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ABSTRACT 

Object detection and data collection from custom targets 

suffer from certain problems, which inherently occur in deep 

learning networks owing to problems such as difficulty of 

collection and data bias. Therefore, in this study, we proposed 

the Multi-GAN framework for generating augmented datasets. 

This framework comprises two parts: the first part generates 

data that reflect various textures related to decep learning 

based on deep convolutional GAN (DCGAN) and 

Wasserstein GAN (WGAN) structures. The second part 

provides multiple resolutions based on super-resolution GAN 

(SRGAN). Here, this paper presents efficient dataset 

construction methods along with a conventional augmentation 

method called manipulation technique. Through the 

experiments, which were based on average precision, 

conducted on the collected and augmented datasets, the 

proposed frameworkdemonstrated to improve detection 

accuracy. Additionally, we confirmed that the multi-GAN 

framework is superior with respect to efficiency to data 

collection. 
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Keywords 

Generative Adversarial Network(GAN), Object detection, 
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1. INTRODUCTION 
Convolutional neural network (CNN)-based deep learning 

structures first appeared in ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) in the image recognition 

field and improved performance to surpass human cognitive 

abilities based on deep neural networks and improved 

structures [1]. Recent research in the object detection field 

such as YOLO [2] and SSD [3] ensure sufficient accurate and 

real-time detection. To improve low detection accuracies for 

small targets and slow detection speeds owing to a high 

computation load, latest deep learning structures and methods 

aim to improve the overall performance of such applications. 

Constructing datasets is essential for training artificial neural 

networks using deep learning methods, such as CNNs. 

Depending on the size and quality of the dataset, considerable 

effort is required to achieve a desirable detection outcome. 

For example, MS COCO dataset has millions of training 

datasets, while the ImageNet dataset contains 1.2 million 

images in its training dataset. It comprises 1000 widely used 

categories. Building such datasets is significantly costly and 

labor intensive. To recognize special or personal objects that 

are not included in the shared dataset, a separate dataset must 

be newly constructed. This process requires manually writing 

label files that contain categories such as object collection and 

object information, and location content. 

Image augmentation is executed by processing original 

images via image manipulation techniques, such as rotation, 

reversal, and random noise, which is in line with the previous 

studies in image augmentation. CutOut [5], CutMix [6], and 

Mosaic [7] represent the latest data augmentation studies; 

however, these prior studies have limitations in performance 

improvements because of having adopted traditional methods. 

Additionally, they cannot be a fundamental solution to the 

data collection problems. Consequently, an augmentation 

framework that allows efficient augmented dataset 

construction is presented in this study. Furthermore, the 

limited reproducibility of the conventional augmentation 

method is addressed without being biased toward a small 

number of collected data by generating a new image that 

reflects the features of the collected image based on the deep 

learning generative adversarial network (GAN) technique 

from the image detection field. 

The main contribution of this research can be summarized as 

follows: 

To enhance the ability to detect insufficient data, a diverse 

texture images dataset was constructed by applying 

unconditional GANs; Deep Convolutional GAN (DCGAN) 

[28] and Wasserstein GAN (WGAN) [29]. 

A dataset that can be used to learn multi-scale images was 

constructed by generating SR images by applying super-

resolution GAN (SRGAN) [31] to low-resolution images 

generated through an unconditional GAN scheme.  

After conducting deep learning based on the YOLO object 

detection algorithm, we conducted accuracy verification of an 

average precision (AP). The dataset was evaluated the effect 

of proposed augmentation on object detection as AP(@0.5) 

and AP(@0.75) and confirmed a 22% performance 

improvement on average over the original datasets. 

2. RELATED WORK 

2.1 Image augmentation 
Constructing large datasets is necessary for improving 

cognitive performance. For deep learning, numerous datasets 

can provide accuracy and stable detection rates. However, 

there are limits to acquiring specific targets online. Most 

global enterprises are investing whether to proceed with direct 

or platform-based data collection. Moreover, many recent 

studies in the data augmentation filed aim to reduce labor and 

costs. 

