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ABSTRACT 

This paper presents new approach for time series data 

classification using Fuzzy Expert System (FES). In the proposed 

study, the power disturbance signals are considered as time series 

data for testing the designed FES. Initially the time series data are 

pre-processed through the advanced signal processing tool such as 

S-transform and various statistical features are extracted, which are 

used as inputs to the FES. The FES output is optimized i1sing 

Particle Swann Optimization (PSO) to bring the output to distinct 

classification level. Both Gaussian and trapezoidal membership 

functions are selected for designing the proposed FES arid the 

performance measure is derived by comparing the classification 

rates for the time series data without noise and with noise up to 

SNR 20 db. The proposed algorithm provides accurate 

classification rates even under noisy conditions compared to the 

existing techniques, which shows the efficacy and robustness of 

the proposed algorithm for time series data classification 

Keywords 
Time-series data, Fuzzy Expert System, S-transform, Particle 

Swarm Optimization 

1. INTRODUCTION 
The question of wave velocity has been studied since the advent of 

Einstein’s special theory of relativity.[1][2] A central issue is 

whether the speed of light in vacuum c constituted an upper limit to 

the group velocity—the velocity of the peak of a wave packet. The 

consensus of much theoretical work[3][5] is that the group velocity 

is not limited and, in the past few years, a number of experiments 

[6][9] have confirmed that it is possible for optical or electrical 

wave pulses to travel through absorbing, attenuating, or gain 

materials with group velocities greater than c. Furthermore, under 

appropriate conditions, the group velocity can even become 

negative,[10][11] a circumstance in which the peak of the tunneled 

pulse emerges from the output of the medium before the peak of 

the incident pulse has reached the input. Al- though most wave 

propagation phenomena have been explored for electromagnetic 

waves, there is a history of theory and experiment using ultrasonic 

acoustic waves.[3][14][15] Recently, it was predicted through 

numerical modeling[16] that faster-than-light phenomena should 

be observable for ultra- sound pulses. In this letter we 

demonstrate experimentally the transmission of audio-frequency 

acoustic pulses through an asymmetric loop filter with group 

velocities that exceed the speed of light. This work is significant 

for two reasons. First, we confirm the theoretical prediction that, 

under the appropriate conditions, sound pulses can exhibit group 

velocities that surpass the speed of light in vacuum. Second, we 

demonstrate a simple passive acoustic filter system that exhibits a 

negative group velocity. 

The mechanism by which superluminal propagation arises involves 

rephrasing of the spectral components of a pulse by a medium that 

exhibits anomalous dispersion. Anomalous dispersion occurs over 

frequency intervals in which materials exhibit strong absorption, 

attenuation, or gain. The spectral components of a pulse traveling 

through an anomalously dispersive medium recombine in a manner 

such that they replicate the shape of the original pulse but are 

moved forward closer to the leading edge of that pulse. Be- cause 

the tunneling pulse is fashioned from the leading edge of the 

incident pulse, it exits the sample earlier in time. The group velocity 

is defined by the length of the sample divided by the time taken for 

the peak of a pulse to traverse the sample. If anomalous dispersion 

is sufficiently strong the group velocity can exceed the speed of 

light. If the transit time is zero, the peak of the transmitted pulse 

exits at the same time as the peak of the incident pulse reaches the 

input, and the group velocity is infinite. Finally, in the case of very 

strong dispersion, the peak of the transmitted pulse exits before the 

peak of the incident pulse reaches the input, and the group velocity 

is negative. It is now generally agreed that all of these superluminal 

phenomena do not violate special relativity or causality and, in 

particular, it has been shown that the speed of information 

transmission is subluminal[17][18] In all previous optical, 

microwave, or electrical demonstrations the individual spectral 

components of the pulse have velocities close to the speed of light 

and thus realizing sufficient rephrasing to achieve superluminal 

propagation is less surprising. In the experiments described here, 

however, the individual spectral components travel at the speed of 

sound, almost six orders of magnitude slower than the speed of light 

and yet still experience sufficient rephrasing to achieve super- 

luminal velocities. 

