
International Journal of Computer Applications (0975 - 8887)
Volume 184 - No.20, July 2022

Enhancement of GraphQL Data Fetching Technique

Chaitanya A.
Department of Computer Science and Engineering
Sri Sivasubramaniya Nadar College of Engineering

Chennai,India

Hariharan R.
Department of Computer Science and Engineering
Sri Sivasubramaniya Nadar College of Engineering

Chennai,India

Harishkumaar S.
Department of Computer Science and Engineering
Sri Sivasubramaniya Nadar College of Engineering

Chennai,India

Prabavathy B.
Department of Computer Science and Engineering
Sri Sivasubramaniya Nadar College of Engineering

Chennai,India

ABSTRACT
Data fetching techniques are used to communicate between servers
and clients on the World Wide Web. It serves as the basis of mod-
ern data-driven websites, since these websites have more frequent
communication between client and server. In addition, it will have
a huge data transfer between them. The predominant data fetching
techniques are REST API, GraphQL and Protobuf. REST API is the
most popular data fetching technique in the market, but it does not
provide a way to get only the fields required by the client. GraphQL
addresses this problem by providing dynamic querying. However,
both the REST API and GraphQL return the response in JSON for-
mat, which has keys and values. These keys in the response can
occupy a huge chunk of the response as the size of the response in-
creases. This is a drawback for data-driven applications that run on
bandwidth-constrained devices. Protobuf tries to address this prob-
lem by returning the response as an array of values, but Protobuf
does not allow the client to query only the required fields. Hence,
the objective of this paper is to propose a new data fetching tech-
nique that combines the advantages of GraphQL and Protobuf to
reduce the payload size and the response time.

General Terms
API, RESTful, GraphQL, Protobuf, E-GraphQL, Schema Definition Lan-
guage , Abstract Syntax Tree , HTTP, Query

Keywords
Payload size, Response time

1. INTRODUCTION
Data fetching techniques play an important role in modern web ap-
plications, which essentially means fetching data from the server by
sending requests. In modern web applications, many websites are
data-driven, like Instagram, Twitter, Amazon and Facebook, which
make requests to the server and fetch data frequently. Though there
are several data fetching techniques, the most prevalent methods

are REST API, GraphQL and Protobuf. These techniques are not
suitable for all use cases and they have their own limitations, like
over-fetching, under-fetching and incapability of caching.

1.1 Representational State Transfer (REST)
REST stands for Representational State Transfer. It’s a software ar-
chitectural style for implementing web services. In REST APIs,
data is exposed by means of endpoints. Each endpoint returns
data about one resource, and each resource has a predefined set
of fields. REST APIs communicate via HTTP methods like GET,
POST, PUT and DELETE. This REST architectural style defines
six guiding constraints called client-server architecture, stateless-
ness, cacheability, layered systems and code-on-demand.

1.2 GraphQL
GraphQL is a query language for the API. In GraphQL, data is
exposed as a graph, defined by means of a schema. Each node
of this schema represents objects and contains fields. Each field
has a name and a type. Edges appear when a field references an-
other object. Clients access a GraphQL service through a single
endpoint, which is used to submit queries and mutate data. It pro-
vides a domain-specific language called Schema Definition Lan-
guage (SDL) for defining schemas, including types and queries.

1.3 Protocol Buffers
Protobuf is language agnostic and provides a way to serialize and
deserialize data. The schema in Protobuf is written in the proto lan-
guage and then compiled into other languages. The languages sup-
ported by protobuf are Kotlin, Dart, Go, Ruby and C. In Protobuf,
the schema of the message to be sent from the server to the client is
defined in a .proto file. The fields in the protobuf structure are as-
signed field numbers so that they can be sorted into an array while
sending data to the client. The field number must be unique. The
written proto files are compiled into any language to be used na-
tively in that language. The data from the server is serialized before
being sent to the client using the classes generated by compiling the

1



International Journal of Computer Applications (0975 - 8887)
Volume 184 - No.20, July 2022

Fig. 1. Request-Response Generation in various data fetching techniques

.proto files. The serialized data from the server is then deserialized
using the classes generated by compiling the .proto files, and the
data is retrieved.

1.4 Request Response generation by various data
fetching techniques

In the Fig 1 the server maintains the personal information related to
the users. The personal information of a user consists of first name,
last name, department, area, district and pincode. A sample query
is made to retrieve the first and last name of a given user. The REST
API server returns the entire data to the client in JSON format
without any filters that makes REST API to consume larger space
and time[2]. GraphQL provides only the necessary information as
key-value pairs, however the keys in the response use more band-
width. The Protobuf response contains only data without keys in
a sorted array format, however it has the issue of dynamic querying.