Image manipulation has been widely used for image 

processing by accessing images in pixel units. It is used to 

reflect image transformations caused by weather, shooting 

angle, image quality, and movement of the camera. Through 
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image rotation and reversal manipulation techniques, the 

effect of conveying unexpected external factors may be 

remedied by applying noise to increase adaptation in various 

environments. This is done through image rotation, kernel 

filtering, and random noise that can convey the information of 

the target rotation caused by the change in the camera angle 

owing to the target conditions, movement of the object, or 

slope. Additionally, the color transformation for detection 

considers various colors, depending on the target 

characteristics. Adapting a conventionally used manipulation 

technique as a simple augmentation technique is mainly being 

studied in relation to data processing and synthesis. Recently, 

CutOut improved the performance by cutting off an arbitrary 

area of an existing image and filling it with zeros. Based on 

CutOut, CutMix presented a combination method that cuts off 

an arbitrary area and replaces it with another image [5][6]. 

Moreover, Mosaic improved the performance through 

generating a single image by combining four existing images 

at random ratios [7]. However, such augmentation techniques 

based on existing data could not provide significant 

improvements in cognitive and location accuracy and were 

relatively inefficient when applied to small amounts of 

datasets. Therefore, we proposed a novel framework based on 

deep learning GAN schemes to build an efficient dataset. 

2.2 Object detection 
Algorithms must be selected according to their deep learning 

applications based on established datasets. Particularly, there 

are two algorithms used in object detection: one-stage and 

two-stage algorithms. Typical one-stage algorithms are 

YOLO, SSD [8], RetinaNet [9], and EfficientNet [10]; two-

stage algorithms are R-CNN [4], fast R-CNN [11], faster R-

CNN [12], Mask R-FCNN [13], and RepPoints [14]. R-CNN 

notably comprises a stage for presenting thousands of 

proposals from images and a classification stage for detecting 

objects with classifiers, based on the first stage. Despite its 

high accuracy, R-CNN suffers from long processing times 

owing to the vast amount of computation required. Therefore, 

a one-stage algorithm base is mainly applied in systems with a 

rapid response demand, such as robots and vehicles. This is 

because rapid response and accuracy that corresponds to 

reasonable user requests are possible. Subsequently, current 

algorithm research aims to ensure real-time response and infer 

high performance. Among them, deep learning is conducted 

based on the YOLO algorithm series, which achieves good 

performance in speed and accuracy. 

YOLOv3 & YOLOv3-tiny: YOLOv3 [15] achieved a 

relatively high speed and accuracy in performance, forming 

an efficient layer over other detectors while increasing the 

depth of the backbone used for feature extraction. Previously 

comprising 19 backbone layers, YOLOv3 is configured 

through a 53-layer hierarchical structure. Thus, YOLOv3 is 

slightly slower than YOLOv2 but it provides high accuracy. 

Furthermore, it comprises three detectors with different scales 

through the residual skip connection and up-sampling. This 

helps solve the low accuracy problem during small object 

detection in the previous version. The convolutional module 

consists of conv. 11 and five conv. 33 kernels. 

Additionally, considering low-performance embedded 

systems owing to environmental and cost limitations, a so-

called YOLOv3-tiny, which efficiently improves speed and 

accuracy, consisting of 23 layers and a thin CNN has been 

trained and analyzed.   

YOLOv4: While YOLOv4 [16] has no innovative structural 

changes compared to the previous version YOLOv3, it applies 

the latest deep learning techniques to optimize performance. 

In the activation function section, 𝑓 𝑥 = 𝑥𝑡𝑎𝑛(ln(1 +
𝑒𝑥)) of Mish [17] was mainly adopted, and DropBlock [18] 

was applied in the regularization section with dropping out 

interrelated dense areas instead of randomly dropping out 

activations. In the data augmentation section, Mosaic and 

Self-Adversarial Training [19] were applied. The CSP module 

reconstructed the backbone based on multi-input weighted 

residual connections that were used in BiFPN and cross stage 

partial (CSP) connections to build CSPdarknet53 [20]. The 

architecture was constructed by adding SPP [21], PAN [22], 

and SAM [23] blocks into CSPdarknet53. Furthermore, the 

latest training methods, namely, CmBN [24], cosine annealing 

scheduler [25], DIoU [26], optimal hyperparameters, and 

random training shapes were utilized. This achieved similar 

speed and improved accuracy compared to YOLOv3. 