Experiments were conducted in a one-dimensional acoustic 

waveguide system constructed from 1.9 cm diameter polyvinyl 

chloride (PVC) pipe. The filter element being characterized was an 

asymmetric loop filter, a type of acoustic interference filter modeled 

on a similar device used in electrical measurements in coaxial cable 

waveguides[12]. The design and dimensions of the acoustic loop 

filter are shown  in Figures below. The loop was created from 

the same type of 1.9 cm diameter PVC pipe used for the 

waveguide and it was connected together using commercially 

available right-angle and T junctions. The asymmetric loop splits 

the guided sound signal along two unequal length paths designated 

as dL and dS (long and short, respectively). By analogy with the 

electrical results reported in Ref. [12], there are two mecha- 

organisms by which the asymmetric loop filter results in dips in 

transmission. The first mechanism is due to destructive inte ference 

that results when the path length ΔL = dL − dS between the long and 

short arms differs by one-half wavelength. The second mechanism 

occurs due to standing wave resonances around the whole length of 

the loop L = dL + dS.  
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Figure 1 (Color) Plots of Gaussian wave packet centered at 

2414 Hz after transmission through straight waveguide 

(blue) and through a single loop filter (red). The red trace 

has been scaled up by a factor of 10. 

Figure2 Signal Amplitude Vs. Time(s) 

 

 
Figure 3 Phase Time and Transmission vs. Frequency 

 
Figure 4 Principal Component Analysis(PCA) with Ranking 
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Figure 5 Principal Component Analysis with attributes 

 

Figure 6 Windows 10 Speech Recognition 

 
Figure 7 Data Acumination producing Digitized Signal 

 
Figure 8 Decision Tree 
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Figure 9 K-means  Clustering 

 

Figure 10 Pattern Recognition of  Speech 
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Figure 10 Pattern Recognition of  Speech using Classifier 

 
Figure 11  Decision Matrix 
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Figure 12 Principal Component Analysis 

 

Figure 13 Pattern Recognition 

 

Figure 14 Hierical Clustering 



International Journal of Computer Applications (0975 – 8887) 

Volume 184– No.21, July 2022 

30  

 

Figure 15 Support Vector Machine 

 
Figure 16 Partition based Clustering 

 
Figure 17 Particle Swam Optimization 
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Figure 18  Speech Recognition Dataset 

 
Figure 19 Speech Recognition Pattern 

The experiments consisted of two measurement types. First, 

we used very short acoustic impulses that contained a broad 

frequency spectrum to determine the filtering proper- ties of 

our asymmetric loop structure. Fourier analysis of the impulse 

response led us to discover the frequency ranges in which we 

could expect to measure negative group delays and hence 

superluminal acoustic group velocities. The second part of the 

experiment used narrow bandwidth acoustic pulses with a 

Gaussian envelope to demonstrate explicitly the negative 

group delay. In both experiments we compared transmission 

through a loop filter to transmission through a straight 

waveguide. The straight waveguide segment that re- placed 

the filter in the reference measurements was equal in length to 

the short arm of the loop filter (dS) such that the shortest 

physical h between the source and detector was identical in 

both measurements. 

The experimental configuration is shown schematically in 

Figure. 1. The computer sound card was used to produce an 

audio and a trigger signal on the respective channels of the 

stereo output. The audio signal was amplified and sent to the 

speaker (Alesis Monitor One) which was coupled to the in- 

put end of the waveguide. The audio signal was either an 

impulse or a narrow-band Gaussian envelope depending on 

the type of experiment being performed. At the output end of 

the waveguide, the transmitted audio signal was detected by a 

condenser microphone (ACO 7013), amplified, and digitized 

by the analog-to-digital converter (IOtech 3000 USB). The 

trigger signal from the second stereo channel consisted of a 

narrow square pulse that was routed to the trigger input 

Figure 2.  

