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ABSTRACT
This paper presents an experimental comparative study between
some machine learning techniques and some signal processing
methods to detect broken rotor bars in squirrel cage induction mo-
tors (SCIM). It has been used a current transformer to measure
the stator current data from only one phase of the machine. The
present research have addressed a common operational condition,
particularly when motors run at low slip, i.e., with low load. In
this work, three pre-processing approaches have been applied, such
as the Fast Fourier Transform (FFT), Hilbert Transformation (HT)
and some statistical data (SData). The sampled features have been
applied to training and validating steps, by using three classifica-
tion models, such as Support Vector Machine (SVM), k-Nearest
Neighbor (KNN) and Logistic Regression (LR), not only to detect
the failure, but also to evaluate its severity. The present study also
presents a wide discussion about the parameters evaluated for each
machine learning technique, in order to demonstrate that different
choices can significantly affect the performance of each classifier.
The best parameters have been identified for distinct rotor condi-
tions. In addition, the Pearson correlation coefficient has been ap-
plied in a further investigation that shown the great possibility to re-
duce the number of input features and still maintaining a very good
performance for the classifiers. The efficiency of this approach was
evaluated and tested experimentally from a 7.5-kW induction mo-
tor running at low slip using a variable speed drive.
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1. INTRODUCTION
The Three-Phase Squirrel Cage Induction Motors (SCIM) are
widely used in several applications and drives in the industry sector.
Usually, this type of rotating machine is responsible for many en-
ergy conversion processes, particularly due to its reliability and ro-
bustness. In some countries, three-phase induction motors account
for 30% to 80% of the total energy require for consumption [1]. De-
spite its robustness, the SCIM can be subjected to different kind of

electrical and mechanical faults [2], during its startup and/or steady
state operations, according to their load requirements and mainte-
nance policy ([3] and [4]). As cited by other works [5], [6] and
[7], the rotor faults represent around 10% of all failures, but when
a broken bar occurs, for example, other parts of the machine may
be damaged, which can cause machine downtime and production
losses. In addition, rotor faults can cause unwanted effects such as
vibrations, high temperature rises in the machine and the possibility
of undermine its isolation, which reduces the service life machine.
There are basically two types of approach to diagnose broken bars
in SCIM, the invasive approach and non-invasive approach, as cited
by [4]. A recent study, published by [8], for example, presents and
summarizes some important researches and developments in the
field of signal based automation for induction motor fault detec-
tion and diagnosis. That article has disclosed that motor current
signature analysis (MCSA) method is still quite employed for bro-
ken rotor fault detection. Basically, this method uses Fast Fourier
Transform to extract stator current features, as better described in
the next section. A Hilbert Transform has the capacity of improving
the MCSA approach, particularly for a SCIM running at very low
slip, or low load conditions, as cited by [9] and [6]. Recently, other
researchers have addressed the detection of broken bars, particu-
larly for large machines, since these kind of motors usually operate
at very low slip condition. In [10], for example, the authors have
investigated broken rotor bars in a 3.15 MW induction motor. The
aforementioned methods is a non-invasive approach, being substan-
tially distinct from other works, such as the solutions presented by
the works ([5] and [11]), since these techniques apply a Hall effect
sensor installed near the air gap to measure magnetic disturbances
according to the rotor condition. As mentioned by [12], a wide
number of machine learning algorithms have been applied in the
past years for motor fault diagnosis [13] and [14], using both fre-
quency and time-domain signals as input data, but the performance
of classifiers, for example, is very heterogeneous. Therefore, the
present research has been carried out using FFT and HT methods
as digital signal processing methods, statistical data extracted from
the stator current in the time-domain and three of the most known
classifiers, usually found in the rotating electrical machine monitor-
ing field. The combination of the best parameters of each classifier
and the signal processing of the stator current have been carefully
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investigated. In the next section the data preprocessing methods are
presented and discussed.