3. MULTI-GAN FRAMEWORK OF CUSTOM 

DATASET 

3.1 Overview 
Prior augmentation methods for processed images, such as 

image manipulation, improve the accuracy of similar images 

during inference; however, this can cause data bias in small 

datasets. In addition, the augmentation method struggles with 

detecting unexpected targets. However, for deep learning-

based object detection applications, the prediction of data that 

has never been encountered before through learning on 

specific datasets is important. Thus, an image augmentation 

framework based on an unconditional GAN structure has been 

proposed to alleviate the limitation in the number of existing 

images collected and cost burden of direct data collection. 

First, GAN [27] was newly released in 2014 in the field of 

machine learning. A GAN comprises a generator that 

generates images and a discriminator that evaluates the 

generator performance in an adversarial position. It is a model 

designed to gradually improve the performance of each part 

through training and reach a result, at which the original and 

newly generated images can no longer be distinguished. For 

thediscriminator learning, the existing image sample x is set to 

D(x) = 1, and the sample made with input z drawn from a 

random noise distribution from the generator is set to D(G(z)) 

= 0. This is called a minimax problem, which is depicted in 

Equation (1). 

𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 𝑉 𝐷, 𝐺 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎  𝑥  𝑙𝑜𝑔𝐷 𝑥  +

                                       𝐸𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔 1−𝐷𝐺(𝑧))]
 (1) 

The development of deep learning structures and learning 

methods based on the GAN concept, and their applications in 

replaces fully connected layers of a GAN with convolutional 

connected layers, and WGAN [29], which converts the 

existing similarity measurement methods based on Jensen-

Shannon (JS) and Kullback-Leibler (KL) divergence to EM 

distance, facilitate learning and stabilization. They are 

simultaneously developed with CycleGAN [30], which offers 

a method of replacing the domain of a certain image with that 

of another image, and SRGAN [31], which generates high-

resolution images in the field of resolution restoration. 
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While deep learning structures and learning methods based on 

the GAN concept are integrated into various fields, their 

applications in the object detection field remain lacking. 

Therefore, to present specialized dataset construction methods 

in the object detection field, this study aims to integrate 

several GAN structures to perform data augmentation and 

build an unbiased and efficiently optimized dataset.  

3.2 Framework Architecture 
An augmentation framework was designed by fusing three 

GAN structures: DCGAN, WGAN (which are two 

unconditional GAN), and SRGAN (which is applied in high-

resolution restoration). First, DCGAN and WGAN have been 

implemented to learn the features of the collected datasets. 

New images are generated after placing the trained generators 

in the front of the framework for dataset construction. Each 

structure adopted different learning methods and loss 

functions, which caused image generations to vary in texture 

and form. The detailed features of the structure are as follows. 

DCGAN [28]: There was a serious issue of poor stability 

during the initial release of GAN training. The generated 

sample (using GAN) has no quantitative scale, making it 

difficult to evaluate the model performance. The DCGAN 

released in 2016 applied the CNN structure as opposed to the 

conventional a fully connected neural network structure of a 

GAN. Additionally, the following structure was adopted for a 

stable learning model. The pooling layers applied in the 

existing discriminator were replaced with strided 

convolutions, and the feature map size was expanded using 

fractional-strided convolutions in the generator. The fully 

connected hidden layer was also removed, and the generator 

active functions tanh and ReLU were used as reported in 

Equation (2). The discriminator used a leakyReLU function. 

The structure was optimized experimentally on various 

structures. Based on this structure, subsequent GAN papers 

have been published.  

