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ABSTRACT 

Hyperspectral image classification (HSI) is a fantastic 

approach for assessing diverse land cover utilizing remotely 

sensed hyperspectral images and has been an established 

research topic. The term classification is used in remote 

sensing to refer to the process of assigning individual pixels to 

a group of classes. The utilization of CNN for HSI 

classification is likewise noticeable in ongoing works. These 

approaches are generally founded on 2-D CNN. For practical 

purposes, a 2D Convolutional Neural Network (CNN) is a 

viable option; however, these models do not provide high-

quality feature maps because a 3D data cube, a Hyperspectral 

image,contains both two-dimensional spatial information 

(image feature) and one-dimensional spectral information 

(spectral-bands). Therefore, 3D CNN can be another option, 

yet it has high computational complexity because of the 

volume and spectral dimensions. This paper proposed a 3D 

CNN model that achieves excellent results by combining 

spatial and spectral feature maps. The performance of our 

proposed method is approved using three standard HSI 

datasets (Pavia University, Indian Pines, and Salinas), and the 

outcomes are further compared with several state-of-the-art 

methods. 
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1. INTRODUCTION 
Hyperspectral images are made up of hundreds of spectral 

bands, each of which holds comprehensive spectral 

information. Hyperspectral sensors and imaging spectrometers 

have made hyperspectral imaging systems one of the most 

important remote sensing technologies, and they are now 

widely utilized in urban mapping, military operations, 

agriculture, geology, mineral detection, and many other fields 

[1]. A hyperspectral image (HSI) is multidimensional and has 

a huge set of information that can be used to identify special 

features in a scene. As a result, hyperspectral sensors are 

being put on a growing number of satellites, allowing them to 

produce imagery with extensive spectral information.  

There are two ways of classifying hyperspectral image (HSI): 

One is with a handcrafted feature extraction method and 

another with a learning-based feature extraction method. In 

the past time, several HSI classification techniques have been 

developed. Such as, Qian and Yang developed 

HyperspectralImage Classification by Multiscale Joint 

Collaborative Representation and Locally Adaptive 

Dictionary [2]. That locally adaptive dictionary is used to 

reduce the influence of irrelevant pixels on representation, and 

The MLJCR method is used for classifying a hyperspectral 

image. Fang [3] has proposed a new Spatial–Spectral feature 

extraction Method and has utilized the local covariance matrix 

to develop the relationship between different spectral bands. 

They classified using a support vector machine and used those 

covariance matrices to train HSI. For combining spatial and 

spectral information, a composite kernel is used for HSI 

classification [4]. Jun Li and Xin Huang [5] have developed a 

model for multiple feature learning for the classification of 

hyperspectral images. Some other approaches of handcrafted 

are a joint sparsity model by Qishuo Gao [6], 3D discrete 

cosine transform by Shrutika  & Prabukumar [7], entropy-

based classification for hyperspectral band selection, and 

Spatial residual clustering by P. Gao, J. Wang [8], multiple 

scales and superpixels with guided filter [9], etc. The 

convolutional neural network (CNN) has gained popularity as 

a state-learning-based feature extraction method due to its 

significant improvement over hand-designed techniques.  

Convolution neural networks (CNNs) are widely used in 

image identification and segmentation that considers pixels 

spatial correlation and have a uniquely built deep learning 

architecture. Successful examples of CNN’s include AlexNet: 

ImageNet Classification with Deep Convolutional Neural 

Networks [10], VGG [11], InceptionNet/GoogleNet [12], 

ResNet: Deep Residual Learning for Image Recognition [13] 

and DenseNet: Densely Connected Convolutional Networks 

[14]. Existing CNNs, on the other hand, are used for 

conventional image classification tasks instead of 

hyperspectral image classification tasks, which require 

efficient subjugation of both spatial and spectral 

correspondences. Very auspicious performance has been 

shown where visual information processing is required by the 

CNN in many applications, such as image classification [15], 

[16], semantic segmentation [17], object recognition [18], face 

anti-spoofing [19], colon cancer cataloging [20], depth 

guesstimate [21] and so on. This study demonstrates the huge 

improvements being made in deep learning for HSI analysis. 

Therefore, this paper proposes a Hybird3DNet classification 

method for Hyperspectral Image (HSI). This procedure first 

divides the HSI data cube into small 3D patches that overlap. 

