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ABSTRACT

This paper presents new approach for time series data
classification using Fuzzy Expert System (FES). In the proposed
study, the power disturbance signals are considered as time series
data for testing the designed FES. Initially the time series data are
pre-processed through the advanced signal processing tool such as
S-transform and various statistical features are extracted, which are
used as inputs to the FES. The FES output is optimized ilsing
Particle Swann Optimization (PSO) to bring the output to distinct
classification level. Both Gaussian and trapezoidal membership
functions are selected for designing the proposed FES arid the
performance measure is derived by comparing the classification
rates for the time series data without noise and with noise up to
SNR 20 db. The proposed algorithm provides accurate
classification rates even under noisy conditions compared to the
existing techniques, which shows the efficacy and robustness of
the proposed algorithm fortime series data classification

Keywords
Time-series data, Fuzzy Expert System, S-transform, Particle
Swarm Optimization

1. INTRODUCTION

The question of wave velocity has been studied since theadvent of
Einstein’s special theory of relativity.[1][2] A central issue is
whether the speed of light in vacuum c constituted anupper limit to
the group velocity—the velocity of the peak ofa wave packet. The
consensus of much theoretical work[3][5] is that the group velocity
is not limited and, in the past few years, a number of experiments
[6][9] have confirmed that it is possible for optical or electrical
wave pulses to travel through absorbing, attenuating, or gain
materials with group velocities greater than c. Furthermore, under
appropriate conditions, the group velocity can even become
negative,[10][11] a circumstance in which the peak of the tunneled
pulse emerges from the output of the medium before the peak of
the incident pulse has reached the input. Al- though most wave
propagation phenomena have been explored for electromagnetic
waves, there is a history of theoryand experiment using ultrasonic
acoustic waves.[3][14][15] Recently, it was predicted through
numerical modeling[16] that faster-than-light phenomena should
be observable for ultra- sound pulses. In this letter we
demonstrate experimentally the transmission of audio-frequency
acoustic pulses through an asymmetric loop filter with group
velocities that exceed the speed of light. This work is significant
for two reasons. First, we confirm the theoretical prediction that,
under the appropriate conditions, sound pulses can exhibit group
velocities that surpass the speed of light in vacuum. Second, we
demonstrate a simple passive acoustic filter system that exhibits a
negative group velocity.

The mechanism by which superluminal propagation arises involves
rephrasing of the spectral components of a pulse by a medium that
exhibits anomalous dispersion. Anomalous dispersion occurs over
frequency intervals in which materials exhibit strong absorption,
attenuation, orgain. The spectral components of a pulse traveling
throughan anomalously dispersive medium recombine in a manner
such that they replicate the shape of the original pulse but are
moved forward closer to the leading edge of that pulse. Be- cause
the tunneling pulse is fashioned from the leading edge of the
incident pulse, it exits the sample earlier in time. The group velocity
is defined by the length of the sample dividedby the time taken for
the peak of a pulse to traverse the sample. If anomalous dispersion
is sufficiently strong the group velocity can exceed the speed of
light. If the transit time is zero, the peak of the transmitted pulse
exits at the same time as the peak of the incident pulse reaches the
input,and the group velocity is infinite. Finally, in the case of very
strong dispersion, the peak of the transmitted pulse exits before the
peak of the incident pulse reaches the input, and the group velocity
is negative. It is now generally agreed that all of these superluminal
phenomena do not violate special relativity or causality and, in
particular, it has been shown that the speed of information
transmission is  subluminal[17][18] In all previous optical,
microwave, or electrical demonstrations the individual spectral
components of the pulse have velocities close to the speed of light
and thus realizing sufficient rephrasing to achieve superluminal
propagation is less surprising. In the experiments described here,
however, the individual spectral components travel at the speed of
sound, almost six orders of magnitude slower than the speed of light
and yet still experience sufficient rephrasing to achieve super-
luminal velocities.

