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ABSTRACT 

The paper deals with cost-benefit and reliability analysis of 

two non-identical units considering all random variables are 

statistically independent, by using regenerative point 

technique. Initially, one unit is operative and other unit is 

warm standby, a single repair facility is always available with 

the system to perform all repair activities. The failure time 

distribution of both units taken as an exponential distribution 

with different parameters whereas all repair time distributions 

are taken as general. Various important characteristics of 

reliability like steady-state availability, mean sojourn time, 

mean time to system failure (MTSF), busy period and cost-

benefit of the system have been studied. 
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1. INTRODUCTION 
The configuration of the stochastic model is concerned with 

the development and application of the technique for 

increasing the system efficiency by reducing the frequency of 

failures and minimizing the high maintenance cost. The 

configuration and design of industrial systems such as 

communication system, satellite system, power plant system 

mechanical engineering, aeronautical engineering software 

engineering and gaming systems are more complex to design 

in the current scenario. Two-unit redundant system model has 

been analyzed widely in the literature of reliability by several 

authors, such as El-Said [1], Haggag [2], Mahmoud and 

Moshref [3] and Kumar et al. [4] due to their vital existence in 

modern business and industries. The reliability of the system 

may further be enhanced by introducing the concept of repair 

and preventive maintenance. Malik [5] in the field of 

stochastic theory analyzed redundant system models under 

different sets of assumptions such as fails unit need minor or 

major repair facility, availability of repairman for repair 

facility, priority and non-priority unit and imperfect switching 

device etc. by using regenerative point technique. Kumar and 

Kadyan [6] studied a system of non-identical units with 

degradation and replacement initially original unit is operative 

and other is kept as spare in cold standby. The failure time of 

the units are exponentially distributed whereas the 

distributions of inspection time, replacement time of the 

duplicate unit and repair time of the 

original/duplicate/degraded unit are taken as arbitrary with 

different probability density functions. Also, Bhardwaj et al. 

[7] discussed a two non-identical system with the concept; the 

standby system goes under inspection to check the feasibility 

for its maintenance or replacement after completion of pre-

specified time. Mahmoud and Mashrefa [8] deal with the 

study of the stochastic analysis of a two unit cold standby 

system considering hardware failure, human error failure and 

preventive maintenance. In the field of reliability theory, 

many researchers including Borzadaran and Asadi [9], Sultan 

and Moshref [10] and Pundir et al. [11] have considered two 

or more units repairable reliability models by using 

continuous distribution for different types of repair mode. 

            The present paper deals with two non-identical units 

have been designed with the concept of single repairman play 

triple role fault detection, minor repair or major repair of the 

failed unit. Initially, one unit is operative and other unit is 

warm standby. If operative unit failed, standby unit comes in 

operative mode by using switching device and a repairman 

attend the failed unit immediately to detect whether the failed 

unit need minor or major repair whose probabilities are fixed 

as ‘p’ and ‘q’ (p+q=1) after diction of failure type the same 

repairman start the repair of the failed unit. A repaired unit 

always works as well as new. The system is considered to be 

in failure state if both units are in failure mode. The 

mathematical expression of reliability measures such as 

steady-state availability, reliability, availability, mean time to 

system failure (MTSF), busy period in different repair facility 

and cost benefit function have been derived. The graphical 

representation shows the behaviors of MTSF, availability and 

cost benefit at the different sets of values.  

2. SYSTEM DESCRIPTION AND 

ASSUMPTIONS 
i) The system consists of two non-identical units. Initially one 

is operative and other is warm standby.  

ii) Each unit has two possible modes: normal (N) and total 

failure (F). 

iii) The failure time distributions are taken exponential 

distribution with different parameters. Whereas the fault 

detection, minor repair and major repair time distribution are 

taken as general.  

iv)  There is a single repair facility with the system which 

plays triple role of fault detection, minor repair and major 

repair. 

v) As soon as a unit fails, it is attended by the repairman 

immediately. The repairman detects whether the failed unit 

need minor repair or major repair whose probabilities are fixed 

as ‘p’ and ‘q’ (p+q=1). 

vi) The switching device used to put the standby unit into 

operation is always perfect and instantaneous. 

vii) The system failure occurs when both the units are in F-

mode. 

viii) A repaired unit always works as good as new. 