Plot of the impulse as a function of time through the straight 

wave- guide (upper plot) and through the loop filter (lower 

plot).in order to initiate data acquisition. To achieve high 

signal- to-noise ratio data we used an add-and-average 

technique described previously.[19] The loop filter was 

located in the cen- ter of a long (8 m) section of waveguide in 

order to provide a large time window free from multiple 

reflections from the discontinuities at the filter, speaker, and 

microphone. 
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2. PROPOSED PATTERN 

CLASSIFICATION SCHEME 
The proposed technique includes pre-processing the time-

series data using S-transform and various statistical features 

are derived from the S-matrix generated form S-

transformation. Basically the features are in frequency 

domain. The extracted features are fed to the FES driven by a 

set of fuzzy rules. Each feature is characterized by a  

2.1 S-TRANSFORM BASED 

FEATURE EXTRACTION 
The time series data generated from various kinds of 

disturbance signals are preprocessed through the advanced 

signal processing technique such as S-transform. The 

multiresolution S-transform originates from two-advanced 

signal processing tools; the Short- time Fourier transform 

(STFT) and the Wavelet transform [11, 12, 13]. It can be 

viewed as a frequency dependent STFT or a phase corrected 

wavelet transform. Due to the frequency dependent window 

used for analysis of a signal data, the multiresolution S- 

transform has been proven in [11] to perform better than other 

time-frequency transforms. Furthermore, it provides superior 

time-frequency localization property computing both 

amplitude and phase spectrum of discrete data samples. It was 

shown in [12] that the S-transform would be useful for 
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classifying power signal time series disturbances. Also it is 

less susceptible to noise than the wavelet transform approach. 

The S-transform of a signal h(t) is defined as 

 

S(t,f) =                (1) 

 

where S (t, f) =                             (2) 

and * stands for complex-conjugate. The parameter sets the 

width of the window for a given frequency. For small, the 

time resolution improves and the frequency resolution 

deteriorates. The reverse happens when it is increased to a 

larger value. S-transform produces a multiresolution analysis 

like a bank of filters with constant relative bandwidth. The 

integration of S-transform over time results in the Fourier 

spectrum that is 

(f) =   (3) 

and for the Gaussian window 

 

  (4) 

 

The original signal can be obtained from S-transform as 

 

                    (5) 

 

Another way to represent S-transform is an amplitude and 

phase correction of the CWT (continuous wavelet transform) 

as 

 

S(t,f) =                            (6) 

 

Where the wavelet transform is given by 

                                        (7) 

The equation(6) shows that the time-frequency resolution is 

distributed in the time frequency plane like wavelet transform 

but a direct link with Fourier transform exists 

The term H[n] is the DFT of the time series h(t) and can be 

computed using FFT algorithm 

 

S(j, n) =                     (8) 

where G(m,n) =                                       (9) 

and j,m and n = 0,1,……,n-1. 

 

The computational efficiency of FFT is used to calculate the S-

transform and the total number of operations is N (N+NlogN). 

 

The amplitude and phase spectrum of S-transform are given by 

 A = abs(S(n, j)) 

(10) 

A novel approach for time series data classification using 

Fuzzy Expert System (FES) is presented in this paper. The 

power disturbance signals are considered as time-series data 

for the proposed study. The time-series data is pre- processed 

through the advanced signal processing technique such as S-

transform and the features obtained are fed to the designed 

FES for classification. Other indices for accurate classification 

such as certainty factors and support values are derived and 

the obtained results shows the robustness of the propose 

technique. Also the FES outputs are optimized using PSO 

for further enhancement of the 

Time series data. 

The S-transform output shown in the figures includes the 

signal, S-contours, time-frequency contours, and amplitude 

and frequency contents. The S-contours provides the 

information regarding the time-localization of the time series 

data. As shown in the figures, the time- localization takes 

place in frequency domain instantly with the disturbance in 

the time scale. The aptitude information is also calculated for 

the S-matrix resulted from the S- transform. It shows the 

amplitude variation in the time- series data. Also the 

frequency content of the time-series data is calculates from 

the S-matrix to know the frequency content of the time-series 

data. As seen in the figures, the contains only one peak in the 

frequency characteristics while in case of transients there are 

two peaks with higher frequency values.classification results. 

The proposed technique is also tested for features  

Due to the frequency dependent window used for analysis of a 

signal data, the multiresolution S- transform has been proven 

in [11] to perform better than other time-frequency 

transforms. Furthermore, it provides superior time-frequency 

localization property computing both amplitude and phase 

spectrum of discrete data samples. It was shown in [12] that 

the S-transform would be useful for classifying power signal 

time series disturbances. 