2. DATA PREPROCESSING: DIGITAL SIGNAL
PROCESSING METHODS FOR STATOR
CURRENT FEATURES EXTRACTION

As described in the previous section, a lot of studies have invested
efforts to applying digital signal processing methods, in order to
extract relevant features from signals measured and/or estimated
in induction motors. Among the best known and most used ap-
proaches, there are those that make use of frequency domain and
time domain algorithms, as disclosed by the works published in
[5], [15] and [16]. In the present work, three stator current feature
extraction methods have been used such as FFT, HT and statistics
metrics. The following subsections detail the fundamentals of each
one.

2.1 Fast Fourier Transform Approach for Stator
Current Feature Extraction

The FFT approach has been widely used in the condition monitor-
ing of induction motor during the last decades. More particularly,
for broken rotor bars detection there are sideband frequencies (left
and right) around the fundamental one in case of the occurrence of
this kind of fault. In addition, the amplitude of the sideband indi-
cates the severity of the failure, i.e., the number of broken bars, for
example in [7].

fBRB = (1± 2ks)fs (1)

Where fBRB represents the broken bar frequency (fault fre-
quency), fs is the fundamental frequency, s is the slip and k is
a constant related to the number of the harmonic.

Fig. 1: Left side band frequency (1-2s)f, after applying FFT in the stator
current, according to a) a health motor (without broken rotor bars) and b)
motor with one broken bar running at slip of 0.66%.

As shown in Figure 1, a particular fault frequency near the funda-
mental one is shown for a damaged rotor (broken bars). Therefore,
when a rotor failure occurs the fault frequency, its amplitude and
the slip are computed to use as inputs to a machine learning clas-
sifier as better described in section 4. The input vector using these
features is constructed as:

FFT (features) = [FFreq,AFFreq, Slip] (2)

Where FFreq is the fault frequency in Hz, AFFreq is the ampli-
tude of the fault frequency in dB and Slip is the slip (s) of the ro-
tor shaft in percentage. This input vector is used to evaluate some
machine learning performances for an induction motor running at

very low slip conditions, as better described in section IV. At low
slip operational conditions it is very difficult do identify this kind
of rotor fault using FFT, as disclosed by numerous works ([5], [7],
[11],[17], [18] and [19]). However, this kind of frequency-domain
approach is current widely used in broken rotor bars diagnosis.

2.2 Hilbert Transform for Stator Current Feature
Extraction

As described by Ref. [20], the Hilbert Transform (HT) can be ap-
plied as an efficient technique for signal demodulation and for har-
monic components extraction from a time domain signal. In the
past years, some authors ( [6], [7], [9] and [21]) have implemented
HT for broken bars detection in distinct load conditions. By con-
sidering a x(t) time-domain signal, such as one phase of the stator
current, the HT can be defined as follows (Equation 3):

HT (x(t)) = y(t) =
1

π

∫ +∞

−∞
x(τ)

1

t− τ
, dτ (3)

In the present work the so-called analytical signal is used
−−→
x(t) ac-

cording to Equation 4:

−−→
x(t) = x(t) + jy(t) = b(t)ejθ(t) (4)

After calculating the Hilbert modulus of
−−→
x(t), the FFT is applied to

extract a new fault frequency (2sf), according to the failure in the
rotor cage. In this approach, the frequencies to be detected are very
low, as cited by works [6] and [7]. This fault frequency component
is shown in Figure 2.

Fig. 2: Left side band frequency (2sf), after applying HT+FFT in the Hilbert
modulus, according to one broken bar for a) motor running at slip of 1.15%
and b) motor running at slip of 0.66%.

In this case, a second input vector was obtained according to Equa-
tion 5.

HTFT (features) = [HTFreq,AHTFreq, Slip] (5)

Where HTFreq is the fault frequency (2sf) in Hz, AHTFreq is the
amplitude of the fault frequency in dB and Slip is the slip (s) of the
rotor shaft in percentage.