3. NOTATION AND SYMBOLS 

1 2α /  Constant failure rate of operating unit-

1/unit-2 

   1 2F / F   cdf of time to fault detection of a 

failed unit-1/unit-2 

   1 2G / G   cdf of time to minor repair of a failed 

unit-1/unit-2 

   1 2H / H   cdf of time to major repair of a failed 

unit-1/unit-2 
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p  Probability that a failed unit requires 

minor repair 

q  Probability that a failed unit requires 

major repair 

1 2
o oN / N  

Unit-1/unit-2 is in Normal (N) mode 

2
sN  Unit-2 is in standby (S) mode 

1 2
d d F / F  

A unit-1/unit-2 is in total failure mode 

(F) and is under fault detection 

1 2
r r F /F  

A unit-1/unit-2 is in total failure mode 

(F) and is under  minor repair 

1 2
R RF /F  

A unit-1/unit-2 is in total failure mode 

(F) and is under major repair 

1 2
w w F / F  

A unit-1/unit-2 is in total failure mode 

(F) and is waiting for fault detection 

©  Symbol for ordinary convolution. 

*, ~ Symbols for Laplace and Laplace-

Stieltjes transforms. 

Considering the above symbols, we have the following states 

of the system:  

Up States 

 1 2
0 o sS N , N ,   1 2

1 d oS F , N ,
 

 1 2
2 r oS F , N ,

 

 1 2
3 R oS F , N ,

 
 1 2

7 o dS N ,F ,
 

 1 2
8 o rS N ,F ,

        

 1 2
9 o RS N ,F

 
Failed States 

 1 2
4 d wS F ,F ,

        
 1 2

5 r wS F ,F ,
         

 1 2
6 R wS F ,F ,

            

 1 2
10 w dS F ,F ,

       
 1 2

11 w rS F ,F ,
       

 1 2
12 w RS F ,F

                        

The transition diagram of the system model is shown in 

Figure. 1 

4. TRANSITION PROBABILITIES 
Simple probabilistic reasoning, the non-zero elements of 

 ijQ t may be obtained in the following manner: 

   1 1
t u t

01 10
Q t e du 1 e

      

Similarly, 

   2
t u

12 10
Q t pe dF u


            

   2
t u

13 10
Q t qe dF u


             

                                         

     2

t
4 v

116

0

Q (t) q 1 e dF v


 
 

     2

t
4 v

115

0

Q (t) p 1 e dF v


 
        

     2

t
4 v

116

0

Q (t) q 1 e dF v


 


   2
t u

20 10
Q t e dG u


             

     2

t
5 v

127

0

Q (t) 1 e dG v


 
 

   2
t u

30 10
Q t e dH u


               

     2

t
6 v

137

0

Q (t) 1 e dH v


 
 

   
t

57 10
Q t dG u                      

   
t

67 10
Q t dH u   

   1
t u

78 20
Q t p e dF u


             

   1
t u

79 20
Q t q e dF u


   

     1

t
10 v

27,11

0

Q (t) p 1 e dF v


 
        

     1

t
10 v

27,12

0

Q (t) q 1 e dF v


   

   1
t u

80 20
Q t e dG u


             

     1

t
11 v

281

0

Q (t) 1 e dG v


   

   1
t u

90 20
Q t e dH u


            

     1

t
12 v

291

0

Q (t) 1 e dH v


   

   
t

11,1 20
Q t dG u 

              
   

t

12,1 20
Q t dH u    (1-

21) 

The steady state transition probabilities can be obtained from 

(1-21) by using: 

 ij ij
t

p lim Q t


             and                
k k

ij ij
t

p lim Q t


                   