Experiments were conducted in a one-dimensional acoustic
waveguide system constructed from 1.9 cm diameter polyvinyl
chloride (PVC) pipe. The filter element being characterized was an
asymmetric loop filter, a type of acoustic interference filter modeled
on a similar device used in electrical measurements in coaxial cable
waveguides[12]. The design and dimensions of the acoustic loop
filter are shown in Figures below. The loop was created from
the same type of 1.9 cm diameter PVC pipe used for the
waveguide and it was connected together using commercially
available right-angle and T junctions. The asymmetric loop splits
the guided sound signal along two unequal length paths designated
as dL and dS (long and short, respectively). By analogy with the
electrical results reported in Ref. [12], there are two mecha-
organisms by which the asymmetric loop filter results in dips in
transmission. The first mechanism is due to destructive inteference
that results when the path length AL =d,_ —ds betweenthe long and
short arms differs by one-half wavelength. The second mechanism
occurs due to standing wave resonances around the whole length of
the loop L=d, +ds.

24



0.5
0.4
0.3
0.2
0.1
0.0
-0.1
-0.2
-0.3
-0.4

0.5 i ; i i
0.200 0.250 0.300 0.8350 0.400
Time (s)

Figure 1 (Color) Plots of Gaussian wave packet centered at
2414 Hz after transmission through straight waveguide
(blue) and through a single loop filter (red). The red trace
has been scaled up by a factor of 10.
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Figure 3 Phase Time and Transmission vs. Frequency

© o Tighone

Prwroress  Oenly  Owwet  Asotalr SO0 emides Vieele

Arwese Duhaor

Ohvacse PrincpeiComponents 4118 -4

o Wethos
Dhoone  Renler -7

1N M NS N

b Selecon Wooe

& Lve St traanirgy s

ATTidetz MeC10n et

Mo law
|
S

Aevak et {rigft chick bor optomn )

J20504 ~ Rkt = P oullormponenty.

Sew ovat 09

W O Type twre to spacd

A

5 =1
o GFuxe ~@uow O W
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The experiments consisted of two measurement types. First,
we used very short acoustic impulses that contained a broad
frequency spectrum to determine the filtering proper- ties of
our asymmetric loop structure. Fourier analysis of the impulse
response led us to discover the frequency ranges in which we
could expect to measure negative group delays and hence
superluminal acoustic group velocities. The secondpart of the
experiment used narrow bandwidth acoustic pulses with a
Gaussian envelope to demonstrate explicitly the negative
group delay. In both experiments we compared transmission
through a loop filter to transmission through a straight
waveguide. The straight waveguide segment that re- placed
the filter in the reference measurements was equal in length to
the short arm of the loop filter (ds) such that the shortest
physical h between the source and detector was identical in
both measurements.

The experimental configuration is shown schematically in
Figure. 1. The computer sound card was used to produce an
audio and a trigger signal on the respective channels of the
stereo output. The audio signal was amplified and sent to the
speaker (Alesis Monitor One) which was coupled to the in-
put end of the waveguide. The audio signal was either an
impulse or a narrow-band Gaussian envelope depending on
the type of experiment being performed. At the output end of
the waveguide, the transmitted audio signal was detected bya
condenser microphone (ACO 7013), amplified, and digitized
by the analog-to-digital converter (I0tech 3000 USB). The
trigger signal from the second stereo channel consisted of a
narrow square pulse that was routed to the trigger input
Figure 2.

Plot of the impulse as a function of time through the straight

wave- guide (upper plot) and through the loop filter (lower
plot).in order to initiate data acquisition. To achieve high
signal- to-noise ratio data we used an add-and-average
technique described previously.[19] The loop filter was
located in the cen-ter of a long (8 m) section of waveguide in
order to provide a large time window free from multiple
reflections from the discontinuities at the filter, speaker, and
microphone.
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The signal in the time domain
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2. PROPOSED PATTERN
CLASSIFICATION SCHEME

The proposed technique includes pre-processing the time-
series data using S-transform and various statistical features
are derived from the S-matrix generated form S-
transformation. Basically the features are in frequency
domain. The extracted features are fed tothe FES driven by a
set of fuzzy rules. Each feature is characterized by a