𝑅𝑒𝐿𝑈 ∶  𝑓 𝑥 =  
𝑥 (𝑥 ≥ 0)
0 (𝑥 < 0)

    (2) 

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 ∶ 𝑓 𝑥 =  
𝑥 (𝑥 ≥ 0)
𝛼𝑥 (𝑥 < 0)

   (3) 

WGAN [29]: It is difficult to maintain the balance between 

the discriminator and generator in DCGAN applications. One 

major problem is the dropping occurrence after the 

completion of learning. This is mainly attributed to the 

discriminator failing to sufficiently discern and enable the 

model to learn its optimum point. To address these challenges, 

WGAN offers two main solutions. The discriminator 

conventionally uses a sigmoid function to distinguish between 

truth and false, resulting in a product with a prediction 

probability value. Instead, WGAN performs learning by 

measuring the distance between the probability distributions 

with Earth-Mover (EM) distance using the newly defined 

critic, as shown in Equation (4). Conventionally used JS and 

KL divergences measure the distance strictly, and 

consequently, the result often is not continuous. Thus, EM 

distance better delivers gradients and enables critics and 

generators to learn their optimal points. The EM distance aims 

to estimate the expected distance value between x and y, 

among the joint probability distribution of the two probability 

distributions, to be minimal. The EM distance, as the name 

suggests, indicates the cost of moving sand piles; it is the 

minimum cost of a pile being transferred from one 

distribution to another. The learning process is relatively 

stable in this case because it can produce results of linear 

features when continuous compared to the existing JS 

divergence method. The EM distance estimates the smallest 

expectation value between x and y among the joint probability 

distribution 𝜋(𝑃𝑟 , 𝑃𝑔)  of two probability distributions, as 

shown in the expression below. 

𝑊 𝑃𝑟  , 𝑃𝑔 =  𝑖𝑛𝑓𝛾→𝜋(𝑃𝑟  ,𝑃𝑔) 𝐸 𝑥 ,𝑦 [ 𝑥 − 𝑦 ] 

 (4) 

SRGAN [31]: The augmented image was generated by 

applying the DCGAN and WGAN to perform image 

augmentation based on the fixed input image of the same size. 

The image size for learning is expected to be large as the 

image must be in high resolution; thus, a longer generation 

time is required as the image size increases. SRGAN is used 

in this situation to additionally provide high-resolution 

augmented images to the object detection algorithm. SRGAN 

was created for super-resolution (SR) applications, which 

converts low-resolution images to high-resolution images. It 

was intended to compensate for the lack of high-frequency 

details, which is a problem described in previous SR research. 

Previously, PSNR indicators were used based on the MSE 

loss function to evaluate the SR method, as shown in 

Equations (5) and (6). PSRR represents the power of noise 

from the maximum power that a signal can have, which is 

mainly used in evaluating image quality loss information in 

video or image loss compression.  

𝑀𝑆𝐸 =  
1

𝑋𝑌
  𝑒(𝑥, 𝑦)2𝑌−1

𝑦=0
𝑋−1
𝑥=0   

 (5) 

𝐼𝑀𝑆𝐸
𝑆𝑅 =  

1

𝑟2𝑊𝐻
  (𝐼𝑥 ,𝑦

𝐻𝑅 − 𝐺𝜃𝐺
(𝐼𝐿𝑅)𝑥 ,𝑦)2𝑟𝐻

𝑦=1
𝑟𝑊
𝑥=1  

 (6) 

While the MSE loss is suitable for obtaining high 

performance from PSNR evaluation indicators, the 

minimization of MSE results in excessive smoothness or poor 

 
Figure 1:  Multi-GAN Framework architecture 
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visual effects. Therefore, a new loss function has been 

proposed and evaluated,shown in Equation (7), focusing on 

perceptual similarity. MOStesting indicated better 

performance in comparison to other techniques. 

𝐼𝑉𝐺𝐺  / 𝑖 .𝑗
𝑆𝑅 =

1

𝑊𝐻
  (𝐼𝑥 ,𝑦

𝐻𝑅 − 𝐺𝜃𝐺
(𝐼𝐿𝑅)𝑥 ,𝑦)2𝑟𝐻

𝑦=1
𝑟𝑊
𝑥=1  

 (7) 

Therefore, as shown in Figure 1, the images of various 

textures were generated based on DCGAN and WGAN. 