Thus, 

1t
01 1

0

p e dt 1




  
                  

 12 1 2p pF              

 13 1 2p qF 
                                            

   
4

1 215p p 1 F    
                       

   
4

1 216p q 1 F    
                       20 1 2p G 

                 

 (5)
1 227p 1 G  

                                      
 30 1 2p H                   

 

   
6

1 237p 1 H  
                       57p 1

                           

67p 1
                                          78 2 1p pF 

    

 79 2 1p qF 
                             

 (10)
2 17,11p p 1 F    


       (10)
2 17,12p q 1 F    


                
 80 2 1p G 

                            

  (11)
2 181p 1 G  

                            
 90 2 1p H 

                    

 (12)
2 191p 1 H  

                         
11,1p 1

                                                 

12,1p 1
 

It can be easily verified that 

01 57 67 11,1 12,1p p p p p 1              

   4 4

12 13 15 16p p p p 1   
           

 5

20 27p p 1   

(6)
30 37p p 1 

                           
   10 10

78 79 7,11 7,12p p p p 1   
        

 11

80 81p p 1 
                         

 12

90 91p p 1 
            

(22-28)
 

4.1 Mean sojourn times 
Mean sojourn time 

i  in state 
iS  is defined as the expected 

time taken by the system in state 
iS  before transition to any 

other state. 

 i 0

0

= P T > T dt



 
 

Thus, 

1t
0

10

1
e dt




  


 
Similarly,

  2t
1 1

0

e F t dt




  
      2t

2 1

0

e G t dt




  
      

 2t
3 1

0

e H t dt




  
                            

 5 1

0

G t dt



  
 

 6 1

0

H t dt



  
                                   

 1t
7 2

0

e F t dt




  
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 1t
8 2

0

e G t dt




  
                        

 1t
9 2

0

e H t dt




  
                           

 

 11 2

0

G t dt



  
                                  

 12 2

0

H t dt



  
       

                                                                                        (29-39) 

5. RELIABILITY OF THE SYSTEM AND 

MEAN TIME TO SYSTEM FAILURE 

(MTSF)  
Let the random variable 

i T  denotes the time to system failure 

(TSF) when the system initially starts functioning from state

iS E . Then the system reliability is given by: 

   i i R t P T t    

We have the following set of convolution equations: 

     1

t
t

0 01 1

0

R t e q u duR t u


  
 

                   0 01 1Z t q t R t    

Similarly, 

           1 1 12 2 13 3R t Z t q t R t q t R t      

       2 2 20 0R t Z t q t R t    

       3 3 30 0R t Z t q t R t  
                  (40-43)                                                                                                

Where, 

 2t
1 1Z (t) e F t


              2t

2 1Z (t) e G t



                                

 2t
3 1Z (t) e H t




 
Taking the Laplace Transform of the above set of equations 

(40-43) and the resulting set of algebraic equation for  *
0R s , 

we get 

 
 * *

0 01 1 12 2 13 3

* *
01 12 20 01 13

0

3

*

0

Z q Z q Z q Z
R

1 q q q q q q
s

    

   

 

 



                (44)                                                                                                        

Taking the Inverse Laplace Transform of (44), we can get 

reliability of the system for known values of the parameters.                

The mean time to system failure (MTSF) is given by:  

   
 

 
* 1

0 0
s 0

1

N 0
E T limR s

D 0
                                                                     

To determine  1N 0 and  1D 0 , we use the results 

 *
i iZ 0    

and  ij ijq 0 p
 

We get, 

0 1 12 2 13 3

12 20 13 30

p p
MTSF

1 p p p p

     


 
 

6. AVALIBILITY ANALYSIS    
Let  iA t  be the probability that the system is up at epoch t, 

when initially it starts operation from state
iS E . By using 

similar probabilistic arguments, as in case of reliability, we 

observe the following recurrence relations can be easily 

developed for  iA t :
 