2.3 Statistical Approach for Stator Current Feature
Extraction

The use of statistical features, particularly extracted from some mo-
tor time-domain signals, were investigated by researchers to detect
broken rotor bars in induction motors recently ([5], [22] and [23]).
In [5], for example, some time domain statistical features were ex-
tracted from a Hall effect sensor installed between two stator slots
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Table 1. : Statistical Features [22]

Feature Description Equation
STAT1 Standard Deviation σ =

∑
(xi−x̄)2

n−1

STAT2 Mean m1 = 1
n

∑
(x)

STAT3 Variance m2 = 1
n

∑
(xi − x̄)2

STAT4 3er Order Moment m3 = 1
n

∑
(xi − x̄)3

STAT5 4th Order Moment m4 = 1
n

∑
(xi − x̄)4

STAT6 6th Order Moment m6 = 1
(n×m2)

∑
(xi−x̄)6

STAT7 1st Order Cumulant c1 = m1

STAT8 2nd Order Cumulant c2 = m2 −m12

STAT9 3er Order Cumulant c3 = m3 − 3m1m2 + 2m3
1

STAT10 4th Order Cumulant c4 = m4 +m3m1− 3m22 + 12m22 − 6m14

STAT11 Skewness skew = m3
(
√
m2)3

STAT12 Absolute mean |x̄| = 1
n

∑
|x|

STAT13 Maximum Peak Value xp = max|x|
STAT14 Square Root Value xr = ( 1

n

∑√
|x|)2

STAT15 Crest Factor fc =
xp

xrms

STAT16 Shape Factor fo = xrms
|x|

STAT17 Root Mean Square xrms =
√

1
n

∑
(xi − x̄)2

of the machine, in order to detect broken rotor bars. In the present
work, it has been evaluated the use of some statistical metrics calcu-
lated from the stator current, as proposed by [22] (Table 1). There-
fore, the FFT and HT approaches, detailed in subsections 2.1 and
2.2, are frequency-domain methods and the aforementioned statis-
tical features are extracted from the one phase of the stator current,
considering its time-domain waveform, as suggested by [22]. Thus,
on each stator current sample, the 17 statistical features are calcu-
lated and the third input vector is obtained, such as described in
Equation 6.

STAT (features) = [STAT1, .., STAT17] (6)

The next section explain the machine learning techniques and its
main parameters explored in the present research.

3. THE MACHINE LEARNING TECHNIQUES FOR
BROKEN ROTOR BARS CLASSIFICATION

In this work, three classifiers have been implemented and tested for
broken rotor bars detection and for rotor failure severity evaluation.
They are described as follows.

3.1 Logistic Regression (RL)
In general, a logistic regression is a popular machine learning tech-
nique used when the dependent variable is categorical. In this work,
the logistic regression is applied for a multiclass classification, i.e.,
its output depends on the number of the rotor broken bars. As cited
by [24], it is important to mention that logistic regression is a rela-
tively simple method that works similarly to a linear regression, ex-
cept to the output values. According to the kind of problem, some
approaches are used to solve an optimization problem and specific
solvers could be implemented such as ’newton-cg’, ’sag’, ’saga’
and lbfgs. In this case, only these solvers handle multinomial loss.

3.2 Support Vector Machine (SVM)
This kind of classifier is known as a statistical model and applies
an optimization problem to find the best hyperplane that separates
most the target classes ([25] and [26]) . In the present research the
cost tuning and gamma parameters have been tested using a Ra-
dial Basis Function (RBF) or Gaussian Kernel. This type of kernel
function has been chosen due to its good performance disclosed in
[5].

Fig. 3: Proposed Methodology

Table 2. : Preprocessing methods and features extracted from stator current
of the SCIM

Method Extracted features Total Features
FFT Equation (2) 3
HT+FFT Equation (5) 3
Statistical features Equation (6) 17

3.3 K-Nearest Neigbor (KNN)
In general, the main parameters of a KNN classifer are the distance
metric and the number of neighbors (Nb). This kind of machine
learning algorithm is a nonparametric method and, as cited by [5],
it assigns each unlabeled pattern to the cluster of its nearest labeled
neighbors. In the present research, Nb varies from 1 to 9 and two
distance metrics have been evaluated, namely Minkowski and Eu-
clidean.