These patches are used to construct 3D feature maps over 

various adjacent bands using the 3D kernel function, 

preserving joint spatial and spectral information for the 

feature learning process and exploiting important 

discrimination information for HSI classification. Factor 

Analysis (FA) is used in the preprocessing step to eliminate 

redundant bands and extract the few relevant bands from the 

entire HSI data cube. Later the model is trained by the 3D 

CNN classifier in an end-to-end fashion, which contains a 

smaller amount of parameters than other 2D or 3D CNN 

models. Finally, the experimental results of this comparative 

study demonstrated that the proposed method outperforms 

existing state-of-the-art 2D or 3D CNN-based HSI 

classification methods presented in the literature. 
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The other sectionsof the paper are divided as follows: the 

proposed methodology is presented in Section 2. The 

experimental datasets, results, and discussion are depicted in 

Section 3. Finally, Section 4 concludes the work by outlining 

possible future research directions. 

2. PROPOSED METHOD 

2.1  Factor analysis (FA)  
Factor analysis (FA) consists of procedures describing each 

variable's contribution (band) from the exploration of 

covariance. The underlying structure of large variables 

(bands) is examined by Factor analysis. Therefore, it is also a 

statistical technique that determines variability in terms of 

fewer unobserved variables (band) among observed variables 

(band) and interprets using factor scores or components. This 

approach aims to redirect the variables (band) so that many 

core variables (band) can be comparatively compressed with a 

few factors that capture the most potential data variation from 

the original dataset. So, Factor analysis calculates the amount 

of variability in the data due to common factors [22].  

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Latent factor drive from observed variables(band). 

Figure 1 showsZn= [Z1,Z2,Z3,...........Zn] is a set of observable 

random variables with the mean vector 𝜇=𝜇1, 𝜇1……𝜇𝑛. The 

factor analysis equation assumes as follows: 

 

𝑍=𝜇+𝜆𝐾+𝑒 

 

Where λ is denoted as the matrix of factor loadings with a 

vector of latent factor scores Kn= [K1,K2,K3,...........Kn] and 

𝑒𝑛= [𝑒1,𝑒2,𝑒3,...........𝑒𝑛 ] denotes the vector of latent error 

terms. Under the factor analysis process, the covariance 

matrix of the observable random variable 𝑍 is estimated as 

follows: 

 

𝐶𝑜𝑣(𝑍)= 𝜆𝜆′+𝜑 

 

Here, 𝜑 is a diagonal matrix. The kthdiagonal element of λλ′, 

the addition of the values of the squared loading, is called the 

kthcommonality, which shows the percent of variability 

explained by the common factors. The kthdiagonal element of 

𝜑 is called the kth specific variance. 

2.2 Hybrid 3DNet 
Let's consider a hyperspectral data cube can be signified by 

Iϵ𝑅𝐿×𝑆×𝐵 , where I is the original input, L is the Height, S is 

the              

Width and B are the numbers of spectral bands/distance. For 

all the pixels of the input image, data cube I, has spectral 

measures denoted by B that form a one-hot label vector Y= 

(𝑌1,𝑌2, 𝑌𝑐 ) ϵ𝑅1×1×𝐶 , where C represents the land-cover 

categories. However, the pixels of the hyperspectral image 

exhibit the mixed land-cover classes and introducing the high 

interclass variability and interclass similarity into I. Any 

classification model faces the challenge to get rid of this 

problem. To overcome the aforementioned issue, we remove 

the spectral redundancy first. For this, Factor analysis (FA), 

which was previously mentioned, the original HSI data (I) and 

spectral bands had gone through this dimension reduction 

procedure. For maintaining the same spatial dimensions (i.e., 

width L and height S), the number of spectral bands is 

reduced from B to M. This procedure has reduced only 

spectral bands and preserves spatial information which is very 

important for recognizing an object. The FA reduced data 

cube is denoted by Xϵ𝑅𝐿×𝑆×𝑀 , where X is the modified input 

after FA, L is the width, S is the height, and M is the number 

of spectral bands after FA. 

