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ABSTRACT
In this paper, the concept of sum geometric arithmetic means
index of a graph G, denoted by SGAM(G) is intro-
duced and sum geometric arithmetic means index SGAM(G)
of few families of graphs is computed. Further, we estab-
lish the bounds for sum geometric arithmetic means index.
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1. INTRODUCTION
Graph theory began in 1736 when Leonhard Euler (1707 -

1783) solved the well-known Konigsberg bridge problem. This
problem asked for a circular walk through the town of Konigsberg
(now Kaliningrad) in such a way as to cross over each of the seven
bridges spanning the river Pregel once, and only once [13], for more
details, see [11].
Graph theory is one of the branches of modern mathematics
having experienced a most impressive development in recent years.
In the beginning, graph theory was only a collection of recreational
or challenging problems like Euler tours or the four coloring of
a map, with no clear connection among them, or among techniques
used to attach them [21].

Algebraic graph theory is the branch of mathematics that
studies graphs by using algebraic properties of associated matrices.
More in particular, spectral graph theory studies the relation
between graph properties and the spectrum of the adjacency matrix
or Laplace matrix [4].
The origins of topological graph theory can be traced back to the
19th century, largely with the four colour problem and its
extension to higher-order surfaces – the Heawood map problem.
With the explosive growth of topology in the early 20th century,
mathematicians like Veblen, Rado and Papakyriakopoulos provided
foundational results for understanding surfaces combinatorially
and algebraically. Kuratowski, MacLane and Whitney in the 1930s
approached the four colour problem as a question about the

structure of graphs that can be drawn without edge-crossings in the
plane [3].

The concept of geometric-arithmetic index was introduced in the
chemical graph theory recently [19]. The study of topological
indices is a subject of increasing interest, both in pure and applied
mathematics [19]. Topological indices are interesting since they
capture some of the properties of a molecule (or a graph) in
a single number. Hundreds of topological indices have been
introduced and studied, starting with the seminal work by Wiener in
which he used the sum of all shortest-path distances of a molecular
graph for modeling physical properties of alkanes [19].

In this paper, a simple graph G = (V ;E), that is nonempty,
finite, having no loops, no multiple and directed edges are consid-
ered. Let n and m be the number of its vertices and edges, respec-
tively. The elements of V (G) are called vertices (points, nodes,
junctions, or 0-simplexes) and elements of E(G) are called edges
(lines, arcs , branches or 1-simplexes). The set V (G) is known as
the vertex set of G and E(G) as the edge set of G.
For a vertex v ∈ V (G), we denote a set of neighbours of v by
N(v). Degree is denoted by deg(v) and defined as deg(v) =
|N(v)|, is the number of the vertices adjacent to v.
A molecular graph is a simple graph whose vertices correspond
to the atoms and whose edges correspond to the bonds. It can be
described in different ways, such as by a drawing, a polynomial,
a sequence of numbers, a matrix or by a derived number called a
topological index. The topological index is a numeric quantity
associated with a graph, which characterizes the topology of the
graph and is invariant under a graph automorphism. Some major
types of topological indices of graphs are degree-based topological
indices, distance-based topological indices and counting-related
topological indices. The degree-based topological indices, the
atom-bond connectivity ABC and geometric – arithmetic GA

indices, are of great importance, with a significant role in chemical
graph theory [1]. In chemical graph theory, we have many different
topological index of arbitrary molecular graph G.
A topological index of graphs is a member related to a graph which
is invariant under graph automorphisms obviously, every topologi-
cal index defines a counting polynomial and vice versa [14].

The first geometric- arithmetic index of a graph G was defined as

GA1 =
∑(√

deg(vi)deg(vj)
deg(vi)+deg(vj)

2

)
,
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with summation going over all pairs of adjacent vertices [23]. In
2011, K. Ch. Dasa, I. Gutman, and B. Furtula obtained lower and
upper bounds on GA1 and characterize graphs for which these
bounds are best possible [5].
In 2015, Sehgehalli et al. [20] proposed the arithmetic-geometric
index of a graph G, Vukicevic and Furtula defined a new
topological index the arithmetic-geometric index of a graph G [23],
denoted by GA(G) and defined by

GA = GA(G) =
∑

uv∈E(G)

(
2
√

deg(u)deg(v)

deg(u) + deg(v)

)
,

where uv is an edge of the graph G connecting the vertices u and
v, also deg(u) stands for the degree of the vertex u, and where the
summation goes over all edges of G.
Recently, Graovac defined the fifth version of geometric- arithmetic
index of a graph G as

GA5(G) =
∑
uv∈G

2
√
SuSv

Su + Sv

,

where Su the sum of degrees of all neighbors of vertex u in the
graph G. In 2016 Mehdi Alaeiyan, Mohammad Reza Farahani and
Muhammad Kamran Jamil computed the fifth geometric arithmetic
index of Polycyclic Aromatic Hydrocarbons [2].
Details on the properties of geometric–arithmetic indices of graphs
can be found in [6, 7]. For history and further results on this family
of topological indices, please refer to [8, 9, 10, 15, 23, 24].