4. METHODOLOGY FOR FEATURE SELECTION
AND BROKEN BARS DETECTION

As shown in the previous sections, three signal preprocessing meth-
ods and three machine learning techniques have been investigated
to extract the features from the stator current and for broken bars
detection. In Table 2, the processing methods and their features are
presented and Table 3 shows the machine learning techniques and
their parameters evaluated on each case. In Figure 3 it is possible to
note the main steps of the present research. It should be noted that
all algorithms have been implemented in the Python software and
some libraries have been used for mathematics and machine learn-
ing purposes, such as ”numpy”, ”pandas”, ”matplotlib”, ”sklearn”
and ”scipy”. As described by [25], the performance metrics used
for designing a classifier are as follows: i-) Accuracy; ii-) Precision;
iii-) Recall; and iv-) F1-scored. These metrics are able to evaluate
the true and false indications related to the rotor structure condition
monitoring, as better described in Section VI.

5. EXPERIMENTAL SETUP
The experimental tests has been carried out in laboratory, using an
induction motor 7.5 kW, four poles, 60 Hz and 38 rotor bars. This
motor has a rated slip in 3.4%. The rotor structure is composed
by bolts and nuts being possible to simulate different numbers of
broken bars. It should be mentioned that the cited motor has been
particularly manufactured to research purposes and simulate a rotor
bar failure with the end-ring section, as shown in Figure 4.
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Table 3. : Machine learning techniques and parameters tested for broken
rotor bars detection

Technique Parameters
Logistic Regression (RL) Solver type (newton-cg, sag, saga

and lbfgs) and C-value
Support Vector Machine (SVM) Cost tuning parameter (”C”) and

gamma (g), using Radial Basis
Function (RBF) kernel

K-Nearest Neighborhood (KNN) Number of neighbors (Nb) and dis-
tance metrics (Dm)

Fig. 4: Rotor structure with bolts and nuts to simulate broken rotor bars

Fig. 5: Apparatus setup used for experimental tests

The experimental test bench is shown in Figure 6. The stator
current has been measured using a current transformer (20A/1V)
and data have been sampled using a digital Oscilloscope Hantek
(HT6022BE), with bandwith in 20 MHz and a sample frequency
in 10kHz. The current data have been stored in a PC computer. It
should be mentioned that the induction motor has an internal brak-
ing system (Foucault brake), which is possible to apply different
mechanical loads in the rotor shaft. The machine was driven by a
frequency inverter (speed drive).

6. RESULTS AND DISCUSSION
This section shows the experimental results and the rotor fault de-
tection according to the proposed methodology. Firstly, it should
me mentioned the features and the data-set built for stator current
data processing and failure detection. As shown in Table 2, the first
data-set has prepared using 20 extracted features (equation2 and
equation 6) and the second data-set also has 20 extracted features
(equation 5 and equation 6). As cited by [22], the combination of

statistical features with frequency domain features can increase the
classifier efficiency. In the present research, as shown in Table 4, the
data-set has been implemented for 5 classes, i.e., considering the
output of each classifier with the following conditions: i) a health
rotor (class = 0); ii) one broken bar (class = 1); iii) two broken bars
(class = 2); iv) three broken bars (class = 3); and v) four broken bars
(class = 4). It is important to highlight that the experimental tests
have been carried out for the induction motor running at very low
slip in a range from 0.66% to 1.16%. The rated slip of the tested
motor is around 3.4%.

6.1 The rotor fault diagnosis results using FFT+STAT
approach as feature extraction method for
classifier inputs

In the present case, the stator current features were extracted using
the Fast Fourier transform of the stator current and the statistical
features processed during 10s as a window sample time. A total
of 20 features have been applied as inputs for each classifier, as
described in Table 2. In Table 4 the data-set has been described for
classifier learning and testing purposes. The FFT+STAT features
has been tested using RL, KNN and SVM classifiers and the results
for each one are described in the next subsections.