 The multiresolution S-transform originates from two-

advanced signal processing tools; the Short- time Fourier 

transform (STFT) and the Wavelet transform [11, 12, 13]. It 

can be viewed as a frequency dependent STFT or a phase 

corrected wavelet transform. Due to the frequency dependent 

window used for analysis of a signal data, the multiresolution 

S- transform has been proven in [11] to perform better than 

other time-frequency transforms. Furthermore, it provides 

superior time-frequency localization property computing both 

amplitude and phase spectrum of discrete data samples. It was 

shown in [12] that the S-transform would be useful for 

classifying power signal time series disturbances. 

2.2  PRE-PROCESSING OF TIME- 

SERIES DATA THROUGH S- 

TRANSFORM 
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The S-transform output shown in the figures includes the signal, 

S-contours, time-frequency contours, and amplitude and 

frequency contents. The S-contours provides the information 

regarding the time-localization of the time series data. As shown 

in the figures, the time- localization takes place in frequency 

domain instantly with the disturbance in the time scale. The 

aptitude information is also calculated for the S-matrix resulted 

from the S- transform. It shows the amplitude variation in the 

time- series data. Also the frequency content of the time-series data 

is calculates from the S-matrix to know the frequency content of the 

time-series data. As seen in the figures, the contains only one peak 

in the frequency characteristics while in case of transients there are 

two peaks with higher frequency values. This indicates sag is a low 

frequency phenomena which only contains one peak with other 

values nearly zero. But in case of transients, the more than one 

number of peaks indicates presence of higher harmonics in 
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the time-series data. This provides vital information for father 

analysis 

2.3 FEATURE EXTRACTION 
Four features were extracted from the S-transform output. They 

are: 

1. F1 = max (A) + min (A)  - max (B) - min (B). 

where A is the amplitude versus time graph from 

the S-matrix under disturbance and B is the 

amplitude versus time graph of the S-matrix without 

disturbance. 
2. F2= Standard deviation of max (abs(s)). 
3. F3= Energy in the S-transform output. 
4. F4= Total harmonic distortion (THD). 
5.   F5= Estimated frequency hours the maximum amplitude 

 

Table I Features Extracted From S-Transform 

 

Disturbances Fl F2 F3 F4 F5 

Normal 1.002     

Sag (60%) 0.593 0.053 0.031 0.0312 50.0 

Swell (50%) 1.50 0.0129 0.076 0.015 50.00 

Momentary Interruption (MI) (5%) 0.0724 0.035 0.019 0.0350 50.00 

Harmonics (0% 3rd + 10% 5th) 1.0 0.0339 0.0556 0.141 50.00 

Sag with Harmonic (60%) 0.601 .0228 0.0408 0.1139 50.00 

Swell with Harmonic (50%) 1.5 .0219 0.079 0.1155 50.00 

Flicker (5 Hz, 4%) 0.987 .0168 0.026 0.0186 55.00 

Notch + harmonics 0.939 0.131 0.0529 0.136 56.25 

Spike + harmonics 1.065 0.141 0.0627 0.1308 56.25 

Transient (low frequency) 0.493 0.138 0.0163 0.01 705.00 

Transient (high frequency)  0.149 0.014 0.043 2520.00 

 

Table 2. Features Extracted From S-transform with SNR 20DB 

 

Disturbances Fl F2 F3 F4 F5 

Normal 0.9963 0.001 0.052 0.028 50.00 

Sag (60%) 0.591 0.022 0.039 0.027 50.00 

Swell (50%) 1.503 0.012 0.076 0.029 50.00 

Momentary Interruption (MI) 0.070 0.0387 0.0323 0.044 50.00 

Harmonics 1.032 0.050 0.064 0.25 50.00 

Sag with Harmonic (60%) 0.601 0.0228 0.0408 0.1139 50.00 

Swell with Harmonic (50%) 1.500 0.0219 0.079 0.1155 50.00 

Flicker (4%, 5 Hz) 0.998 0.0209 0.027 0.1159 55.00 

Notch + harmonics 0.940 0.1275 0.0531 0.198 50.00 

Spike + harmonics 1.072 0.141 0.066 0.204 50.00 

Transient (low 1.000 0.1473 0.0148 0.0566 440.00 

frequency)      

Transient (high frequency) 1.0384 0.155 0.014 0.068 3315.00 

 