GraphQL’s key benefit over the REST API is that it prevents under-
fetching and over-fetching. This addresses the REST API’s limita-
tions, but the main issue is JSON itself. When a response is sent to
the client from the server, the response contains both keys and their
respective values. The keys in the JSON response payload take up a
significant amount of size in the response payload. These keys can
be removed from the payload in order to reduce the payload’s size.
Hence, a new approach to data fetching, Enhanced GraphQL (E-
GraphQL), is proposed. E-GraphQL takes the GraphQL approach
of limiting under-fetching and over-fetching and applies it to the
Protobuf approach of maintaining the schema of the data locally on
both the server and client sides to limit payload size.

The rest of this paper is organized as follows: Section 2 discusses in
detail about the existing work related to data fetching techniques;
Section 3 describes the proposed system architecture and the mod-
ules; Section 4 discusses the evaluation of the proposed system;
Section 5 discusses the conclusion and future work.

2. RELATED WORK
Several research work focused mainly on the comparative analysis
of different data fetching techniques based on different parameters
like caching, response time.

Andersson et al. [1] have studied two data fetching techniques,
namely REST API and GraphQL in order to compare them with
caching. An application has been developed using the REST API
and GraphQL. This application has been tested for response time
by disabling and enabling caching. From the experimental results,
the response time for the REST API is better when compared to
GraphQL.

Brito et al. [2] proposed that, when two data fetching techniques,
namely REST API and GraphQL be compared for easier and
faster development. An application has been developed using
REST and GraphQL by 22 students. This application has been
tested for the implementation time by the developers. From the
experimental results, GraphQL outperforms REST even among
more experienced participants. It also does the same among the
participants with previous experience of REST, but not with
GraphQL.

2



International Journal of Computer Applications (0975 - 8887)
Volume 184 - No.20, July 2022

Fig. 2. Proposed design of E-GraphQL data fetching technique

Seabra et al. [7] experimented with various architectural models
and came up with an optimized one. To infer the performance
issues, two target applications were developed using two web
service architectures REST API and GraphQL. The response
time and the average transfer rate between the requests have been
analyzed. It was noticed that after migration, GraphQL performed
below its REST counterpart for workloads above 3000 requests,
ranging from 98 to 2159 Kbytes per second. It was also observed
that migrating to GraphQL resulted in an increase in perfor-
mance by two-thirds of the tested applications, with respect to
the average number of requests per second and transfer rate of data.

Sumaray et al. [8] have compared four different data serialization
formats with an emphasis on serialization speed, data size, and
usability. The selected serialization formats include XML, JSON,
Thrift, and ProtoBuf. XML and JSON are the most well known
text-based data formats, while ProtoBuf and Thrift are relatively
new binary serialization formats. These data serialization formats
are tested on an Android device using both text-heavy and number-
heavy objects.

3. PROPOSED DESIGN OF E-GRAPHQL
E-GraphQL is a new hybrid API technique that is obtained by com-
bining the core principles of GraphQL and Protocol Buffers. The
proposed E-GraphQL data fetching technique, has two modules
namely E-GraphQL server and E-GraphQL client modules. This
section describes in detail the E-GraphQL technique with an use
case.

3.1 E-GraphQL Server Module
Initially, a GraphQL query for the user with id:11 requesting name,
dept, gender is sent to the client-library as shown in Fig 2. The
client-library saves the query and sends the request to the server,

which is further forwarded to the GraphQL runtime. It invokes the
respective query resolver. Here, the resolver is responsible to re-
trieve the data of user id:11 which consists of name, dept, cgpa,
Rollno, Gender from the data source and sends it to the runtime.
The output of resolver, which is of JSON format where all the
data of the user is filtered based on the query that is only name,
dept, gender. Then the runtime calls the parse-to-array function
which converts the JSON object to array of values by removing all
the keys present and returns the array of values which is [”John”,
”CSE”, ”Male”] to server.

3.2 E-GraphQL Client Module
On receiving the output from the server, client-library sends it to
the parse-data function along with the saved query. These two in-
puts are passed to get-keys function. This function will extract only
the relevant keys from the saved query. Extracted keys and the out-
put from the server are passed to the map-key-value function, which
maps the list of keys and the output from the server to a JSON ob-
ject. This JSON object is returned to the parse-data function, which
further sends it to the client-library as shown in Fig 2. This final ob-
ject represents the intended response used in the application.