2.1 S-TRANSFORM BASED
FEATUREEXTRACTION

The time series data generated from various kinds of
disturbance signals are preprocessed through the advanced
signal processing technique such as S-transform. The
multiresolution S-transform originates from two-advanced
signal processing tools; the Short- time Fourier transform
(STFT) and the Wavelet transform [11, 12, 13]. It can be
viewed as a frequency dependent STFT or a phase corrected
wavelet transform. Due to the frequency dependent window
used for analysis of a signal data, the multiresolution S-
transform has been proven in [11] to perform better than other
time-frequency transforms. Furthermore, it provides superior
time-frequency localization property computing both
amplitude and phase spectrum of discrete data samples. It was
shown in [12] that the S-transform would be useful for
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classifying power signal time series disturbances. Also it is
less susceptible to noise than the wavelet transform approach.
The S-transform of a signal h(t) isdefined as

S(t,f) =] | _hRiTw (t—t.f).e g i2RfT g 1)

where S (t, f) = |_1= —tf7 et (2)

and * stands for complex-conjugate. The parameter sets the
width of the window for a given frequency. For small, the
time resolution improves and the frequency resolution
deteriorates. The reverse happens when it is increased to a
larger value. S-transform produces a multiresolution analysis
like a bank of filters with constant relative bandwidth. The
integration of S-transform over time results in the Fourier
spectrum that is

(H=J"_sithdt (3)
and for the Gaussmn window

[© s(thdt=1 )
The original signal can be obtained from S-transform as

S eDE

h(t) = s(r.f)dt).el ¥ df (5)

& mmie e

Another way to represent S-transform is an amplitude and
phase correction of the CWT (continuous wavelet transform)
as

S(t,f) = /Ifl /2moel * ™ Wt £) (6)
Where the wavelet transform is given by

WT(t ) |m et 27 @)

The equatlon(6) shows that the time-frequency resolution is
distributed in the time frequency plane like wavelet transform
but a direct link with Fourier transform exists

The term H[n] is the DFT of the time series h(t) and can be
computed using FFT algorithm

S, n) = Em_nH[m+n]G{mnle . )
where G(mn)=e— =% ©)
andjmandn=0,1,.......,n-1.

The computational efficiency of FFT is used to calculatethe S-
transform and the total number of operations is N (N+NlogN).

The amplitude and phase spectrum of S-transform are givenby

International Journal of Computer Applications (0975 — 8887)
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A = abs(S(n, j))
(10)

A novel approach for time series data classification using
Fuzzy Expert System (FES) is presented in this paper. The
power disturbance signals are considered as time-series data
for the proposed study. The time-series data is pre- processed
through the advanced signal processing technique such as S-
transform and the features obtained are fed to the designed
FES for classification. Other indices foraccurate classification
such as certainty factors and support values are derived and
the obtained results shows the robustness of the propose
technique. Also the FES outputs are optimized using PSO
for further enhancement of the

Time series data.

The S-transform output shown in the figures includes the
signal, S-contours, time-frequency contours, and amplitude
and frequency contents. The S-contours provides the
information regarding the time-localization of the time series
data. As shown in the figures, the time- localization takes
place in frequency domain instantly with the disturbance in
the time scale. The aptitude information is also calculated for
the S-matrix resulted from the S- transform. It shows the
amplitude variation in the time- series data. Also the
frequency content of the time-series data is calculates from
the S-matrix to know the frequency content of the time-series
data. As seen in the figures, the contains only one peak in the
frequency characteristics while in case of transients there are
two peaks with higher frequency values.classification results.
The proposed technique is also tested for features

Due to the frequency dependent window used for analysis of a
signal data, the multiresolution S- transform has been proven
in [11] to perform better than other time-frequency
transforms. Furthermore, it provides superior time-frequency
localization property computing both amplitude and phase
spectrum of discrete data samples. It was shown in [12] that
the S-transform would be useful for classifying power signal
time series disturbances.

The multiresolution S-transform originates from two-
advanced signal processing tools; the Short- time Fourier
transform (STFT) and the Wavelet transform [11, 12,13]. It
can be viewed as a frequency dependent STFT or a phase
corrected wavelet transform. Due to the frequency dependent
window used for analysis of a signal data, the multiresolution
S- transform has been proven in [11] to perform better than
other time-frequency transforms. Furthermore, it provides
superior time-frequency localization property computing both
amplitude and phase spectrum of discrete data samples. It was
shown in [12] that the S-transform would be useful for
classifying power signal time series disturbances.