                         

       0 0 01 1A t Z t q t   A t    

                 
     

4

1 1 12 2 13 3 515

4

616

A t Z t q t   A t q t   A t q t   A t

q t   A t

      

 

             
5

2 2 20 0 727A t Z t q t   A t q t   A t      

             
6

3 3 30 0 737A t Z t q t   A t q t   A t      

5 57 7A (t) q (t) A (t) 
 

6 67 7A (t) q (t) A (t) 

           
           

7 7 78 8 79 9

10 10

11 127,11 7,12

A t Z t q t   A t q t   A t

q t   A t q t   A t

    

   

             
11

8 8 80 0 181A t Z t q t   A t q t   A t    
 

             
12

9 9 90 0 191A t Z t q t   A t q t   A t    
 

11 11,1 1A (t) q (t) A (t) 
 

12 12,1 1A (t) q (t) A (t) 
                                           

(45-55)
 

Where, 

 1t
7 2Z (t) e F t


 ,                       1t

2 2Z (t) e G t ,



  

 1t
3 2Z (t) e H t




 
Taking Laplace Transforms of the above set of equations (45-

55) and solving the resulting set of algebraic equations for  

 *
0A s  by Cramers rule, we have 

 
 

 
* 2
0

2

N s
A s

D s
  

Where,

 

 
 

(10)* * (10)* * * (5)* * (6)* (4)* *
2 11,1 12,1 12 13 577,11 7,12 27 37 15

11 *(4)* * * * (5)* * (6)* (4)* * (4)* *
67 78 12 13 57 6716 81 27 37 15 16

(12)* * * (5)* * (6)* (4)* *
79 12 13 5791 27 37 15

N s [1 (q q q q )(q q q q q q

q q ) q q (q q q q q q q q )

q q (q q q q q q

    

    

   (4)* * *
67 0 01 116

* * * * * * (5)* * * (5)* * (6)*
01 12 2 01 13 3 01 12 7 01 78 12 1327 27 37

(4)* * (4)* * * * * (5)* * (6)* (4)* *
57 67 8 01 79 12 13 5715 16 27 37 15

(4)* * *
67 916

q q )]Z q Z

q q Z q q Z q q q Z q q (q q q q

q q q q )Z q q (q q q q q q

q q )Z

 

   



 

    

    



and 

 
 

(10)* * (10)* * * (5)* * (6)*
2 11,1 12,1 12 137,11 7,12 27 37

11 *(4)* * (4)* * * * (5)* * (6)*
57 67 78 12 1315 16 81 27 37

(4)* * (4)* * (12)* * * (5)* * (6)*
57 67 79 12 1315 16 91 27 37

(4)* *
5715

D s [1 (q q q q )(q q q q

q q q q ) q q (q q q q

q q q q ) q q (q q q q

q q

   

   

   

 (4)* * * * * * * * *
67 01 12 20 01 13 30 0116

* (5)* * (6)* (4)* * (4)* *
78 80 12 13 57 6727 37 15 16

* * (5)* * (6)* (4)* * (4)* *
01 79 90 12 13 57 6727 37 15 16

q q )] q q q q q q q

q q (q q q q q q q q )

q q q (q q q q q q q q )

 

 

   

  

   

Now, the steady state availability i.e. the probability that the 

system will be operative in long run is given by:
 

   
 

 
* 2

0 0 0
t s 0 s 0

2

N s
A lim A t limsA s lims

D s  
    

Since,  2D 0 0 , therefore by applying L-Hospital rule, the 

steady state availability is given by: 

 
 

 
 

2 2
0

s 0
2 2

N s N 0
A lim

D s D 0
 

 
     

Where, 
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    

  

2 78 80 79 90 12 20 13 30 0

1 12 2 13 3 12 27 7

78 8 79 9 12 20 13 30

N 0 p p p p 1 p p p p

p p p p

p p 1 p p p p

     
 

      

     

and
 
   

 

 

  

  

2 12 20 13 30 12 20 13 30

78 80 79 90 0 1 12 2 13 3

(4) (4)
2 3 12 20 13 30 715 16

(10)
78 12 20 13 30 87,11

(10)
79 12 20 13 30 97,12

D 0 [p p p p 1 p p p p

p p p p ] n p n p n

p n p n 1 p p p p n

p p 1 p p p p n

p p 1 p p p p n

     

    

    

   

   

Where (
1n ,

2n ,
3n ,

7n 8n and 
9n ) is the mean repair time. 