Two nonstationary time series databases like sag and transient 

which occur very frequently in power networks are given in a 

separate table to highlight the variations in the feature values for 

the same event: 

 

2.4 FUZZY EXPERT SYSTEM (FES) 
A Fuzzy Expert System has two key elements, (i) fuzzy sets and (ii) 

fuzzy rule base. A fuzzy set can be fully defined by its membership 

functions. Fuzzy rules offer human-like reasoning capabilities and 

provide transparent interface mechanism. In the proposed pattern 



International Journal of Computer Applications (0975 – 8887) 

Volume 184– No.21, July 2022  

48 

classification technique, the features extracted from S-transform, 

are fed to the FES with trapezoidal and Gaussian membership 

functions. A fuzzy rule base is developed for exact classification 

of the time-series data for 12 classes. The following sections deal 

with the membership function (MF) and fuzzy rule base. In 

classical fuzzy expert system the knowledge base constitute a set 

of rules derived from the statistical knowledge pre-processing the 

time-series data. The knowledge base, however, needs to be 

adapted with changes in the operating conditions, addition of 

spurious disturbances, and noise that might be superimposed 

over the data. This requires addition of new rules if necessary 

and a correct choice of membership functions to analyze the 

data. 

The fuzzy if-then rules are in the following form for the n- 

dimensional pattern recognition problem: 

Rule R1: If X1 is A21 and Xn is Ain 

The consequent Class Ci with classification factor CFi, where R, 

is the ith rule of the fuzzy rule base, x = (X 1, X2, 

………,Xn.,) is n-dimensional pattern vector and A, is an 

antecedent fuzzy set, Ci the consequent class out of N classes, 

and classification factor CFi in the interval [0, 1] is the certainty 

factor also termed as rule weight. In data mining problem, two 

measures known as confidence and support are used for finding 

the association rule in the form 

         (18) 

The confidence c and support of each fuzzy rule R is written as 

c =                     (19) 

where p denotes the pth pattern and m is the total number of 

patterns used for classification. 

The compatibility grade of the pth pattern is obtained as 

 

(12) 

 

and  is the membership value of the     

to the set  p € class  . 

The support s of a fuzzy rule indicates the grade of 

coverage by (  

(consequent) is given by s =           (13) 

To obtain the consequent class  from the fuzzy rule 

base Ri, the confidence measure is obtained from the 

antecedent fuzzy sets as 

(14) 

denotes the recognized classes 

of non-stationary time-series data. 

The expression for support s is obtained in the same way 
as 

(15) 

For finding the classification performance of the fuzzy 

rule base, it is envisaged to use a single winner rule 

methods. 

A single winner rule is selected from the set of 

classifying (  as 

 

max                               (16) 

The single winner rule posses the highest 

compatibility index in comparison to other rules in 

the rule base. 

However, if two rules have the same compatibility index, 

the pattern is not classified. 

The certainty factor or the rule weight is found as 

 = c - (17) 

where c is given by equation (17 ) 

and                         (20) 

2.5 MEMBERSHIP FUNCTIONS 
 For generating fuzzy rules, two types of membership functions 

namely trapezoidal and gaussian are used for classification. 

(i) Trapezoidal MF : 
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Figure 20 Trapezoidal Member Function 

 

 
Figure 21 Triangular Member Function 
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I. Gaussian MF 

In a similar way, the Gaussian membership function is 

defined as in following figure. 

where α1 is the mean of the ith attribute value of xpi, of class c 

patterns and  σi  is the standard deviation. 

 

 

Figure 22 Gaussian Member Function 

II. THE FOLLOWING FUZZY IF- THEN 

RULES ARE USED FOR BUILDING THE FUZZY 

RULE BASE LEADING TO A FUZZY EXPERT 

SYSTEM 

Fuzzy Rule Base: 
Rule-1 If F1 is A3 and F2 is B1 and F3 is C2 and F4 is 

D2, then CL1 with CF1 

Rule-2 If F1 is A1 and F2 is B1 and F4 is D2, then CL2 

with CF2. 

Rule-3 If F1 is A4 and F2 is B1 and F4 is D2, then CL3 

with CF3 

Rule-4 If F1 is Al and F2 is B1, then CL4 with CF4 

Rule-5 If F1 is A3 and F2 is B2 and F4 is D3, then CL5 

with CF5. 