2.2 PRE-PROCESSING OF TIME-
SERIES DATA THROUGH S-
TRANSFORM
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(a) Time series data and corresponding S-transform
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The S-transform output shown in the figures includes the signal,
S-contours, time-frequency contours, and amplitude and
frequency contents. The S-contours provides the information
regarding the time-localization of the time series data. As shown
in the figures, the time- localization takes place in frequency
domain instantly with the disturbance in the time scale. The
aptitude information is also calculated for the S-matrix resulted
from the S- transform. It shows the amplitude variation in the

time- series data. Also the frequency content of the time-series data
is calculates from the S-matrix to know the frequency content of the
time-series data. As seen in the figures, the contains only one peak
in the frequency characteristics while in case of transients there are
two peaks with higher frequency values. This indicates sag is a low
frequency phenomena which only contains one peak with other
values nearly zero. But in case of transients, the more than one
number of peaks indicates presence of higher harmonics in
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the time-series data. This provides vital information for father

analysis

2.3 FEATURE EXTRACTION

Four features were extracted from the S-transform output. They

are:

F1 =max (A) + min (A) - max (B) - min (B).
where A is the amplitude versus time graph from
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the S-matrix under disturbance and B is the
amplitudeversus time graph of the S-matrix without
disturbance.

F2= Standard deviation of max (abs(s)).

F3= Energy in the S-transform output.

F4= Total harmonic distortion (THD).

F5= Estimated frequency hours the maximum amplitude

apwn

Table | Features Extracted From S-Transform

Disturbances FI F2 F3 F4 F5
Normal 1.002
Sag (60%) 0.593 0.053 0.031 0.0312 50.0
Swell (50%) 1.50 0.0129 0.076 0.015 50.00
Momentary Interruption (MI) (5%) 0.0724 0.035 0.019 0.0350 50.00
Harmonics (0% 3™ + 10% 5 1.0 0.0339 0.0556 0.141 50.00
Swell with Harmonic (50%) 15 0219 0.079 0.1155 50.00
Flicker (5 Hz, 4%) 0.987 .0168 0.026 0.0186 55.00
Notch + harmonics 0.939 0.131 0.0529 0.136 56.25
Spike + harmonics 1.065 0.141 0.0627 0.1308 56.25
Transient (low frequency) 0493 0138 00163 001 70500
Transient (high frequency) 0.149 0.014 0.043 2520.00
Table 2. Features Extracted From S-transform with SNR 20DB
Disturbances Fl F2 F3 F4 F5
Normal 0.9963 0.001 0.052 0.028 50.00
Sag (60%) 0.591 0.022 0.039 0.027 50.00
Swell (50%) 1.503 0.012 0.076 0.029 50.00
Momentary |nterruption ('V“) 0070 00387 00323 0044 5000
Harmonics 1.032 0.050 0.064 0.25 50.00
Sag with Harmonic (60%) 0.601 0.0228 0.0408 0.1139 50.00
Swell with Harmonic (50%) 1.500 0.0219 0.079 0.1155 50.00
Flicker (4%, 5 Hz) 0.998 0.0209 0.027 0.1159 55.00
Notch + harmonics 0.940 0.1275 0.0531 0.198 50.00
Spike + harmonics 1.072 0.141 0.066 0.204 50.00
Transient (low 1.000 0.1473 0.0148 0.0566 440.00
frequency)

Two nonstationary time series databases like sag and transient

which occur very frequently in power networks are given in a
separate table to highlight the variations inthe feature values for

the same event:

2.4 FUZZY EXPERT SYSTEM (FES)

A Fuzzy Expert System has two key elements, (i) fuzzy sets and (ii)
fuzzy rule base. A fuzzy set can be fully defined by its membership
functions. Fuzzy rules offer human-like reasoning capabilities and
provide transparent interface mechanism. In the proposed pattern
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classification technique, the features extracted from S-transform,
are fed to the FES with trapezoidal and Gaussian membership
functions. A fuzzy rule base is developed for exact classification
of the time-series data for 12 classes. The following sections deal
with the membership function (MF) and fuzzy rule base. In
classical fuzzy expert system the knowledge base constitute a set
of rules derived from the statistical knowledge pre-processing the
time-series data. The knowledge base, however, needs to be
adapted with changes in the operating conditions, addition of
spurious disturbances, and noise that might be superimposed
over the data. This requires addition of new rules if necessary
and a correct choice of membership functions to analyze the
data.