Subsequently, Multi-GAN framework, which generates high-

resolution images by restoring SR images using SRGAN to 

provide multi-scale images, was proposed. Through the 

proposed framework, the images of various textures and 

images of multi-scale resolution are provided to build a 

dataset that is unbiased and has a size of various scales. 

Through experiments, we attempted to verify the performance 

of the efficient dataset with the proposed framework-based 

images and image manipulation. 

4. EXPERIMENTAL RESULTS 

4.1 Training Setup 
Dataset: The images of radioactive display panels and valves 

for special environments were collected using data crawling 

for collecting online data. Additionally, data were acquired 

through video extraction and image conversion from online 

video-broadcasting platforms, such as YouTube. However, 

these data are limited and uniform. In the actual environment 

encountered during inference, with such data structures, it is 

difficult to detect targets that are observed in various aspects. 

During this process, we conducted the crawled image 

selection and target location labeling operations within the 

corresponding image. After completing the data collection and 

preprocessing steps, generating images through collected 

image manipulation and using the proposed framework to 

overcome the lack of data or data bias are recommended. 

Repetition in learning was executed to generate images 

through deep learning, and as a result, detailed parameters of 

DCGAN and WGAN were set up as follows: Epochs were 

1000, batch size was 64, learning rate of the generator was 

0.00004, Adam initial decay was 0.5 and 0.999, and image 

size was 128128. Figure 2 shows images generated with the 

generator optimized by learning, based on DCGAN (left) and 

WGAN (right). Observe that each GAN technique produced 

different image textures. To restore the low-resolution images 

to high-resolution, deep learning scheme with SRGAN 

proceeded based on the collected images to create a model, 

and a four-fold resolution restoration was conducted for all 

GAN augmented images. 

Next, various image processing methods were applied through 

the image manipulation technique. To form a blurry image, 

kernel filtering was applied to allow input images to pass 

through a kernel using 1111 pixel size. No larger size filters 

were applied owing to the high probability of eliminating the 

object properties. Random noise is used to provide special 

effects by adding random values to the pixels of each image. 

An image was generated by applying a Gaussian noise, which 

adds random values within a given range of the overall pixel 

value. Image generation was performed by arbitrarily 

controlling the color space, which transforms the brightness, 

saturation, and color of the image. Transforming features such 

as brightness, contrast, saturation, and hues enables building a 

robust dataset despite various target colors under different 

environmental conditions. Consequently, we also generated 

images by applications of manipulation like rotation and 

inversion. 

The total size of the dataset was 110,450 images, comprising 

11,976 images collected through web crawling and image 

extraction from videos, 5208 images obtained through color 

transform, 1063 augmented images through DCGAN, 1390 

augmented images through WGAN, 2453 images generated 

through SRGAN, and 93,568 images generated through image 

manipulation. 

Object detection:Deep learning methods based on YOLOv4, 

YOLOv3, and YOLOv3-tiny are executed as follows using 

the built dataset. Learning was conducted individually for the 

three datasets: The first dataset composed of collected images; 

second composed of collected and GAN generated images; 

and third composed of collected images, GAN generated 

images, and images generated by manipulation. In addition, 

the hyper-parameter settings for deep learning were as 

follows: learning steps were 12,000; step decay learning rate 

was initially 0.01; 0.1 was multiplied at 80% and 90% 

learning step levels; momentum was 0.949; weight decay was 

0.0005; batch size was 64, and mini batch size was set to 16 

or 8. The constructed dataset was divided into training and 

testing datasets, and the training model was verified by 

randomly dividing the training and testing sets at a ratio of 

9:1. 

4.2 Evaluate accuracy 
The evaluation indicator was analyzed based on AP, which is 

primarily used in the object detection field. mAP indicates the 

mean AP value of each class. We divided this into the 

augmented dataset and deep learning object detection types 

and evaluated the performance. AP(@0.5) indicates the 

accuracy at which the IoU value is greater than or equal to 

0.5. AP(@0.75) indicates an accuracy greater than or equal to 

IoU 0.75. This not only indicates the accuracy of the object 

class but also the accuracy that considers the location 

accuracy within an image. he results extracted from training 

conducted through the YOLOv4 structure are reported in 

Table 1. The accuracy of the AP was reported for each dataset 

on the left. 

