] I. J. I. Systems, S. K. Nanda, D. P. Mohapatra, and M. R.

Patra, “Model Driven Test Case Optimization of UML

Combinational Diagrams Using Hybrid Bee Colony

Algorithm,” no. June, pp. 43–54, 2017, doi:

10.5815/ijisa.2017.06.05.

[42] M. Panda, S. Dash, A. Nayyar, M. Bilal, and R. M.

Mehmood, “Test suit generation for object oriented

programs: A hybrid firefly and differential evolution

approach,” IEEE Access, vol. 8, pp. 179167–179188,

2020, doi: 10.1109/ACCESS.2020.3026911.

[43] M. Rocha, A. Simão, and T. Sousa, Model-based test

case generation from UML sequence diagrams using

extended finite state machines, vol. 29, no. 3. Springer

US, 2021.

[44] S. U. Ahmed, S. A. Sahare, and A. Ahmed, “Automatic

test case generation using collaboration UML diagrams,”

World J. Sci. Technol., vol. 2, no. x, 2012.

[45] N. Panda, A. A. Acharya, and D. P. Mohapatra, “Test

scenario prioritization for object-oriented systems using

UML diagram,” Int. J. Syst. Assur. Eng. Manag., 2019,

doi: 10.1007/s13198-019-00759-z.

[46] J. K. Mandal, S. C. Satapathy, M. K. Sanyal, P. P.

Sarkar, and A. Mukhopadhyay, “Information systems

design and intelligent applications: Proceedings of

second international conference India 2015, volume 1,”

Adv. Intell. Syst. Comput., vol. 339, 2015, doi:

10.1007/978-81-322-2250-7.

7. APPENDIX
Appendix 1: Search Results from IEEE Xplore

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No.13, May 2022

33

Appendix 2: Search Results from Google Scholar

IJCATM : www.ijcaonline.org