2. MAIN RESULTS
DEFINITION 1. Sum geometric arithmetic means index of any

graph G, denoted by SGAM(G) and defined by

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
.

2.1 Calculate the index by using the edge partition of
G on the basis of the degrees of the end vertices of
each edge method.

EXAMPLE 1. For the complete bipartite graph Kp,q , because,
it is vertex set can be partitioned into two subsets, namely X and
Y such that ∀u ∈ X , deg(u) = q and ∀v ∈ Y , deg(v) = p, where
|E(Kp,q)| = pq, then the number of edges of Kp,q on the basis of
the degrees of the vertices of each edge is such that deg(u) = q,
and deg(v) = p is equal to the number of edges of Kp,q .

EXAMPLE 2. For the complete graph Kn, because, ∀u ∈ Kn,
deg(u) = n − 1, where |E(Kn)| = n(n−1)

2
, then the number of

edges of Kn on the basis of the degrees of the vertices of each edge
is such that deg(u) = n−1 is equal to the number of edges of Kn.

THEOREM 2. For the complete graph Kn, the SGAM index
is equal to the following

SGAM(Kn) = n(n− 1)2.

PROOF. Since Kn is regular graph of order n− 1 and the edge
partition of Kn on the basis of the degrees of the end vertices of
each edge, and because its vertex set cannot be partitioned into
subsets, and so has only one set, then the number of edges of Kn

on the basis of the degrees of the vertices of each edge is equal to

the number of edges of Kn, and because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

then

SGAM(Kn) =
n(n− 1)

2

(√
(n− 1)2 +

n− 1 + n− 1

2

)
=

n(n− 1)

2

(
n− 1 + n− 1

)
=

n(n− 1)

2
(2n− 2)

= n(n− 1)2.

THEOREM 3. For the complete bipartite graph Kp,q ,
the SGAM index is equal to the following

SGAM(Kp,q) = (pq)
3
2 +

pq(p+ q)

2
.

PROOF. By using the edge partition of Kp,q on the basis of the
degrees of the vertices of each edge ( see example 1 above ), and
because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

this implies that

SGAM(Kp,q) = pq
(√

pq +
p+ q

2

)
= (pq)

3
2 +

pq(p+ q)

2
.

THEOREM 4. For the star graph K1,n−1, the SGAM index is
equal to the following

SGAM(K1,n−1) = (n− 1)
3
2 +

n(n− 1)

2
.

PROOF. Let V (K1,n−1) = {v0, v1, v2, . . . , vn−1}, and
E(K1,n−1) = {e0, e1, e2, . . . , en−1 : ei = v0vi(1 ≤ i ≤ n− 1},
in every edge in K1,n−1, deg(v0) = n − 1, deg(vi) = 1(1 ≤
i ≤ n − 1). Thus the number of edges of K1,n−1 on the basis of
the degrees of the vertices of each edge is equal to be the number
of edges of K1,n−1, and because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

then

SGAM(K1,n−1) = (n− 1)
(√

n− 1 +
n− 1 + 1

2

)
= (n− 1)

3
2 +

n(n− 1)

2
.

DEFINITION 5. [16] The crown graph S0
p for an integer p ≥ 2

is the graph with vertex set {u1, u2, . . . , up, v1, v2, . . . , vp} and
edge set {uivi : 1 ≤ i, j ≤ p, i ̸= j}. S0

p is therefore equivalent to
the complete bipartite graph Kp,p with horizontal edges removed.

THEOREM 6. For the crown graph S0
p , p ≥ 2,

the SGAM index is equal to the following

SGAM(S0
p) = 2p(p− 1)2.

2
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PROOF. Suppose that
V (S0

p) = {u1, u2, . . . , up, v1, v2, . . . , vp} and edge set
E(S0

p) = {uivj : 1 ≤ i, j ≤ p, i ̸= j}. In every edge in S0
p ,

deg(ui) = p − 1, deg(vj) = 1(1 ≤ i, j ≤ p − 1). Since in every
edge eij in S0

p has deg(ui) = deg(vj) = p − 1. Thus the edge
partition of S0

n on the basis of the degrees of the vertices can not
be partitioned into more one subset and is equal to the number of
edges of S0

p , and because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

therefore

SGAM(S0
p) = p(p− 1)

(√
(p− 1)2 +

p− 1 + p− 1

2

)
= p(p− 1)(p− 1 + p− 1) = p(p− 1)(2p− 2)

= p(p− 1)
(
2(p− 1)

)
= 2p(p− 1)2.