4. SYSTEM EVALUATION
This section discusses in detail about the implementation, perfor-
mance metrics and experimental results of the proposed system.

4.1 Implementation
The GraphQL Foundation has open sourced the implementations of
its runtime in many programming languages. The proposed tech-
nique was using Javascript implementation of GraphQL runtime.
The index.js file of express-graphql receives the query sent to the
server, then passes it to the graphql library. The response returned

3



International Journal of Computer Applications (0975 - 8887)
Volume 184 - No.20, July 2022

from the GraphQL runtime is in JSON format and is sorted in the
order of the fields based on the query.
A new parse-to-array functionality has been introduced in E-
GraphQL which takes the response from the GraphQL runtime and
removes all the keys in the JSON data, which is discussed below.

—If the response is an array, a special indicator is added to the
array, which later helps the frontend to parse the response.

—Each element of the array is traversed and passed back to the
parse-to-array function. If the response is an object the keys are
removed and the values are added to an array.

—Each element of the array/object is traversed and processed as
mentioned above, in order to generate the final response which
is pure without any keys. This parsed array response is sent to
the client.

The client library for E-GraphQL has been developed from scratch.
It has a main function called get, which accepts two inputs called
the endpoint of the E-GraphQL server and the GraphQL query to
be sent to the server. The get function receives a response which
is an array of values, and further passes to the parseData function,
which is written to parse the received data back to JSON format by
following steps.

—If the type of element is either boolean or int or string, the key is
maintained without changes.

—If the type of the element is an object, then a key that corresponds
to that object is added along with a special character as the prefix
to all the keys inside the object and the object is iterated again.

—If the type of the element is an array, the length of the array
is obtained and the keys are duplicated as per the length of the
array.

The parse-data function then takes the array of keys and the ar-
ray of values and passes them to the map-key-value function. In
map-key-value function iterates through the array of keys and the
array of values. Each key and value is added to a result object and
returned to the application.

4.2 Performance Metrics
In order to test the performance of GraphQL and E-GraphQL data
fetching techniques, a real time data-driven application, namely
the Instagram application has been cloned. These two techniques
were tested with the performance measures, namely payload size
and response time.

Payload size is an important metric used to measure the perfor-
mance of any application. Applications with less payload sizes
tend to be perform better as they load faster when compared to the
applications that have higher payload sizes.

Response time is the time taken for the client to receive the response
from the server. An application that has a very less response time
is more performant because it attracts more users than applications
that have higher response time.

4.3 Experimental Results
Multiple experiments have been conducted to test the performance
of the proposed E-GraphQL technique with the necessary perfor-
mance metrics, such as data loss, payload size and response time.
Since E-GraphQL makes use of HTTP, which is based on TCP,
there will not be loss of information during data transfer. This is
due to the fact that TCP is a connection-oriented protocol and is

designed to carry packets across networks and ensure that data is
delivered correctly.

4.3.1 Impact of E-GraphQL on payload size.
Objective: To determine the payload size for the GraphQL and
E-GraphQL.

Table 1. Analysis of payload size (in KB) between
GraphQL and E-GraphQL

No. of
Posts

GraphQL E-GraphQL
Payload size in KB Payload size in KB

100 26.69 21.79
200 53.35 43.58
300 79.91 65.25
400 106.4 86.85
500 133.04 108.62
600 160 130
700 185.52 151.33
800 211.78 172.7
900 238.09 194.14

1000 264.46 215.63

Fig. 3. Payload size representation of GraphQL and E-GraphQL

The size of the payload is measured by using either the developer
tools offered by Google Chrome browser or Postman tool. When
making a request to the server, the size of payload is mentioned in
the network tab of Google Chrome browser and also in Postman.

Queries for a number of posts were made to both GraphQL
and E-GraphQL servers and a series of readings were recorded.
The recordings are tabulated as shown in the Table 1. A graph has
been plotted to visualize the recordings.

From the graph it is inferred that there is a steady increase in pay-
load size and difference between the payload sizes of GraphQL
and E-GraphQL as the number of posts increases as shown in Fig-
ure 3. This shows that E-GraphQL decreases the payload size sig-
nificantly when compared with GraphQL. The average difference

4



International Journal of Computer Applications (0975 - 8887)
Volume 184 - No.20, July 2022

between the payload sizes of GraphQL and E-GraphQL is 26.935
KB. This proves that E-GraphQL reduces the payload size for any
input size compared to GraphQL.