Rule-6 If F1 is A2 and F2 is B1 and F4 is D3 and F5 is 

E2, then CL6 with CF6 

Rule-7 If F1 is A4 and F2 is B1 and F4 is D3 and F5 is 

E2, then CL7 with CF7 

Rule-8 If F1 is Al and F2 is B1 and F4 is D3, then CL8 

with CF8 

Rule-9 If F2 is B2 and F3 is C1 and F4 is D2 and F5 is 

E3, then CL9 with CF9 

Rule-10 If F1 is A3 and F3 is C2, then CL 10 with CF 10 

Rule-11 If F1 is A2 and F2 is B2 and F3 is C2, then   CL 11 

with CF 11 

Rule-12 If F1 is A3 and F2 is B1 and F3 is C1 and F4 is 

D3 and F5 is E2, then CL12 with CF12 

 

III. OUTPUT FROM FUZZY 

INFERENCE SYSTEM 

 

Rule- I output 1= min (fµ1a3, µf2b1, µf3c2, 

µf4d2) Rule-2 output 2 = min (µf1a1, µf2b1, 

µf4d2) Rule-3 output 3= min (µf1a4, µf2b1, 

µf4d2) 

Rule-4 output 4 = min (µf1a1, µf2b1, 

µf3c1) Rule-5 output   5 = min (µf1a3, 

µf2b2, µf4d3) 

Rule-6 output 6= min (µf1a2, µf2b1, µf4d3, 

µf5e2) Rule-7 output 7= min (µf1a2, µf2b1, 

µf4d3, µf5e2) Rule-8 output 8= min (µf1a1, 

µf2b1, µf4d2) 

Rule-9 output 9 = min (µf2b2, µf3c1, µf4d2, µf5e3) 

Rule- 10 output 10= min (µf1a3, µf3c2) 

Rule- 11 output 11= min (µf1a2, µf2b2, µf3c2) 

Rule- 12 output 12= min (µf1a3, µf3c1, µf4d3, µf5e2) 

The above rule outputs for p-numbers of patterns are used along 

with equation to identify the classes of the time series 

events.The Fuzzy Expert System provides the output for 

corresponding class with some absolute value. But there may be 

possibility of small variations in the absolute value of the output 

which create confusion for the automatic recognition system to 

take proper decision with respect to the class and no-class. 

Generally the one output among 12 values should be higher 

showing the corresponding class while others should be 

comparatively low. But the absolute values of the other 11 

outputs (may be little bit higher) may create problem for 

drawing a decision boundary for class 

(22) 

and no-class. Thus in the proposed system, the 

corresponding outputs from FES are optimized using 

Particle Swarm Optimization technique which results 

nearly '1' for the class and nearly '0' no-class. This makes 

the designed automatic system more reliable and 

accurate to decide for classification of time-series data. 

The algorithm maintains a population of particles, where 

each particle represents a potential solution to the 

optimization problem. Each particle finds a position in 

the 'N' dimensional feature space and moves in the 

multidimensional feature space to find the best optimized 

result. The position of the particle is decided as follows: 
xi= The current position of the ith particle 
vi =          The current velocity of the ith particle 

Yi = The personal best position of the ith 

particle Then the particle position is adjusted as 
Vi, k (t + 1) = WVi, k (t) + C1 r1, k (t)(Yi,k (t) - Xi,k (t) + C2 
r2,k 

(t) - Xi,k (t) 

xi (t + 1) = x (t) + Vi (t + 1)                     (21)                     
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where 'i' is the particle and k =1………N. 'w' is the 

inertia weight, c1 and C2 are the acceleration 

constants. 
The velocity based on the following 

(i) Fraction of the previous velocity 

(ii) Distance of the particle from the personal best 

position (p-best). 

(iii) Distance of the particle from best particle 

found (g- best). 