Table 1. Layer-wise summary of the proposed 

Hybrid3Dnet architecture. With window size 25 ×25. The 

last layer is based on the PU data set 

Layer (type) Output Shape No of Param # 

input_1(Input Layer) (None, 25, 25, 7, 1) 0 

conv3d (Conv3D) (None, 23, 23, 3, 8) 368 

conv3d_1 (Conv3D) (None, 21, 21, 1, 16) 3472 

conv3d_2 (Conv3D) (None, 19, 19, 1, 32) 4640 

conv3d_3 (Conv3D) (None, 17, 17, 1, 64) 18496 

flatten (Flatten) (None, 184960) 0 

dense (Dense) (None, 256) 4735232 

dropout (Dropout) (None, 256) 0 

dense_1 (Dense) (None, 128) 32896 

dropout_1 (Dropout) (None, 128) 0 

dense_2 (dense) (None, 16) 2064 

                In total,9,528,937 trainable parameters are required 

 

For the application of image classification techniques, the HSI 

data cube was partitioned into small corresponding 3-D-

patches whose truth positions are specified by the position of 

the central pixel. Here are the three-dimensional neighboring 

patches Pϵ𝑅𝐿×𝑆×𝐵  from X, with their centers located at the 

spatial coordinates (a, b) is covering the W×W window or 

spatial region and all M spectral bands. The total number of 

three-dimensional patches (n) is denoted by the expression (L 

−W +1) × (S −W +1). As a result, the 3-D- patch at (a, b), 

indicated by 𝑃𝑎,𝑏  covers the width from a − (W −1)/2 to a + 

(W–1)/2, height from b − (W −1)/2 to b + (W −1)/2, and all M 

spectral bands of FA reduced data cube X. 

The 3-D convolution method was carried out using a 3-D 

kernel and 3-D data [23]. Using the 3-D kernel throughout 

many neighboring bands in the input layer to build the feature 

maps of the convolution layer is our proposed model for HSI 

data. The spectral information and the activation values at 

spatial position (x, y, and z) in the jth feature map of ith layer 

are captured and denoted as𝑣ⅈ,𝑗
𝑥 ,𝑦 ,𝑧

, is generated as follows: 

𝜐𝑖,𝑗
𝑥 ,𝑦,𝑧

= ℱ(    𝜔𝑖,𝑗 ,𝜏
𝜐,𝜌 ,𝜆

𝛿

𝜙=−𝛿

𝛾

𝜌=−𝛾

𝜈

𝜆=−𝜐

𝑑𝑡−1

𝜏=1

× 𝜐 𝑖−1 ,𝜏

 𝑥+𝜐 , 𝑦+𝜌 ,(𝑧+𝜆)
+ 𝑏𝑖,𝑗 ) 

Here, the activation function is Ƒ, the bias parameter for the 

jthfeature map of ith layer is𝑏𝑖,𝑗 , the number of feature maps in 

Item 𝑍1 

Item 𝑍𝑛  

 

Item 𝑍2 

 
Factor 

𝐾1 

𝐾2 

𝐾n  
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(t −1)th layer𝑑𝑡−1, the depth of kernel for the jth feature map of 

ith layer is 𝑤𝑖,𝑗 , and width, height and depth of the kernel is 

2γ+1, 2δ +1, and 2v+1 respectively. 

In the Hybrid3DNet framework, the proposed 3D CNN 

convolutional [22] kernels are as follows: 3D_conv_layer1 

=8×3×3×7×1, where 𝐾1
1 =3, 𝐾2

1  =3, 𝐾3
1 =7. 3D Conv layer2 =16 

×3 ×3 ×5 ×8, where 𝐾1
1 =3, 𝐾2

1 =3, 𝐾3
1 =5. 3D_conv_layer3 = 

32× 3× 3× 3× 16, where 𝐾1
1 =3, 𝐾2

1 =3, 𝐾3
1 =3. In order to 

ensure that the model is able to classify spatial information 

throughout different spectral bands without any loss, the 

modeloperate four 3D convolutional layers before the flatten 

layer to enhance the amount of spatial-spectral feature maps. 

Furthermore, detailed information about the proposed model 

is provided in Table 1 and the block diagram is illustrated in 

figure 2. The Hybrid3DNet model has 9,528,937 trainable 

parameters based on the last layer of the PU dataset. A soft-

max loss function combined with Adam analyzer back-

propagation randomly distributes the initial weights. By 

utilizing a mini-batch size of 256, the weights are updated, 

and the network is trained for 200 epochs without any batch 

normalization or data augmentation. 

3. EXPERIMENTS AND DISCUSSION  

3.1 Data set Description  
Pavia University Dataset (PU) was collected using a 

Reflective Optics System Imaging Spectrometer (ROSIS) 

optical sensor over Pavia, Northern Italy. With a spatial 

dimension of 1:3 meters, the PU dataset is related to 610×610 

spatial and 103 spectral bands. The PU dataset has a total of 9 

ground truth classes. 