4.3.2 Impact of E-GraphQL on response time.
Objective: To determine the response time for the GraphQL and
E-GraphQL.

Table 2. Analysis of response time (in ms) between
GraphQL and E-GraphQL

No. of
Posts

GraphQL E-GraphQL
Response time in ms Response time in ms

100 135 110
200 150 137
300 170 158
400 187 173
500 196 183
600 211 200
700 245 213
800 265 263
900 300 268

1000 383 346

Fig. 4. Response time representation of GraphQL and E-GraphQL

The response time is also measured by using either the developer
tools offered by Google Chrome browser or Postman tool. While
receiving the response from the server, the response time is
recorded in the network tab of Google Chrome browser and also in
Postman.
Queries for a number of posts were made to both GraphQL and
E-GraphQL servers and a series of readings were recorded. The
recordings are tabulated as shown in the Table 2. A graph has
been plotted to visualize the recordings. From the graph it is
inferred that there is a steady increase in response time and in the
difference between the response time of GraphQL and E-GraphQL
as the number of posts increases as shown in Figure 4. This

shows that E-GraphQL decreases the response times significantly
when compared with GraphQL. The average difference between
the response time of GraphQL and E-GraphQL is 19.1 ms. This
proves that E-GraphQL reduces the reponse time for any input size
compared to GraphQL.

From the above figures, it is inferred that the payload size in
E-GraphQL is reduced when compared with GraphQL. With a
lower payload size, it is possible to use E-GraphQL on bandwidth-
constrained devices.

5. CONCLUSIONS AND FUTURE WORK
Data fetching techniques should be more efficient for data driven
applications that are accessed from bandwidth constrained devices.
In this context, a new data fetching technique named E-GraphQL
has been proposed. It has been built upon the existing GraphQL
runtime. The server module of E-GraphQL has been built using an
open-source express-graphql. The E-GraphQL client module has
been developed from the scratch. The proposed E-GraphQL server
and client were published as libraries in Node Package Manager
(NPM).

The performance of the proposed E-GraphQL has been tested
with metrics like payload size and response time. It is inferred
from the experimental results that the proposed E-GraphQL data
fetching technique reduces the payload size by an average of
20%. E-GraphQL reduces the response time by an average of
10%. This shows that E-GraphQL is more efficient for data driven
applications that run on bandwidth constrained devices.

In future, the open sourced E-GraphQL server and client libraries
will be updated regularly as the GraphQL runtime gets updated.
The new suggestions from the open source community will be
added to the libraries to improve the standards and performance
of the libraries.

6. REFERENCES
[1] Andersson, T., Reinholdsson, H., (2021). “REST API vs

GraphQL - A literature and experimental study”, Spring
Semester, Kristianstad University, Sweden.

[2] Brito, G., Valente, MT., (2020). “Rest vs graphql: A con-
trolled experiment”, In Proceedings of IEEE International
Conference on Software Architecture, pp. 81-91.

[3] Google Developers, (2021), Language Guide
— Protocol Buffers — Google Develop-
ers, https://developers.google.com/protocol-
buffers/docs/overview, Accessed on 02/06/2022.

[4] GraphQL Foundation, (2021), GraphQL - A Query language
for your API, https://graphql.org, Accessed on 02/06/2022.

[5] How does graphQL work, anyway? - Medium article -
https://medium.com/@rajeshdavid/how-does-a-graphql-
service-work-internally-496dc9264096, Accessed on
02/06/2022.

[6] IBM Education, (2021), What is a REST API?,
https://www.ibm.com/in-en/cloud/learn/rest-apis, Accessed
on 02/06/2022.

[7] Seabra, M., Nazário, MF., Pinto, G., (2019). “REST or
GraphQL? A performance comparative study”, In Proceed-
ings of the XIII Brazilian Symposium on Software Compo-
nents, Architectures and Reuse, pp. 123-132.

5



International Journal of Computer Applications (0975 - 8887)
Volume 184 - No.20, July 2022

[8] Sumaray, A., Kami Makki S., (2012). “A comparison of data
serialization formats for optimal efficiency on a mobile plat-
form”, In Proceedings of the 6th International Conference on
Ubiquitous Information Management and Communication,
pp. 1-6.

6


	Introduction
	Representational State Transfer (REST)
	GraphQL
	Protocol Buffers
	Request Response generation by various data fetching techniques

	Related Work
	Proposed Design of E-GraphQL
	E-GraphQL Server Module
	E-GraphQL Client Module

	System Evaluation
	Implementation
	Performance Metrics
	Experimental Results
	Impact of E-GraphQL on payload size
	Impact of E-GraphQL on response time


	conclusions and future work
	References