7. BUSY PERIOD ANALYSIS 

7.1 Due to fault detection 
Let  F

iB t be the probability that the repairman is busy in 

fault detection of a failed unit at epoch t, when the system 

starts from state 
iS E . Now for  F

0B t , we have the sum of 

the probabilities of the following contingencies: 

     F F
0 01 1B t q t   B t 

           
 

                 
     

4F F F F F
1 1 12 2 13 3 515

4 F
616

B t Z t q t   B t q t   B t q t   B t

q t   B t

      

 

           
5F F F

2 20 0 727B t q t   B t q t   B t   
 

           
6F F F

3 30 0 737B t q t   B t q t   B t   
 

     F F
5 57 7B t q t   B t   

     F F
6 67 7B t q t   B t 

 

                 
     

10F F F F F
7 7 78 8 79 9 117,11

10 F
127,12

B t Z t q t   B t q t   B t q t   B t

q t   B t

      

 

           
11F F F

8 80 0 181B t q t   B t q t   B t   
 

           
12F F F

9 90 0 191B t q t   B t q t   B t   
 

     F F
11 11,1 1B t q t   B t 

 

     F F
12 12,1 1B t q t   B t 

                             (56-66)                                                                                                                   
 

Where,  

   2tF
1 1Z t e F t




                  
   1tF

7 2Z t e F t



 

Taking Laplace transforms of the above equations (56-66) and 

solving them, we get the following result for  F
0B s

 

 
 
 

F 3
0

2

N s
B s

D s

 

 
Here,  2D 0 = 0  

Therefore, by L-hospital rule, the steady state busy period of 

the repairman due to fault detection is given by: 

 
 

 
 

F 3 3
0

s 0
2 2

N s N 0
B lim

D s D 0
 

 
 

Where, 

 (5) (6) (4) (4)
3 1 12 13 727 37 15 16N (0) p p p p p p      

 
and  2D 0 is same as given in availability analysis. 

7.2 Due to miner repair  

Let  r
iB t

 
be the probability that the repairman is busy in 

miner repair of a failed unit at epoch t, when the system starts 

from state
iS E . Now for  r

0B t , we have the sum of the 

probabilities of the following contingencies: 

     r r
0 01 1B t q t   B t 

       
 

               
     

4r r r r
1 12 2 13 3 515

4 r
616

B t q t   B t q t   B t q t   B t

q t   B t

     

 

             
5r r r r

2 2 20 0 727B t Z t q t   B t q t   B t    

           
6r r r

3 30 0 737B t q t   B t q t   B t   
 

     r r r
5 5 57 7B t Z (t) q t   B t    

     r r
6 67 7B t q t   B t 

               
     

10r r r r
7 78 8 79 9 117,11

9 r
127,12

B t q t   B t q t   B t q t   B t

q t   B t

     

 

             
11r r r r

8 8 80 0 181B t Z t q t   B t q t   B t      

           
12r r r

9 90 0 191B t q t   B t q t   B t     

     r r r
11 11 11,1 1B t Z (t) q t   B t    

     r r
12 12,1 1B t q t   B t 

                                       (67-77)                                                                                                              
 

 
Where, 

    2tr
2 1Z t e G t




                     
   r

5 1Z t G t
                                 

   1tr
8 2Z t e G t




                      
   r

11 2Z t G t
           

 