The fuzzy if-then rules are in the following form for the n-
dimensional pattern recognition problem:

Rule R1: If X1 is A21 and Xn is Ain

The consequent Class Ci with classification factor CFi, where R,
is the ith rule of the fuzzy rule base, x = (X 1, X2,

......... ,Xn.,) is n-dimensional pattern vector and A, is an
antecedent fuzzy set, Ci the consequent class out of N classes,
and classification factor CFi in the interval [0, 1] is the certainty
factor also termed as rule weight. In data mining problem, two
measures known as confidence and support are used for finding
the association rule in the form

J!I.i—i Ci‘i‘.’ith J'-'l.i = [Ail-'AifF ™ '“"Ail:l] (18)
The confidence ¢ and support of each fuzzy rule R iswrijtten as
o= |EpkailXp)] / [Lp=1 BailXp )] (19)

where p denotes the pth pattern and m is the total number of
patterns used for classification.

The compatibility grade of the pth pattern isobtained as

bai(p) = min{pgis (%1 ) Maia(ps) oo Bain(pn )} (12)

and P-Fl.i(:"‘"p:l is the membership value of the I-'-ﬂi(x‘p)
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to the set 4;, p € class C; .
The support s of a fuzzy rule indicates the grade of
coverage by (A; — CiJ
¥ Pecl 5.3: 2ha (2] (13)
To obtain the consequent class C; from the fuzzy rule
base Ri, the confidence measure is obtained from the
antecedentfuzzy sets as

Cj=max (¢ Cz . C) (14)
where c;cp, . oy denotes the recognized classes

ofnon-stationary time-series data.

The expression for support s is obtained in the same way
as

(consequent) is given by s =

5152, v SN (15)
For finding the classification performance of the fuzzy
rulebase, it is envisaged to use a single winner rule
methods.
A single winner rule is selected from the set of

*p =classifying( 5p1.5p2 o oo Spr) AS
a, (%p)-CFg
max | 1 (%p).CFg|Rg €5/} (16)

The single winner rule posses the highest
compatibilityindex in comparison to other rules in

the rule base.

However, if two rules have the same compatibility index,
the pattern is not classified.

The certainty factor or the rule weight is found as

CFq =Cc-T a7
where c is given by equation (17)
— 1 .
and T = 5 L =z C(4g — dlass ) (20)
I=ky

2.5 MEMBERSHIP FUNCTIONS

For generating fuzzy rules, two types of membership functions
namely trapezoidal and gaussian are used forclassification.

(i) Trapezoidal MF : *p
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I.  Gaussian MF
In a similar way, the Gaussian membership function is
defined as in following figure.
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where a1 is the mean of the ith attribute value of xpi, ofclass ¢
patterns and oi is the standard deviation.
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Figure 22 Gaussian Member Function

1. THE FOLLOWING FUZZY IF-THEN

RULES ARE GBSED FOR BUILDING THE FUZZY

RULE BASE LEADING TO A FUZZY EXPERT

SYSTEM -
o

Fuzzy Rule Base:

Rule-1 If F1is A3 and F2 is B1 and F3 is C2 and F4 is

D2, then CL1 with CF1

Rule-2 IfF1is Al and F2 is B1 and F4 is D2, then CL2
with CF2.

Rule-3 IfFlis A4 and F2 is Bl and F4 is D2, then CL3
with CF3

Rule-4 If F1is Al and F2 is B1, then CL4 with CF4
Rule-5 IfFlis A3 and F2is B2 and F4 is D3, then CL5
with CF5.