 

Figure 3:  Generated images using WGAN 

 

 

Figure 2:  Generated images using DCGAN 
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AP(@0.5) has an accuracy of 63.21% when training was 

conducted with the existing online collected dataset. In 

comparison, when training was conducted with the dataset 

comprising the collected images and DCGAN and WGAN 

that underwent learning through color transformed images, the 

accuracy compared to the existing dataset improved by 

approximately 3% in DCGAN and WGAN, and 6% in the 

dataset including SRGAN. When the models that were trained 

with a dataset based on the proposed solution were compared, 

the accuracy was improved by 24.38%. The performance has 

improved in AP(@0.75) as well. The accuracy obtained when 

applying YOLOv3 is reported in Table 2. Based on the 

existing collected dataset, approximately 61% mAP(@0.5) 

was achieved, and the dataset generated based on DCGAN 

and WGAN resulted in a 2% accuracy improvement. In 

addition, the SRGAN-based dataset achieved a performance 

improvement of approximately 6%. Compared to the models 

that were trained with a dataset based on the proposed 

solution, an accuracy greater than or equal to 23% was 

obtained. A higher-performing cognitive accuracy was also 

confirmed based on mAP(@0.75). Overall, YOLOv3 tends to 

be less accurate compared to YOLOv4. 

The augmented dataset proposed in this study was used with 

all three types ofobject detection architecture and went 

through performance verification. The model that was used 

with the three deep learning structures shows a relatively 

greater increase in recognition accuracy when manipulation is 

added rather than GAN-generated images. Such improvement 

in performance is because of a significant increase in the 

existing collected datasets to 9642, in the images generated by 

the GAN algorithm to 4906, in the images generated by 

manipulation to 93,568, and in the final augmented datasets to 

117,515. Because the number of images generated from 

manipulation is relatively higher, of course the increase was 

higher.  

As shown in Table 1, the dataset with image manipulation 

seems to have increased the accuracy rapidly. However, the 

images generated with GANs are not infinite images that can 

be generated in proportion to the number of origin images. 

The dataset generated with image manipulation can create 

tens to tens of thousands images while varying 

hyperparameters related to random rotation, color 

information, and noise. However, the generated image is very 

similar to the collected image. In this case, overfitting 

problems may occur in a small number of collected images. 

Therefore, we created the number of imageswith GAN 

framework and then created the images through image 

manipulation. 

Based on YOLOv4, the growth rates per one GAN generation 

image and one manipulation image are respectively 0.0013% 

and 0.00018%. It can be seen that the accuracy of the GAN 

generation image per unit is improved by about 10 times more 

than that of the manipulated image per unit.the quality of the  

Table 1. AP accuracy with YOLOv4 

Dataset Accuracy 

Origin DCGAN WGAN SRGAN Manipulations AP(@0.5) AP(@0.75) 

√ 
    

63.21 42.36 

√ √ 
   

66.26 

(+3.05) 

47.74 

(+5.38) 

√ 
 

√ 
  

66.50 

(+3.29) 

48.59 

(+6.23) 

√ √ √ √ 
 

69.95 

(+6.74) 

50.88 

(+8.52) 

√ √ √ √ √ 
87.59 

(+24.38) 

76 

(+33.64) 

 

 
Table 2. AP accuracy with YOLOv3 

Dataset Accuracy 

Origin DCGAN WGAN SRGAN Manipulations AP(@0.5) AP(@0.75) 

√ 
    

61.75 37.25 

√ √ 
   

63.83 

(+2.08) 

45.56 

(+8.31) 

√ 
 

√ 
  

64.18 

(+2.43) 

45.73 

(+8.48) 

√ √ √ √ 
 

68.06 

(+6.31) 

46.37 

(+10.12) 

√ √ √ √ √ 
85.31 

(+23.56) 