6.1.1 Results obtained for a RL classifier. The RL classifier
performance has been investigated for different configurations as
shown in Table 5. In general, as can be seen, the solver type did not
directly influence the performance, but the C-value was the param-
eter which was able to improve the precision, recall and accuracy
of the RL classifier for each rotor condition. The C-value equal to
0.16 has achieved the best accuracy (0.5166) for a healthy rotor
and for 1BB, 2BB and 3BB. Though C-value of 0.0016 has shown
a good performance for a 4BB rotor condition, this parameter value
indicated the worst performance compared to the other rotor fault
cases.

6.1.2 Results obtained for a KNN classifier. As the previous
case, in this approach the input features have been extracted using
FFT+STAT and applying a KNN classifier. The number of neigh-
bors (Nb) and distance metrics have been tested in distinct configu-
rations as shown in Table 6. As can be noted, the number of neigh-
bors equal to 7 has demonstrated the best performance, considering
the accuracy (accuracy = 0.6880), regardless the distance metric.
However, the authors have tested other distance metrics and Cheby-
shev, for example, have shown a general underperforming when
compared to the use of Euclidean and Minkowski approaches. Any-
way, the worst result using KNN classifier (accuracy = 0.6559) is
better when compared to RL classifier (accuracy = 0.5166). This re-
sult has achieved some findings:i-) this second approach has been
able to distinguish more between a fault rotor when compared to
the classifier model using RL, avoiding, for example, more false
positive indications; and ii-) the KNN classifier has been able to
identify and distinguish the number of broken bars compared to the
previous solution.

6.1.3 Results obtained for a SVM classifier. In this item a SVM
classifier has been also tested considering distinct parameters. As
described in Table 3, the cost tuning parameter (C) value and
gamma (g) have been investigated applying a Radial Basis Func-
tion kernel (RBF). In Table 7 it is possible to observer that the best
accuracy values are a little better then those obtained using a KNN
classifier. In this case, the values of C = 1 and g = 0.50 (or g = 0.25)
have disclosed a better configuration. Thus, when compared to the
other classifiers (RL and KNN), the SVM has demonstrated a bet-
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Table 4. : Data-set used for evaluation of the best classifier parameters and rotor fault detection

Machine learning operation Total of experiments Number of experiments per slip [slip(Qtde)] Number of experiments per
class

Learning data 1560 (65%) [s=0.5%(375)] [s=0.66% (398)] [s=1%(396)]
[s=1.16%(391)]

312 (5 classes)

Testing data 840 (35%) [s=0.5%(225)] [s=0.66% (202)] [s=1%(204)]
[s=1.16%(209)] (65%)

168 (5 classes)

Total 2400 2400 2400

Table 5. : RL classifier performance using distinct configurations and FFT+STAT input features

RL Configuration
Precision/Recall/

F1-score(Healthy rotor)
Precision/Recall/
F1-score(1BB)

Precision/Recall/
F1-score(2BB)

Precision/Recall/
F1-score(3BB)

Precision/Recall/
F1-score(4BB)