An Infrared Imaging Spectrometer (AVIRIS) sensor was used 

to collect the Indian Pines Dataset (IP) over the test site in 

northwest Indiana. The IP data set consists of 145×145 spatial 

dimensions and 224 spectral bands in the wavelength range of 

400 to 2500 nm, 24 of which are excluded because they cover 

the water immersion region. The available data on the ground 

shows 16 different types of vegetation. More than a quarter of 

the entire coverage is focused on some crops that are still in 

the early phases of growth. IP also owned low-density homes, 

buildings, tiny roads, a two-lane highway, and a railroad. 

The Salinas dataset (SA) is obtained over Salinas Valley, 

California using the AVIRIS sensor. Vineyard fields, 

vegetables, and barren soils are among the photos in the SA 

data collection, which has 512×217 spatial dimensions and 

224 spectral bands in the wavelength range of 360–2500 nm 

SD. The 20 spectral bands that absorb water have been 

discarded. There are 16 classes in total in SA. Further details 

about the experimental datasets can be found in [24]. The 

ground images of all the experimental datasets are shown in 

Figure 3. 

 

Fig3: Ground images of experimental datasets PU, IP and 

S Arespectively used in this work 

3.2 Experimental Configuration 
All the experiments were conducted on Google Colab [25], an 

online platform. This online Platform requires a fast internet 

connection to run in any setting. The codes can be executed 

on a Python 3 notebook with a Graphical Processing Unit 

(GPU), 25 GB of RAM, and 358:27 GB of cold storage for 

data computation, according to Google Colab. The initial 

Test/Train set is divided into a 20-80% ratio in our 

experimental work. 

3.3 Classification Results 
For evaluation purposes, the overall accuracy (OA), average 

accuracy (AA), and Kappa coefficient (Kappa) are used,which 

are computed from the confusion matrices to determine the 

Fig. 2. Proposed Hybrid3DNet model for HSI 

classification 
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nondiscriminatory comparisons of the performance of the HSI 

classification. Here, OA is represented by the number of 

correctly classified samples out of the total test samples; the 

average of class wise classification accuracies represents AA, 

and Kappa delivers shared information regarding a solid 

agreement among the ground truth map and classification 

map, which is a metric of statistical dimension. The results of 

the proposed Hybrid3DNet model are compared with the most 

widely used supervised methods, such as SVM [26], 2-D-

CNN [27], and 3-D-CNN [28]. The data are randomly divided 

into training and testing groups of 20% and 80% respectively. 

The publicly available code is used to perform the 

comparisons among the classification methods. 

Table 2. Classification accuracies (in percentages) using 

the proposed and State-of-the-Art methods 

 

Methods 

University of Pavia                                      

Dataset 

Indian Pines 

Dataset 

Salinas Scene 

Dataset 

OA Kappa AA OA Kappa AA OA Kappa AA 

SVM 82.77 74.21 75.45 78.58 68.99 72.98 90.75 87.23 90.69 

2D-CNN 99.82 99.76 99.67 94.63 93.86 87.50 99.96 99.95 99.97 

3D-CNN 99.93 99.91 99.91 98.93 98.79 98.82 99.97 99.97 99.99 

Hybrid 

3DNet 
99.96 99.95 99.93 99.24 99.14 98.16 99.99 99.99 99.98 

 

Table 3. Training time in minutes (m) and test time in 

seconds (s) over IP, UP, and SA data sets using 2D-CNN, 

3D CNN, and Hybrid3Dnet architectures 

Data 2DCNN 3DCNN HYBRID3DNet 

Train(m) Test(s) Train(m) Test(s) Train(m) Test(s) 

PU 1.98m 10.64s 11.00m 7.914s 4.37m 3.362S 

IP 2.39m 5.818s 10.40m 6.32s 4.37m 2.404s 

SA 1.00m 6.344s 10.38m 11.54s 4.37m 6.052s 

 

Table 4. Impact of the Spatial Window Size on the 

Performance of HYBRID3DNet 

Window PU(%) IP(%) SA(%) Window PU(%) IP(%) SA(%) 

19×19 99.94 99.09 99.74 23×23 99.95 99.23 99.99 

21×21 99.95 99.04 99.92 25×25 99.84 98.16 99.98 
 

Table 5. Classification accuracies (in percentages) using 

the proposed and State-of-the-Art methods on less amount 

of training data, i.e., 10% only 

 

