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ABSTRACT 
Metric dimension of graphs has several applications to 

networking such as network navigation, network discovery 

and verification, wireless sensor network localization, and 

locating intruders in a network. This paper investigates the 

metric dimension in terms of contraction and bijection when a 

robot is navigating a network modeled by the(2,1)C4-snake 

graph, 2∆2–snake graph and 3C4–snake graph. 
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1. INTRODUCTION 
For a robot that is moving it can send a signal to determine its 

distance to a set of fixed landmarks.The problem of finding 

out how many landmarks and where they should be placed so 

that the robot can always determine its location are crucial 

elements to know where it is right now. 

 A graph can be used to model the network navigation. A 

work place can be represented as a vertex in a graph, with 

edges indicating relationships between places. Then, robot 

navigation problem is reduced to find out the smallest locating 

subset of vertices β, |β| = ksuch that every vertex of the graph 

is uniquely determined by its coordinate of distances to this 

locating subset β, which is called metric basis of the graph and 

k is said to be  metric dimension 

The metric basis of the graph is the set of nodes where the 

landmarks are positioned and the number of landmarks is the 

metric dimension of the graph. 

Considersimple connected graphG = (V, E). The length of a 

shortest u-v path inG is the distance between two vertices u, 

v∈V. Allow β = (β1, β2,...,βk) be an ordered subset of V.  We 

can associate with v an ordered k-tuple that represents the 

distance between v and each of the vertices in β, indicated by 

d(v, β ) = (d(v, β1),...,d(v,βk)). If we have d(u,β ) ≠ d(v,β ) for 

any two unique vertices u, v∈V, then the set β is termed a 

resolving set of G. The metric dimension of G corresponds to 

its cardinality and is represented by dim(G)or β(G). 

A basis of G is a resolving set of G with minimal cardinality. 

P. J. Slater proposed the concept of metric dimension in [1], 

while Harary and Melter investigated it separately in [2]. The 

application of robot navigation in networks was explored in 

[3]. In [4] applications to pattern recognition and image 

processing problems involving hierarchical structures were 

made.  

Gereyet al. [5] demonstrated that  computing  the metric 

dimension of an arbitrary graph is an NP-complete problem. 

The metric dimension problem for grid graph was investigated 

by Melter and Tomescu [6]. Caceres et al. [7] investigated the 

metric dimension of graphs formed by the cartesian product of 

two or more graphs. Chartrand et al. [8]  introduced the graph 

with metric dimension 1, n -1 and n -2 , as well as the tight 

bound on the metric dimension of unicyclic graphs[9]. 

Shanmukhaet al. [10,11] calculated the parameters for wheels, 

graphs made by connecting wheels with paths, complete 

graphs, and so on. Susilowati et al. [12] determined the metric 

dimension of subdivision graph (𝐺) for some 1 ≤ 𝑘 ≤ |(𝐺)|  and 

some special graph 𝐺. Imran et al. [13] calculated the metric 

dimension of graphs derived from the rooted product graphs. 

Bailey et al. [14] discovered relationship between the base 

size of automorphism group of a graph and its metric 

dimension; which prompted researchers to investigate metric 

dimensions of distance regular graphs.Manjusha et al. [15] 

presented an algorithm to avoid the overlapping between the 

robots in a network. Beerliovaet al. [16] presented numerous 

upper and lower bounds for the competitive ratio (for the 

online network discovery problem) and the approximation 

ratio (for the off-line network verification problem) in both 

models. 

This paper organized as follows: In Sect. 2 we introduce the 

basic concepts. Sect.3. Results and discussions are explained. 

Finally, Sect 4 presents the conclusion of this paper. 

2. PRELIMINARIES 
This section explains the basic concepts and results needed in 

the next sections. 

2.1 Definition  
The n-tuple (mi1,mi2,……min ), i =1,2,….,m represents the  
coordinates of a vertex vi .The coordinate for v1 is 

(m11,m12,….,m1n ) , where m11 = d (v1,v1) , m12 = d (v1,v2). 

2.2 Definition 
Cardinal number of a basis element is indicated byCa(vj) , j = 

1,2,..., n, vj∈W and is defines as the number of vertices of G 

identified by vj with respect to d (vi ,vj ) = l , i=1,2,….., m. 

2.3 Definition  
An edge contraction is a graph operation that removes an edge 

from the graph while combining the two vertices it previously 

joined. 

2.4 Example 
Consider the graph in Figure 1, which has two metric 

dimensions with regard to the basis W={v1,v3}. 
 

 

 

Fig 1:Ca(v1) = 2 and Ca(v3) = 2 with respect to d (vi ,vj) =1 

v1 v2 v3 

v4 v5 v6 
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2.5 Robotic Assignment   
Let β= v1,v2,.......,vj,...,vn, j=1,2,....,n be the basis  and V(G) = 

v1,v2,...,vi,...,vm,i = 1,2,....,mbe the vertex set of G.The 

coordinates for a vertex vi∈V(G) are 

(mi1,mi2,...,min),i=1,2,.....,m. If Min (mi1,mi2,...,min)= mijfor a 

given j, the basic element can be assigned (Robot) vj.Robot 

has ability to begin a wide range of tasks, move around in a 

cluttered environment, recognize real-world thingsand 

interpret regular speech. 