Taking Laplace transforms of the above equations (67-77) and 

solving them, we get the following result for  r
0B s

 

 
 
 

r 4
0

2

N s
B s

D s

 

 
Here,  2D 0 0  

Therefore, by L-hospital rule, the steady state busy period of 

the repairman due to minor repair is given by: 

 
 

 
 

r 4 4
0

s 0
2 2

N s N 0
B lim

D s D 0
 

 
                                                                         

Where, 

 

 

(4) (5) (6) (4) (4)
4 1 12 2 12 1315 27 37 15 16

(10) (5) (6) (4) (4)
2 12 13 78 87,11 27 37 15 16

N (0) p n p p p p p p p

p n p p p p p p p

      

    

 

and  2D 0 is same as given in availability analysis. 

7.3 Due to major repair  
Let  R

iB t
 
be the probability that the repairman is busy in 

major repair of a failed unit at epoch t, when the system starts 

from state
iS E . Now for  R

0B t , we have the sum of the 

probabilities of the following contingencies: 

     R R
0 01 1B t q t   B t 
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               
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4R R R R
1 12 2 13 3 515

4 R
616
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     

 
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5R R R
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             
6R R R R

3 3 30 0 737B t Z t q t   B t q t   B t    
 

     R R
5 57 7B t q t   B t   

     R R R
6 6 67 7B t Z (t) q t   B t  

               
     

10R R R R
7 78 8 79 9 117,11

10 R
127,12

B t q t   B t q t   B t q t   B t

q t   B t

     

 

           
11R R R

8 80 0 181B t q t   B t q t   B t   

             
12R R R R

9 9 90 0 191B t Z t q t   B t q t   B t    
 

     R R
11 11,1 1B t q t   B t 

 

     R R R
12 12 12,1 1B t Z (t) q t   B t  

            (78-88)                                                                                                      

Where, 

    2tR
13Z t e H t




                        
   R

16Z t H t
                                     

   1tR
29Z t e H t




                      
   R

212Z t H t
                                      

 

Taking Laplace transforms of the above equations (78-88) and 

solving them, we get the following result for  R
0B s

 

 
 
 

R 5
0

2

N s
B s

D s

 

 
Here,  2D 0 = 0  

Therefore, by L-hospital rule, the steady state busy period of 

the repairman due to fault detection is given by: 

 
 

 
 

R 5 5
0

s 0
2 2

N s N 0
B lim

D s D 0
 

 
 

Where, 

 

 

(4) (5) (6) (4) (4)
5 3 13 3 12 1316 27 37 15 16

(10) (5) (6) (4) (4)
4 12 13 79 97,12 27 37 15 16

N (0) p n p p p p p p p

p n p p p p p p p

      

    
 

and  2D 0 is same as given in availability analysis. 

8. COST BENEFIT ANALYSIS 
In steady state, the net-expected profit earned to the system 

model during time interval (0,t) as given below:  

         F r R
0 up 1 b 2 b 3 bP t K t K t K t K t       

 
Where

0K
 
per-unit up time revenue by the system due to the 

operation of any unit and 
1K 2, K  and 

3K  are repair cost 

per-unit of time when unit is under fault detection, minor 

repair and major repair respectively. 

The expected total cost per-unit time in steady state is given 

by: 

 
t

P t
P lim

t


 

    
F r R

0 0 1 0 2 0 3 0K A K B K B K B   
 

Where
0A , F

0B , r
0B  and R

0B  have been already 

defined. 

9. CONCLUSION 
This paper concludes the stochastic modeling analysis of 

various reliability measures like MTSF, availability and busy 

period due to fault detection, miner repair and major repair, 

and cost benefit analysis by different levels of performance. 

Let us suppose that the different random variables follow an 

exponential distribution with different probability density 

function given as ( ) tf t e   , ( ) tg t e   and ( ) th t e   . 