Rule-6 If F1is A2 and F2 is B1 and F4 is D3 and F5 is

E2, then CL6 with CF6
Rule-7 If F1is A4 and F2 is B1 and F4 is D3 and F5 is
E2, then CL7 with CF7

Rule-8 If F1is Aland F2is B1 and F4 is D3, then CL8
with CF8
Rule-9 If F2 is B2 and F3 is C1 and F4 is D2 and F5 is

E3, then CL9 with CF9

Rule-10 If F1 is A3 and F3 is C2, then CL 10 with CF 10
Rule-11 If F1is A2 and F2 is B2 and F3 is C2, then CL11
with CF 11

Rule-12 If F1 is A3 and F2 is B1 and F3 is C1 and F4 is
D3 and F5 is E2, then CL12 with CF12

I11.  OUTPUT FROM FUZZY
INFERENCE SYSTEM

Rule- I output = min (fu1a3, puf2bl, uf3c2,
pf4ad2)Rule-2 omtput 2 = min (pflal, uf2bi,
uf4d2) Rule-3 sutput 3= min (ufla4, pfabi,
ufad2)

Rule-4 output 4x= min (uflal, uf2bi,
pf3c1)Rule-5 ogtput 5 = min (ufla3,

pf2b2, ufads)

Rule-6 outputm6= min (ufla2, pf2bil, pfads,
pufse2) Rule-7moutput 7= min (ufla2, pf2bi,
ufad3, pfse2)cRule-8 output 8= min (ufial,

HWi+l)

pf2bl, pfad2)

Rule-9 output 9 = min (uf2b2, puf3ci, uf4d2, ufse3d)

Rule- 10 output 10= min (puf1a3, pf3c2)

Rule- 11 output 11= min (uf1a2, uf2b2, uf3c2)

Rule- 12 output 12= min (uf1a3, uf3cl, ufads, ufse2)

The above rule outputs for p-numbers of patterns are used along
with equation to identify the classes of the time series
events.The Fuzzy Expert System provides the output for
corresponding class with some absolute value. But there may be
possibility of small variations in the absolute value of the output
which create confusion for the automatic recognition system to
take proper decision with respect to the class and no-class.
Generally the one output among 12 values should be higher
showing the corresponding class while others should be
comparatively low. But the absolute values of the other 11
outputs (may be little bit higher) may create problem for
drawing a decision boundary for class

[n i Sl D)2 £0,0)]
x4 7 Sl 0K A0, 0 |

(22)
and no-class. Thus in the proposed system, the

corresponding outputs from FES are optimized using
Particle Swarm Optimization technique which results
nearly '1' for the class and nearly '0' no-class. This makes
the designed automatic system more reliable and
accurate to decide for classification of time-series data.
Thealgorithm maintains a population of particles, where
each particle represents a potential solution to the
optimization problem. Each particle finds a position in
the 'N' dimensional feature space and moves in the
multidimensional feature space to find the best optimized
result. The position of the particle is decided as follows:

Xi= The current position of the ith particle
Vi = The current velocity of the ith particle
Yi= The personal best position of the ith

particleThen the particle position is adjusted as

Vi, k (t+1)=WVi k (t) + C1 r1, k ()(Yik () - Xik (t) + C2
r2,k

() - Xik (1)

Xi (t+1)= xi(t) + Vi (t+1) 1)
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where 'i' is the particle and k =1......... N. 'w' is the
inertiaweight, c1 and C2 are the acceleration
constants.

The velocity based on the following

(i) Fraction of the previous velocity

(ii)Distance of the particle from the personal best

position(p-best).

(iii) Distance of the particle from best particle
found (g-best).

IV.  SIMULATION RESULTS
Different disturbances with corresponding classes are
givenas follows

CL1 - Normal

CL2 — Sag

CL3 — Swell

CL4 - Momentary Interruption (MI)

CL5 - Harmonics

CL6 —  Sagwith Harmonic

CL7 - Swell with Harmonic

CL8 ~  Flicker

CL9 - Notch + Harmonics

CL10 - Spike + Harmonics

CL11 - Transient (low frequency)
—

CL12 Transient (high frequency)