IV. SIMULATION RESULTS 

Different disturbances with corresponding classes are 

given as follows 

CL 1 Normal 

CL2 Sag 

CL3 Swell 

CL4 Momentary Interruption (MI) 

CL5 Harmonics 

CL6 Sag with Harmonic 

CL7 Swell with Harmonic 

CL8 Flicker 

CL9 Notch + Harmonics 

CL10 Spike + Harmonics 

CL11 Transient (low frequency) 

CL12 Transient (high frequency) 

The simulation results for class and certainty factor are depicted 

in Table.III and Table.IV respectively. The classes are defined 

against the time series data as mentioned above. For CL1 

(Normal), the classification results obtained form FES (CL1) is 

0.85. But for other patterns the class results are less than 0.3. 

Similarly for CL2 (Sag), the FES result (CL2) is 0.9, while other 

results are comparatively very low indicating non-class. For 

momentary interruptions the CL4 is 0.8 and for flicker CL8 is 

0.75, which indicates classification. Similar observations are 

made with transient (high frequency) and transient (low 

frequency).Another index derived known as Certainty Factor 

(Table.4), which is also a measure of the classification results. 

For sag, the CF1 is 0.7 and for other patterns CF is less than even 

-0.2. For sag and swell, the CF2 and CF3 are 0.75 and 0.7 

respectively. Similar observations are made with other time-

series data where the Certainty Factors are highly +ve for 

classification and -ve for no-class.Table.V provides the support 

values which is the average classification value over 100 cases 

for each time series disturbances. For sag and swell, the support 

values are 0.85 (CL1). and 0.8 (CL2) 

respectively. For other disturbances the support values are depicted 

as in Table.5. Thus the support value provides the robustness of the 

FES system considering all possible conditions of the time series 

disturbances. 

 

Table.6  provides the Class and Certainty Factors obtained from FES 

for trapezoidal and Gaussian membership functions respectively. The 

Class obtained sag is 0.85 for Gaussian MF, while for trapezoidal is 

0.80. Similarly the Certainty Factor obtained from Gaussian MF is 

0.7, while form trapezoidal MF is 0.65. It is observed that the 

Gaussian MF provides better Class and Certainty Factors compared 

to trapezoidal MF. Table.VII provides the Particle Swarm 

Optimization (PSO) for the optimizing the class for different time-

series data. 

 

Table 3. Classification Factors for Different Classes 

 

Time Series Data CLI CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9 CL1O CL11 CL12 

CF1 0.85 0.1 0.17 0.2 0.22 0.18 0.31 0.13 0.02 0.11 0.18 0.21 

CF2 0.1 0.9 0.3 0.2 0.11 0.13 0.15 0.10 0.22 0.21 0.07 0 

CF3 0.11 0.2 0.89 0.1 0.2 0.3 0.14 0.15 0.21 0.22 0.23 0.19 

CF4 0.12 0.1 0.14 0.8 0.15 0.18 0.19 0.12 0.09 0.11 0.14 0.13 
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CF5 0.15 0.08 0.17 0.2 0.91 0.3 0.18 0.21 0.3 0.33 0.18 0.17 

CF6 0.2 0.09 0.32 0.31 0.27 0.95 0.23 0.22 0.01 0.09 0.3 0.1 

CF7 0.3 0.11 0.16 0.19 0.21 0.17 0.99 0.1 0.2 0.3 0.33 0.34 

CF8 0.32 0.32 0.17 0.16 0.22 0.18 0.1 0.75 0.11 0.12 0.17 0.19 

CF9 0.33 0.31 0.19 0.34 0.23 0.19 0.14 0.27 0.83 0.3 0.2 0.21 

CF10 0.1 0.24 0.21 0.33 0.19 0.2 0.3 0.25 0.19 0.97 0.15 0.21 

CF11 0.2 0.23 0.22 0.32 0.33 0.22 0.2 0.23 0.18 0.34 0.9 0.23 

CF12 0.17 0.22 0.33 0.31 0.14 0.25 0.16 0.22 0.17 0.33 0.3 0.97 

Table.4 Certainty Factors for Different Classes 

 