2.6 Example 
In Figure 2 the coordinate of vertex is(1, 3) with respect to the 

basisβ={ v1, v3}. Here, Min (1,3) = 1, therefore basis element 

v2is assigned to v3 . 

 
Fig 2: Comb graph P3⊙ 1K1 

In Figure 2 the coordinate of v2is (1,1). Therefore 

d(v1,v2)=d(v2,v3)=1 . 

3. MAIN RESULTS   

3.1 Theorem 
If the graph is (2,1)C4-snake with n verticesv1,v2,….,v6, then 

the contracted graph (2,1)C4-snake.ewith no loops and parallel 

edgeshas metric basis β((2,1)C4-snake. e) = 4. 

 

Fig 3: represents(2,1)C4-snake and contracted graph of  

((2,1)C4-snake. e) 

Proof: We have β(2,1)C4-snake = 5. Let e = v4v6 be an edge in 

β ((2,1)C4-snake) where v4 and v6are neighboring to each 

other by n-2 vertices. Consider the contracted graph  

((2,1)C4-snake. e). Every vertex in ((2,1)C4-snake. e) is linked 

to the other n-2 vertices. Here the edge e∉E((2,1)C4-snake.e) 

and the vertices v3,v4 and v6are substituted by v3and v4 

.Clearly, the remaining n -2 vertices must be next to each 

other v3and v4since vertices v1, v2 and v5 are all adjacent to 

those vertices. As a result, the simple graph ((2,1)C4-snake.e) 

should contain exactly n-1vertices. 

3.2 Theorem 
If the graph is(2∆2 –snake)with 7 verticesv1,v2,….,v7 thenthe 

contracted graph 2∆2 –snake. e. with  no loops and parallel 

edges has metric basis β((2∆2 –snake. e)) =2is denoted as  

 
Fig4:represents 2∆2 –snake and 2∆2 –snake.e 

Proof:Let e = v5 v7beanedge  in   2∆2 –snakewhere v5 and v7 

are adjacent to every other n − 2 vertices. Consider the 

contracted graph (2∆2 –snake. e). Every vertex in (2∆2 –snake. 

e) are adjacent to the other n − 2 vertices. Here the edge 

e∉E(2∆2 –snake. e) and the vertices v4,v5and v7 are replaced 

by v4,v5. Then the simple graph 2∆2–snake.e. contains exactly 

n −1 vertices.As a result, the proof.  

3.3 Theorem 
If the graphis (3C4 –snake)with 10 verticesv1,v2,….,v10, 

thenthe contracted graph3C4–snake.ewith no loops and 

parallel edgeshas metric basis β((3C4–snake. e)) =3. 

Proof:We haveβ(3C4–snake) =4.Let e = v9v10beanedge  in3C4 

–snakewhere v9 and v10 are adjacent to every other 

n − 2 vertices. Consider the contracted graph (3C4 –snake. e). 

Every vertex in (3C4 –snake. e) are adjacent to the other n − 2 

vertices. Here the edge e∉E(3C4 –snake. e) and the vertices 

v8,v9and v10 are replaced by v8,v9. Then the simple graph 3C4 –

snake.e contains exactly n −1 vertices.As a result, the proof. 

Figure 5 represents 3C4 –snakeand its contraction (simple 

graph) with the edge e. 

 

Fig5:3C4 –snake and 3C4 –snake.e 

3.4 Adjacency matrix of S 
The relationships between graph vertices and basis elements 

are interesting to study.We know that each element in the 

adjacency matrix [S]nxnindicates the length one path between 

any two vertices in the graph, entry in [S]2 gives the length 

two path between any two matrices and so on.The 

differentpaths that flow from basis elements to non-basis 

vertices in the graph are the focus of our attention. Each item 

in the sub matrix [S]nxnof order m× n, m ≤ n represents a path 

between robots and network nodes.The diagonals of the 

matrices [S]2and MMT are simply equivalent, where M is the  

incidence matrix of S. 

3.5 Example 
Suppose the following graph represents the robotic spanning 

tree S of some graph G and its adjacency matrix and incidence 

matrix are given in Figure 6. 

 
Fig6 Graph G 

The diagonals of [S]2and MMTare proven to be the same.In 

other words, we can simply find a two-length route from 
a robot to itself. 
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Since S is a spanning tree,τ (S) = 1 is the number of various 

spanning trees of S. with respect to a contraction,the following 

theorem proves that there is a one to one correspondence 

between E(S) and τ (S.e ). We actually reduce the cardinal 

number of each basis element by using contraction. As a 

result, contraction is critical in the routing of complicated 

networks. 

3.6 Theorem [15] 
There is bijection between the edge set of S and S.e if S is the          

robotic spanning tree of a graph G and S.e is the contraction  

with regard to nonloope. 

3.7 Example 
Consider the Robotic spanning tree in the Figure 7. 

 
Fig7.Correspondence stated in G. 

4. CONCLUSION 
We determined the metric dimension of (2,1)C4-snake graph, 

2∆2–snake graph and 3C4–snake graph with regard to 

contraction and bijection between them. Also, we applied in 

robotic assignment spanning subgraph in a complex network. 
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