The simulation results for class and certainty factor are depicted
in Table.lll and Table.IV respectively. The classes are defined
against the time series data as mentioned above. For CL1
(Normal), the classification results obtained form FES (CL1) is
0.85. But for other patterns the class results are less than 0.3.
Similarly for CL2 (Sag), the FES result (CL2) is 0.9, while other
results are comparatively very low indicating non-class. For
momentary interruptions the CL4 is 0.8 and for flicker CL8 is
0.75, which indicates classification. Similar observations are
made with transient (high frequency) and transient (low
frequency).Another index derived known as Certainty Factor
(Table.4), which is also a measure of the classification results.
For sag, the CF1 is 0.7 and for other patterns CF is less than even
-0.2. For sag and swell, the CF2 and CF3 are 0.75 and 0.7
respectively. Similar observations are made with other time-
series data where the Certainty Factors are highly +ve for
classification and -ve for no-class.Table.V provides the support
values which is the average classification valueover 100 cases
for each time series disturbances. For sag and swell, the support
values are 0.85 (CL1). and 0.8 (CL2)
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respectively. For other disturbances the support values are depicted
as in Table.5. Thus the support value provides therobustness of the
FES system considering all possible conditions of the time series
disturbances.

Table.6 provides the Class and Certainty Factors obtained from FES
for trapezoidal and Gaussian membershipfunctions respectively. The
Class obtained sag is 0.85 for Gaussian MF, while for trapezoidal is
0.80. Similarly the Certainty Factor obtained from Gaussian MF is
0.7, while form trapezoidal MF is 0.65. It is observed that the
Gaussian MF provides better Class and Certainty Factors compared
to trapezoidal MF. Table.VIl provides the Particle Swarm
Optimization (PSO) for the optimizing the class for different time-
series data.

Table 3. Classification Factors for Different Classes

Time Series Data | CLI CL2 | CL3 | CL4 | CL5 | CL6 | CL7 | CL8 | CL9 | CL1O CL11 CL12
CF1 0.85 0.1 0.17 0.2 022 | 018 | 031 | 0.13 | 0.02 0.11 0.18 0.21
CF2 0.1 0.9 0.3 0.2 011 | 013 | 0.15 | 0.10 | 0.22 0.21 0.07 0
CF3 0.11 0.2 0.89 0.1 0.2 0.3 014 | 015 | 0.21 0.22 0.23 0.19
CF4 0.12 0.1 0.14 0.8 0.15 ( 0.18 | 0.19 | 0.12 | 0.09 0.11 0.14 0.13
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CF5 0.15 | 0.08 | 0.17 0.2 0.91 0.3 0.18 | 0.21 0.3 0.33 0.18 0.17
CF6 0.2 009 [ 032 | 031 | 0.27 | 0.95 | 0.23 | 0.22 | 0.01 0.09 0.3 0.1
CF7 0.3 011 | 016 | 019 | 021 | 0.17 | 0.99 0.1 0.2 0.3 0.33 0.34
CFs8 032 | 032 | 017 | 0.16 | 0.22 | 0.18 0.1 075 | 0.11 0.12 0.17 0.19
CF9 033 ( 031 | 019 | 034 | 023 | 019 | 0.14 | 0.27 | 0.83 0.3 0.2 0.21
CF10 0.1 024 | 021 | 033 | 0.19 0.2 0.3 0.25 | 0.19 0.97 0.15 0.21
CF11 0.2 023 | 022 | 032 | 0.33 | 0.22 0.2 0.23 | 0.18 0.34 0.9 0.23
CF12 017 | 022 | 033 | 031 | 014 | 025 | 0.16 | 0.22 | 0.17 0.33 0.3 0.97