Time-series data CLI CL2 CL3 CL4 CL5 CL6 CL7 CL8 CL9 CLIO CL11 CL12 

CF1 0.7 -0.13 -0.05 -0.02 -0.003 -0.04 0.1 -0.1 -0.22 -0.12 -0.04 -0.01 

CF2 -0.11 0.75 0.1 -0.008 -0.1 -0.08 -0.06 -0.11 -0.01 0.002 -0.15 -0.22 

CF3 -0.14 -0.04 0.7 -0.15 -0.04 0.06 -0.11 -0.1 -0.03 -0.036 -0.01 -0.06 

CF4 -0.07 -0.095 -0.05 0.668 -0.045 -0.008 -0.019 -0.07 -0.1 -0.08 -0.13 -0.06 

CF5 -0.125 -0.2 -0.1 -0.07 0.7 0.03 -0.09 -0.06 0.03 0.07 -0.09 -0.1 

CF6 -0.06 -0.018 0.06 0.05 0.01 0.75 -0.03 -0.04 -0.27 -0.18 0.04 -0.1 

CF7 0.01 -0.18 -0.13 -0.1 -0.08 -0.1 0.7 -0.2 -0.09 0.01 0.05 0.06 

CF8 0.09 0.09 -0.07 -0.08 -0.01 -0.05 -0.14 0.56 -0.13 -0.12 -0.07 -0.04 

CF9 0.03 0.01 -0.11 0.04 -0.07 -0.11 -0.1 -0.02 0.58 0.005 -0.1 -0.09 

CF10 -0.19 -0.04 -0.07 0.05 -0.09 -0.08 0.02 -0.03 -0.09 0.75 -0.14 -0.07 

CF11 -0.1 -0.07 -0.08 0.02 0.03 -0.08 -0.1 -0.07 -0.13 0.04 0.65 -0.7 

CF12 -0.13 -0.07 -0.06 0.02 -0.16 -0.04 -0.14 -0.07 -0.13 0.04 0.01 0.74 

 

Table.5 Support Values for Different( classes (100 cases each)) 

 

Time-series data Support values 

CF1 0.81 

CF2 0.85 

CF3 0.8 

CF4 0.75 

CF5 0.83 

CF6 0.9 

CF7 0.9 
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CF8 0.7 

CF9 0.79 

CF10 0.77 

CF11 0.81 

CF12 0.8 

 

Table.6 Compression between Trapezoidal and Gaussian MF 

 

Time-series data Gaussian MF Trapezoidal MF 

CL CF CL CF 

CF1 0.85 0.7 0.80 0.65 

CF2 0.9 0.75 0.85 0.69 

CF3 0.89 0.7 0.81 0.62 

CF4 0.8 0.668 0.74 0.60 

CF5 0.91 0.7 0.82 0.62 

CF6 0.95 0.75 0.85 0.68 

CF7 0.99 0.7 0.88 0.64 

CF8 0.75 0.56 0.69 0.51 

CF9 0.83 0.58 0.75 0.52 

CF1
0 

0.97 0.75 0.87 0.68 

CF1
1 

0.9 0.65 0.79 0.59 

CF1
2 

0.97 0.74 0.89 0.71 

 

Table.7 Results and Comparison from PSO Based Optimization 

 

Time-series data Gaussian MF PSO optimization Gaussian MF Without optimization 

CL CF CL CF 

CL1 0.97 0.95 0.859 0.75 

CL2 1 0.93 0.95 0.8 

CL3 1 0.93 0.95 0.75 

CL4 0.98 0.97 0.877 0.73 

CL5 1 0.91 0.97 0.75 

CL6 1 0.97 0.95 0.77 

CL7 1 0.92 0.99 0.70 

CL8 0.97 0.91 0.8 0.76 

CL9 0.99 0.95 0.95 0.7 

CL10 1 0.99 0.98 0.8 
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CL11 1 0.899 0.93 0.79 

CL12 1 0.93 0.99 0.79 

 

3. CONCLUSION 
A novel approach for time series data classification using Fuzzy 

Expert System (FES) is presented in this paper. The power 

disturbance signals are considered as time-series data for the 

proposed study. The time-series data is pre- processed through 

the advanced signal processing technique such as S-transform 

and the features obtained are fed to the designed FES for 

classification. Other indices for accurate classification such as 

certainty factors and support values are derived and the obtained 

results shows the robustness of the propose technique. Also the 

FES outputs are optimized using PSO for further enhancement 

of the classification results. The proposed technique is also 

tested for features  

4. FEATURE SCOPE 
The time-series data is pre- processed through the advanced 

signal processing technique such as S-transform and the features 

obtained are fed to the designed FES for classification. 
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