Accuracy

Newton-cg solver and Cs = 1.6 0.5362 / 0.6607 / 0.592 0.3960 / 0.4762 / 0.4324 0.3846 / 0.2976 / 0.3355 0.6829 / 0.5 / 0.5773 0.5898 / 0.625 / 0.6069 0.5119
Newton-cg solver and Cs = 0.16 0.5432 / 0.6726 / 0.6010 0.3913 / 0.4821 / 0.432 0.3983 / 0.2916 / 0.3367 0.6774 / 0.5 / 0.5733 0.6011 / 0.6369 / 0.6185 0.5166
Newton-cg solver and Cs = 0.016 0.5427 / 0.6428 / 0.5885 0.3607 / 0.4702 / 0.4082 0.3913 / 0.2678 / 0.3180 0.688 / 0.5119 / 0.5870 0.6043 / 0.6547 / 0.6285 0.5095
Newton-cg solver and Cs = 0.0016 0.5127 / 0.6012 / 0.5534 0.3262 / 0.4583 / 0.3811 0.2380 / 0.089 / 0.1298 0.5918 / 0.5178 / 0.5523 0.5939 / 0.6964 / 0.6410 0.4726
Sag solver and Cs = 1.6 0.5362 / 0.6607 / 0.592 0.3960 / 0.4762 / 0.4324 0.3846 / 0.2976 / 0.3355 0.6829 / 0.5 / 0.5773 0.5898 / 0.625 / 0.6069 0.5119
Sag solver and Cs = 0.16 0.5432 / 0.6726 / 0.6010 0.3913 / 0.4821 / 0.432 0.3983 / 0.2916 / 0.3367 0.6774 / 0.5 / 0.5733 0.6011 / 0.6369 / 0.6185 0.5166
Sag solver and Cs = 0.016 0.5427 / 0.6428 / 0.5885 0.3607 / 0.4702 / 0.4082 0.3913 / 0.2678 / 0.3180 0.688 / 0.5119 / 0.5870 0.6043 / 0.6547 / 0.6285 0.5095
Sag solver and Cs = 0.0016 0.5127 / 0.6012 / 0.5534 0.3262 / 0.4583 / 0.3811 0.2380 / 0.089 / 0.1298 0.5918 / 0.5178 / 0.5523 0.5939 / 0.6964 / 0.6410 0.4726
Saga solver and Cs = 1.6 0.5362 / 0.6607 / 0.592 0.3960 / 0.4762 / 0.4324 0.3846 / 0.2976 / 0.3355 0.6829 / 0.5 / 0.5773 0.5898 / 0.625 / 0.6069 0.5119
Saga solver and Cs = 0.16 0.5432 / 0.6726 / 0.6010 0.3913 / 0.4821 / 0.432 0.3983 / 0.2916 / 0.3367 0.6774 / 0.5 / 0.5733 0.6011 / 0.6369 / 0.6185 0.5166
Saga solver and Cs = 0.016 0.5427 / 0.6428 / 0.5885 0.3607 / 0.4702 / 0.4082 0.3913 / 0.2678 / 0.3180 0.688 / 0.5119 / 0.5870 0.6043 / 0.6547 / 0.6285 0.5095
Saga solver and Cs = 0.0016 0.5127 / 0.6012 / 0.5534 0.3262 / 0.4583 / 0.3811 0.2380 / 0.089 / 0.1298 0.5918 / 0.5178 / 0.5523 0.5939 / 0.6964 / 0.6410 0.4726
Lbfgs solver and Cs = 1.6 0.5362 / 0.6607 / 0.592 0.3960 / 0.4762 / 0.4324 0.3846 / 0.2976 / 0.3355 0.6829 / 0.5 / 0.5773 0.5898 / 0.625 / 0.6069 0.5119
Lbfgs solver and Cs = 0.16 0.5432 / 0.6726 / 0.6010 0.3913 / 0.4821 / 0.432 0.3983 / 0.2916 / 0.3367 0.6774 / 0.5 / 0.5733 0.6011 / 0.6369 / 0.6185 0.5166
Lbfgs solver and Cs = 0.016 0.5427 / 0.6428 / 0.5885 0.3607 / 0.4702 / 0.4082 0.3913 / 0.2678 / 0.3180 0.688 / 0.5119 / 0.5870 0.6043 / 0.6547 / 0.6285 0.5095
Lbfgs solver and Cs = 0.0016 0.5127 / 0.6012 / 0.5534 0.3262 / 0.4583 / 0.3811 0.2380 / 0.089 / 0.1298 0.5918 / 0.5178 / 0.5523 0.5939 / 0.6964 / 0.6410 0.4726

ter accuracy as shown in Tables 5, 6 and 7. Therefore, SVM has
shown the possibility to avoid false alarms (negative and positive
indications) considering the best parameters.

6.2 The rotor fault diagnosis results using
HTFT+STAT approach as feature extraction
method for classifier inputs

In the present case, the stator current features were extracted using
the Hilbert and Fast Fourier transform of the stator current and the
statistical features processed during 10s as a window sample time.
A total of 20 features have also been applied as inputs for each
classifier, as described in Table 3. The data-set, i.e, the number of
experiments, is the same used for the FFT+STAT approach. The
HTFT+STAT features has been tested using RL, KNN and SVM
classifiers and the results for each one are described in the next
subsections.