66.45 

(+29.8) 
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Table 3. AP accuracy with YOLOv3-tiny 

Dataset Accuracy 

Origin DCGAN WGAN SRGAN Manipulations AP(@0.5) AP(@0.75) 

√ 
    

50.28 12.91 

√ √ 
   

54.74 

(+4.66) 

13.95 

(+1.04) 

√ 
 

√ 
  

53.49 

(+3.21) 

14.08 

(+1.17) 

√ √ √ √ 
 

56.97 

(+6.69) 

14.19 

(+1.28) 

√ √ √ √ √ 
67.96 

(+17.68) 

15.59 

(+2.68) 

 

GAN-generated image is better than that of the manipulated 

image. It means that the probability of recognizing a new type 

of target is higher. 

Additionally, given the considerable time required for 

building datasets for specific object detection applications, 

significant efficiency is required to reduce the time necessary 

for dataset construction. It took half a day to collect images 

online through web crawling and extract images from videos. 

Labeling the indicated object information within an image 

required an entire day. When an optimal model is created by 

learning collected images using DCGAN, WGAN, and 

SRGAN deep learning structures, it takes two to seven days 

per one deep learning structure of one object. Depending on 

the GPU server performance, the learning period varies. 

Generating a new image with all GAN learning models that 

underwent such a learning process requires no longer than one 

day. Moreover, it was possible to generate images with certain 

manipulation techniques applied, such as image rotation and 

blur, within six hours. Given that years of effort was required 

to build the existing shared dataset, the dataset building 

process performed in this study may be useful in actual 

industrial environment applications because it required a 

maximum of one month and one person. 

The accuracy obtained when applying YOLOv3-tiny is 

reported in Table 3. The training was executed after 

classifying dataset similar to YOLOv3 and YOLOv4. While 

the overall cognitive accuracy is relatively low because of the 

relatively shallow neural network structure, the growth rate 

for each dataset in AP(@0.5) increased, similar to previous 

cases. However, significant performance degradation was 

observed in the AP(@0.75). Its performance improvement 

was minimal despite the increase in the dataset size. This 

performance degradation may be because of structure 

simplification considering the speed aspect. 

By analyzing the cause of improvement from the results given 

in the three tables above, we determined that the dataset of 

custom objects is not sufficient in size. Therefore, improving 

the accuracy with an increase in the relevant data is logical. 

However, depending on the quality of each data, the impact of 

accuracy differs. As evident in all tables, GAN generation 

techniques exhibit a relatively high improvement rate of 

accuracy per image compared to the image manipulation 

techniques. It can be evaluated that the quality of the 

generated image from the deep learning-based GAN 

technique is higher than that from the manipulation technique. 

The images generated based on the manipulation technique 

are obtained from the original image, resulting in the 

reproducibility being biased toward a small number of dataset 

because the images are largely influenced by the original 

image. Based on the experiment results, this limitation can be 

overcome by the GAN augmentation technique presented in 

this study. 

5. CONCLUSION 
In this study, the solution was proposed for the augmentation 

dataset construction that compensates for the deficiency 

evident in custom datasets. To complement the lacking dataset 

collection, a dataset was constructed via the multi-GAN 

augmentation framework composed of image manipulation 

(rotation, blur, random noise, etc.) and deep learningbased 

DCGAN, WGAN, and SRGAN schemes. Deep learning was 

executed for each dataset and object detection algorithm; the 

performance of the augmented dataset on the mAP basis was 

improved by an average of 22% based on three YOLO 

models, evaluated through the collected dataset and accuracy 

comparison. Consequently, reproducibility biased toward a 

small number of datasets, which is a limitation of the 

manipulation technique that was resolved by applying the 

multi-GAN augmentation framework proposed in this study. 

Furthermore, simultaneous application of DCGAN and 

WGAN enabled the generation of an image that reflects 

different textures, and a dataset that provides images of 

various scales was constructed through SRGAN. A specific 

method was presented for building an unbiased dataset by 

efficiently quantifying numerous images through various 

augmentation techniques, which reduces the time and costs 

required for the collection of images. 
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