Table.4 Certainty Factors for Different Classes

Time-series data CLI CL2 | CL3 | CL4 | CL5 | CL6 | CL7 [ CL8 | CL9 | CLIO CL11 CL12
CF1 0.7 | -013 | -0.05 | -0.02 | -0.003| -0.04 | 0.1 -01 | -0.22 | -0.12 -0.04 -0.01
CF2 -0.11 | 0.75 0.1 (-0.008| -0.1 | -0.08 | -0.06 [ -0.11 | -0.01 | 0.002 -0.15 -0.22
CF3 -0.14 | -0.04 | 0.7 | -0.15| -0.04 | 0.06 | -0.11 [ -0.1 | -0.03 | -0.036 -0.01 -0.06
CF4 -0.07 [ -0.095| -0.05 | 0.668 | -0.045 | -0.008 | -0.019 | -0.07 | -0.1 -0.08 -0.13 -0.06
CF5 -0.125| -0.2 -01 | -0.07 | 0.7 0.03 | -0.09 | -0.06 | 0.03 0.07 -0.09 -0.1
CF6 -0.06 | -0.018( 0.06 | 0.05 | 0.01 [ 0.75 | -0.03 | -0.04 | -0.27 | -0.18 0.04 -0.1
CF7 001 | -0.18 | -0.13 | -0.1 | -0.08 | -0.1 0.7 -0.2 | -0.09 0.01 0.05 0.06
CF8 0.09 | 0.09 | -0.07 | -0.08 | -0.01 | -0.05 | -0.14 | 056 | -0.13 | -0.12 -0.07 -0.04
CF9 003 | 0.01 | -0.11 | 0.04 | -0.07 | -0.11 | -0.1 | -0.02 | 0.58 0.005 -0.1 -0.09
CF10 -0.19 | -0.04 | -0.07 | 0.05 | -0.09 | -0.08 | 0.02 | -0.03 | -0.09 0.75 -0.14 -0.07
CF11 -0.1 | -0.07 | -0.08 | 0.02 | 0.03 | -0.08 | -0.1 | -0.07 | -0.13 0.04 0.65 -0.7
CF12 -0.13 | -0.07 | -0.06 | 0.02 | -0.16 | -0.04 | -0.14 | -0.07 | -0.13 0.04 0.01 0.74

Table.5 Support Values for Different( classes (100 cases each))

Time-series data Support values
CF1 0.81
CF2 0.85
CF3 0.8
CF4 0.75
CF5 0.83
CF6 0.9
CF7 0.9
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CFs8 0.7
CF9 0.79
CF10 0.77
CF11 0.81
CF12 0.8

Table.6 Compression between Trapezoidal and Gaussian MF

Time-series data Gaussian MF Trapezoidal MF

CL CF CL CF
CF1 0.85 0.7 0.80 0.65
CF2 0.9 0.75 0.85 0.69
CF3 0.89 0.7 0.81 0.62
CF4 0.8 0.668 0.74 0.60
CF5 0.91 0.7 0.82 0.62
CF6 0.95 0.75 0.85 0.68
CF7 0.99 0.7 0.88 0.64
CF8 0.75 0.56 0.69 0.51
CF9 0.83 0.58 0.75 0.52
CF1 0.97 0.75 0.87 0.68
Clgl 0.9 0.65 0.79 0.59
CiFl 0.97 0.74 0.89 0.71

Table.7 Results and Comparison from PSO Based Optimization

Time-series data

Gaussian MF PSO optimization

Gaussian MF Without optimization

CL CF CL CF
CL1 0.97 0.95 0.859 0.75
CL2 1 0.93 0.95 0.8
CL3 1 0.93 0.95 0.75
CL4 0.98 0.97 0.877 0.73
CL5 1 091 0.97 0.75
CL6 1 0.97 0.95 0.77
CL7 1 0.92 0.99 0.70
CLs 0.97 091 0.8 0.76
CL9 0.99 0.95 0.95 0.7
CL10 1 0.99 0.98 0.8
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CL11 1 0.899

0.93 0.79

CL12 1 0.93

0.99 0.79

3. CONCLUSION

A novel approach for time series data classification using Fuzzy
Expert System (FES) is presented in this paper. The power
disturbance signals are considered as time-series data for the
proposed study. The time-series data is pre- processed through
the advanced signal processing technique such as S-transform
and the features obtained are fed to the designed FES for
classification. Other indices for accurate classification such as
certainty factors and support values are derived and the obtained
results shows the robustness of the propose technique. Also the
FES outputs are optimized using PSO for further enhancement
of the classification results. The proposed technique is also
tested for features

4. FEATURE SCOPE

The time-series data is pre- processed through the advanced
signal processing technique such as S-transform and the features
obtained arefed to the designed FES for classification.
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