The numerical analysis of MTSF and cost benefit analysis 

have been studied at different levels of failure rate (
2α ) of 

unit-2 by fixing the values of certain parameters
0 10000K  ,

1 1000K  ,
2 800K  3 600K  as shown in Table 1 and 

Table 2. The variation in MTSF with respect to the failure rate 

(
2α ) of unit-2 for different values of p , q ,

1 ,
1 and

1  is 

shown in Figures 2. The variation in cost benefit analysis with 

respect to the failure rate (
2α ) of unit-2 for different values p

, q ,
1 ,

2 ,
1 ,

2 ,
1 and

2 is shown in Figures 3.  
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Table 1. Effect of p , q ,
1 ,

1 and
1 on system performance with respect to α2 

 

α1 α2 

β1=0.1,θ1=0.3, 

λ1=0.5,p=0.5, 

q=0.5 

β1=0.2,θ1=0.4, 

λ1=0.6,p=0.8, 

q=0.2 

β1=0.3,θ1=0.5, 

λ1=0.7,p=0.3, 

q=0.7 

β1=0.4, θ1=0.6, 

λ1=0.8,p=0.2, 

q=0.8 

β1=0.5,θ1=0.7, 

λ1=0.9,p=0.1, 

q=0.9 

0.4 0.31 5.8003 5.9893 6.1582 6.3830 6.6253 

0.41 0.32 5.6322 5.8074 5.9648 6.1753 6.4028 

0.42 0.33 5.4737 5.6364 5.7834 5.9808 6.1947 

0.43 0.34 5.3241 5.4755 5.6128 5.7983 5.9997 

0.44 0.35 5.1826 5.3237 5.4523 5.6267 5.8166 

0.45 0.36 5.0486 5.1802 5.3008 5.4651 5.6444 

0.46 0.37 4.9215 5.0445 5.1577 5.3126 5.4821 

0.47 0.38 4.8008 4.9159 5.0223 5.1685 5.3288 

0.48 0.39 4.6859 4.7938 4.8939 5.0321 5.1840 

0.49 0.4 4.5766 4.6777 4.7721 4.9028 5.0469 

 

Table 2. Effect of p , q ,
1 ,

2 ,
1 ,

2 ,
1 and

2 on system performance with respect to α2 

 

α1 α2 

β1=0.1,θ1=0.3, 

λ1=0.5β2=0.1, 

θ2=0.3,λ2=0.5, 

p=0.5,q=0.5 

β1=0.2,θ1=0.4, 

λ1=0.6,β2=0.2, 

θ2=0.4,λ2=0.6, 

p=0.8,q=0.2 

β1=0.3,θ1=0.5, 

λ1=0.7β2=0.3, 

θ2=0.5,λ2=0.7, 

p=0.3,q=0.7 

β1=0.4,θ1=0.6, 

λ1=0.8,β2=0.4, 

θ2=0.6,λ2=0.8, 

p=0.2, q=0.8 

β1=0.5,θ1=0.7, 

λ1=0.9,β2=0.5, 

θ2=0.7,λ2=0.9, 

p=0.1,q=0.9 

0.4 0.31 24997.41 17413.11 12824.40 10368.77 8702.73 

0.41 0.32 24372.18 17132.34 12628.54 10235.48 8605.76 

0.42 0.33 23767.31 16849.88 12430.59 10099.24 8505.79 

0.43 0.34 23182.82 16566.97 12231.44 9960.70 8403.34 

0.44 0.35 22618.49 16284.71 12031.85 9820.50 8298.91 

0.45 0.36 22074.01 16004.01 11832.50 9679.17 8192.93 

0.46 0.37 21548.94 15725.67 11633.97 9537.19 8085.79 

0.47 0.38 21042.77 15450.34 11436.76 9394.99 7977.83 

0.48 0.39 20554.93 15178.57 11241.31 9252.96 7869.39 

0.49 0.4 20084.82 14910.80 11047.97 9111.42 7760.74 

 

 

 

  
 

Figure 2                                                                                                       Figure 3 
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