DEFINITION 7. [22] The cycle graph Cn, n ≥
3, consists of n vertices v1, v2, . . . , vn and edges
{v1v2, v2v3, . . . , vn−1vn, vnv1}.

THEOREM 8. For the cycle graph Cn, n ≥ 3, the SGAM in-
dex is equal to the following

SGAM(Cn) = 4n.

PROOF. Since Cn is regular graph of order 2, the number of
edges is n , and because its vertex set cannot be partitioned into
subsets, and so has only one set, then the number of edges of Cn

on the basis of the degrees of the vertices of each edge is equal to
the number of edges of Cn, and because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

then

SGAM(Cn) = n
(√

22 +
2 + 2

2

)
= n(2 + 2) = 4n.

DEFINITION 9. [22] The graph obtained from the cycle graph
Cn, n ≥ 3, by removing an edge is called the path graph of n
vertices, it is denoted by Pn.

THEOREM 10. For the path graph Pn, n ≥ 3, the SGAM in-
dex is equal to the following

SGAM(Pn) = 2
√
2 + 4n− 9.

PROOF. Suppose that V (Pn) = {u1, u2, . . . , un}, E(Pn) =
{e1, e2, . . . , en−1, ei = uiui+1 (1 ≤ i ≤ n− 1}. The number of
edges of Pn is n − 1 in which, there are two types of edges, in the
first one

deg(u) = 1, deg(v) = 2,

and number of edges is 2 and in the second type

deg(u) = deg(v) = 2,

and number of edges is n− 3 and because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

so

SGAM(Pn) = 2
(√

2 +
3

2

)
+ (n− 3)

(√
4 +

4

2

)
= 2

√
2 + 3 + 4(n− 3) = 2

√
2 + 3 + 4n− 12

= 2
√
2 + 4n− 9.

DEFINITION 11. [22] The wheel graph Wn is obtained when
an additional vertex to the cycle Cn−1, for n ≥ 4, and connect
this new vertex to each of the n−1 vertices in Cn−1, by new edges.

THEOREM 12. For the wheel graph Wn, n ≥ 4, the SGAM
index is equal to the following

SGAM(Wn) = (n− 1)

(√
3(n− 1) +

n+ 2

2
+ 6

)
.

PROOF. Let V (Wn) = {v1, v2, . . . , vn},
E(Pn) = {e1, e2, . . . , e2n−2}. By using the edge partition of Wn

on the basis of the degrees of the vertices of each edge, there are
two types of edges , in the first one

deg(u) = 3, deg(v) = n− 1,

and number of edges is n− 1 and in the second

deg(u) = deg(v) = 3,

and number of edges is n− 1 and because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

this implies that

SGAM(Wn) = (n− 1)

(√
3(n− 1) +

n+ 2

2

)
+ (n− 1)

(√
9 +

6

2

)
= (n− 1)

(√
3(n− 1) +

n+ 2

2
+ 3 + 3

)

= (n− 1)

(√
3(n− 1) +

n+ 2

2
+ 6

)
.

DEFINITION 13. [17] A friendship graph Fr for an integer
r ≥ 2, is the graph constructed by joining r copies of K3 graph
with common vertex. Fr graph has n = 2r + 1 vertices and has
m = 3r edges.

THEOREM 14. For the friendship graph Fr for an integer r ≥
2, the SGAM index is equal to the following

SGAM(Fr) = 2r2 + 6r + 4r
√
r. (1)

PROOF. By using the edge partition of Fr on the basis of the
degrees of the vertices of each edge, there are two types of edges,
in the first one

deg(u) = deg(v) = 2,

3
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and number of edges is r and in the second

deg(u) = 2, deg(v) = 2r,

and number of edges is 2r and because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

this implies that

SGAM(Fr) = r(2 + 2) + 2r

(
2
√
r +

2(r + 1)

2

)
= 4r + 2r

(
2
√
r + r + 1

)
= 4r + 4r

√
r + 2r2 + 2r = 2r2 + 6r + 4r

√
r.

DEFINITION 15. [12] The double star graph Sp,q is the graph
constructed from K1,p−1 and K1,q−1 by joining their centers
v0 and u0. A vertex set V (Sp,q) = V (K1,p−1)

⋃
V (K1,q−1)=

{v0, v1, . . . , vp−1, u0, u1, . . . , uq−1} and edge set E(Sp,q) =
{v0u0, v0vi, u0uj |1 ≤ i ≤ p− 1, 1 ≤ j ≤ q − 1}.