Methods 

University of Pavia                                      

Dataset 

Indian Pines 

Dataset 

Salinas Scene 

Dataset 

OA Kappa AA OA Kappa AA OA Kappa AA 

SVM 82.39 73.48 74.16 75.74 64.88 70.74 90.24 86.56 88.54 

2D-CNN 99.61 99.48 99.20 92.48 91.68 86.13 99.84 99.82 99.90 

3D-CNN 99.74 99.65 99.43 96.96 96.53 96.29 99.96 99.95 99.97 

Hybrid 

3DNet 
99.99 99.93 99.94 97.95 97.66 96.52 99.99 99.99 99.97 

 

Table 2 illustrates the findings for different methods in terms 

of OA, AA, and Kappa and shows that the Hybrid3DNet 

outperforms all other approaches over each data set while 

keeping the standard deviation to a minimal. Based on the 

spectral-spatial 3D-CNN hierarchical representation and 

dimensionality reduction method FA, the Hybrid3DNet is 

proposed. These results also show that our proposed model 

outperforms 3D-CNN and 2D-CNN more handsomely when it 

comes to analyzing IP data. According to the prediction, this 

is due to specific classes in the Indian Pines data set that have 

highly comparable textures throughout most spectral bands 

whichis increased redundancy among the spectral bands. 

Hybrid3DNet, on the other hand, consistently outperforms 

SVM, 2D-CNN, and 3D-CNN in terms of performance. 

Compared to the proposed methodology, the highly 

discriminative feature cannot be represented in SVM, 3-D or 

2-D convolution. 

Table 3 shows up the computational effectiveness of the 

Hybrid3DNet model in terms of training and testing periods, 

and the proposed model is more efficient than 3-D-CNN and 

2D-CNN. Furthermore, table 4 is an analysis of how the 

operation of the Hybrid3DNet model is affected by a variety 

of different spatial dimensions. It has been observed that, 

among the several spatial dimensions, 25×25 is the one that 

works best with the proposed method. The outcomes were 

obtained by using only 10% of the total training data that we 

have assembled here are presented in Table 5. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 4. Accuracy and Loss convergence epochs over the PU 

dataset (a) and (b), SA dataset (c)and (d), IP dataset (e) 

and (f)  

The proposed method's accuracy and loss convergence over 

200 epochs of training and validation sets are represented in 

Figure 4. The confusion matrices of PU, IP, and SA datasets 

for the proposed methodology is shown in Figure 5.A 

confusion matrix is a table that is used to define the 

performance of a classification algorithm that visualizes and 

summarizes the performance of the classification algorithm 

also.The classification map for an example of HSI 

classification is presented in Figures 6, 7, and 8 and was 

generated with the 
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(a) 

 

(b) 

(c) 

Fig. 5.Confusion matrix using proposed Hybrid3DNet 

method with actual and predicted classes over PU (a), IP 

(b), and SA (c) datasets in the first, second, and third 

matrices, respectively 
 

supportvector machine (SVM), as well as the 2-D-CNN, 3-D-

CNN,and Hybrid3DNet techniques for each of the dataset's 

PU, IP, and SA, in that order. In comparison to these previous 

methods, the quality of the classification map produced by 

Hybrid3DNet is significantly higher. As a result of this 

examination, it is clear that the performance level of each 

model declines slightly, but the Hybrid3DNet that was 

proposed is still able to outperform the others in almost all 

cases. 

 

     (a)                     (b)                      (c)                  (d) 

Fig. 6. Classification Map PU Dataset using (a) SVM, (b) 

2DCNN, (c) 3DCNN, (d) Hybrid3DNet (FA+3DCNN). 

 

        (a)                     (b)                     (c)                    (d) 

Fig. 7. Classification Map IP Dataset using (a) SVM, (b) 

2DCNN, (c) 3DCNN, (d) Hybrid3DNet (FA+3DCNN). 

 

      (a)                   (b)                   (c)                    (d) 

Fig. 8. Classification Map SA Dataset using (a) SVM, (b) 

2DCNN, (c) 3DCNN, (d) Hybrid3DNet (FA+3DCNN). 

4. CONCLUSION 
The proposed Hybrid3DNet, together with a dimension 

reduction method for HSI classification, has been presented in 

this paper. The complementary spatial and spectral 

information is merged in the form of 3D convolutions in the 

model, which is then followed by the dimension reduction 

method factor analysis (FA) and term as Hybrid3DNet. 

Experiments were run on three separate benchmark data sets, 

and the results were compared to the most recent state-of-the-

art methodologies to validate that the proposed method is 

superior to those other options. In contrast to the 3D 

Convolutional Neural Network Model, the model that was 

proposed exhibited a computational efficiency that was 

noticeably superior. In addition to that, it exhibits outstanding 

performance despite having a limited amount of training data. 
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