THEOREM 16. For the double star graph Sp,q for an integer
p, q ≥ 3, the SGAM index is equal to the following

SGAM(Sp,q) = (p−1)
√
p+(q−1)

√
q+

√
pq+

p2 + q + q2 + q − 2

2
.

PROOF. By using the edge partition of Sp,q on the basis of the
degrees of the vertices of each edge, there are three types of edges,
in the first one

deg(u0) = p, deg(u1) = 1,

and number of edges is p− 1, in the second

deg(v0) = q, deg(v1) = 1,

and number of edges is q − 1 and in the third

deg(u0) = p, deg(v0) = q,

and number of edges is 1 and because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

then

SGAM(Sp,q) = (p− 1)(
√
p+

p+ 1

2
) + (q − 1)(

√
q +

q + 1

2
)

+
√
pq +

p+ q

2
× 1 = (p− 1)

√
p

+ (q − 1)
√
q +

√
pq +

p2 + p+ q2 + q − 2

2
.

3. APPLICATION THE SUM GEOMETRIC
ARITHMETIC MEANS INDEX OF A GRAPH IN
CHEMISTRY.

SGAM Index of Cycloalkenes
We denote a cycloalkene having n carbon atoms and 2n−2 hydro-
gen atoms by C2n−2

n .
The molecular graphs of them are obtained by attaching 2n − 2

pendant vertices corresponding to hydrogen atoms to vertices of a
cycle corresponding to carbon atoms as shown in Fig. 1.
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3

45

n

1

Figure 1: A cycloalkene and its graph model

THEOREM 17. For n ≥ 3, the SGAM index is equal to the
following

SGAM(C2n−2
n ) = 17n+ 6

√
3− 25.

PROOF. The cycloalkene molecular graph C2n−2
n has 3n − 2

vertices including two vertices (namely, C1 and C2) of degree three,
n−2 vertices C3, C4, . . . , Cn of degree four and correspond to the
carbon atoms of cycloalkenes and the remaining 2n − 2 vertices
(namely, H’s) are end vertices and they correspond to hydrogen
atoms of cycloalkenes. Thus we have the following: on the basis of
degrees of the vertices we divide the edge set into a partition

E1 = {uv ∈ E(C2n−2
n ) | deg(u) = deg(v) = 4, };

E2 = {uv ∈ E(C2n−2
n ) | deg(u) = deg(v) = 3};

E3 = {uv ∈ E(C2n−2
n ) | deg(u) = 3, deg(v) = 4};

E4 = {uv ∈ E(C2n−2
n ) | deg(u) = 1, deg(v) = 3};

E5 = {uv ∈ E(C2n−2
n ) | deg(u) = 1, deg(v) = 4}.

So there are five types of edges, where |E1| = n− 3,
|E2| = 1,|E3| = 2, |E4| = 2, |E5| = 2n− 4. Because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

then

SGAM(C2n−2
n ) = (n− 3)(

√
16 +

4 + 4

2
) + 1× (

√
9 +

3 + 3

2
)

+ 2(
√
12 +

4 + 3

2
) + 2(

√
3 +

1 + 3

2
)

+ (2n− 4)(
√
4 +

1 + 4

2
)

= 8(n− 3) + 6 + 4
√
3 + 7 + 2

√
3 + 4

+ 2(2n− 4) + 5(n− 2) = 8n− 24 + 17 + 6
√
3

+ 4n− 8 + 5n− 10 = 17n+ 6
√
3− 25.

THEOREM 18. For any graph G of order n = |V (G)| and size
m = |E(G)| with δ and ∆ the minimum and maximum degree of
the graph, respectively. Then

2δm ≤ SGAM(G) ≤ 2∆m.

4
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PROOF. Since

δ ≤
√

deg(u)deg(v) ≤ ∆, δ ≤
√

deg(u) + deg(v)

2
≤ ∆,

then

2δ ≤
√

deg(u)deg(v) +

√
deg(u) + deg(v)

2
≤ 2∆,

because

SGAM(G) =
∑

uv∈E(G)

(√
deg(u)deg(v) +

deg(u) + deg(v)

2

)
,

hence ∑
uv∈E(G)

2δ ≤ SGAM(G) ≤
∑

uv∈E(G)

2∆,

as |E(G)| = m, Thus

2δm ≤ SGAM(G) ≤ 2∆m.

4. CONCLUSION
In this paper, we have computed the concept of sum geometric
arithmetic means index of some standard graphs. Also, sum
geometric arithmetic means index of a graph in chemistry is
given. The sum geometric arithmetic means index of several other
families of graphs is an open problem.
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