6.2.1 Results obtained for a RL classifier. In Table 8 it is pos-
sible to observe that, regardless the solver type, Cs parameter set
in 1.6 has achieved the best accuracy (accuracy around 0.64). It
should be noted that the mentioned accuracy is better than that
found for a RL classifier using only the FFT+STAT approach (best
accuracy around 0.5166) for feature extraction. In addition, the
present results are quite near those obtained using KNN classifier
and FFT+STAT input features (Table 6). This approach has a great
capacity to differentiate between a rotor fault and a healthy one, al-
though the severity identification is quite complicated, particularly
between 2BB and 3BB conditions. This finding can be observed
using the precision, recall and F1-score values in Table 8, for ex-
ample. Thus, the use of Hilbert and FFT approach, as a signal pro-
cessing method to extract stator current features, has improved the
rotor diagnosis efficiency, when compared to the use of FFT+STAT
and the same RL classifier parameters.

6.2.2 Results obtained for a KNN classifier. In this case, KNN
has been applied as a classifier using HTFT+STAT for feature ex-
traction. Table 9 disclosed a better accuracy (0.8190) when com-
pared to the same classifier using only FFT+STAT input features
(Table 6). Moreover, regardless the distance metric (Euclidean or

Minkowski) used on each configuration, the Nb parameter adjusted
in a value of 5 has achieved the best accuracy results (0.8190) for
rotor condition evaluation.

6.2.3 Results obtained for a SVM classifier. In this approach, the
SVM classifier has been tested using distinct configurations, as
cited in section 6.1.3. However, the inputs have been investigated
using HTFT+STAT features and the accuracy (Table 10) results
have shown better results when compared to any previous config-
uration (accuracy around 0.8464). It is interesting to observe that,
using FFT+STAT input features the best SVM configuration was
found for C = 1 and g = 0.50 (or g = 0.25), but in the present case the
best SVM parameters are C = 100 and g=0.25 (or g = 0.50). In this
case, is possible to avoid false positive indications for rotor condi-
tion evaluation and this kind of configuration, using HTFT+STAT
input features and a SVM classifier, shows better results when com-
pared to all previous cases.

6.3 The use of the Pearson correlation coefficient for
stator feature selection

As mentioned before, this research has also investigated the use of
Pearson correlation coefficient (PCC) to select some stator features
as inputs for each classifier. By using a heat map, it is possible to
evaluate the strength of each variable, i.e, considering each feature
and the output. Since the HTFT+STAT features have demonstrated
a better result when compared to the use of only FFT, the Pearson
correlation has been discussed using Hilbert and statistical features.
The Pearson coefficient can take a range of values from +1 to -1
and a value of 0 indicates that there is no association between the
two variables (input feature and output). As cited by [27] and [28],
the PCC is able to screened more information from data. A several
reduction scenarios have been tested in the present research, but
the use of the first 8 variables (positive correlation) and 2 variables
with more negative correlations (highlighted in a red square) shown
the best accuracy results for rotor condition evaluation. However,
the SVM classifier still showed best accuracy results are shown in
Table 11. Figure 6 shows a ROC curves using features extracted
after applying PCC. It is interesting to observe that the use of re-
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Table 6. : KNN classifier performance using distinct configurations and FFT+STAT input features

KNN Configuration
Precision/Recall/

F1-score(Healthy rotor)
Precision/Recall/
F1-score(1BB)

Precision/Recall/
F1-score(2BB)

Precision/Recall/
F1-score(3BB)

Precision/Recall/
F1-score(4BB)

Accuracy

Euclidean and Nb = 1 0.7117 / 0.7202 / 0.7159 0.6176 / 0.625 / 0.6213 0.5379 / 0.5059 / 0.5214 0.64 / 0.6666 / 0.6530 0.7664 / 0.7619 / 0.7641 0.6559
Euclidean and Nb = 3 0.7225 / 0.7440 / 0.7331 0.6 / 0.6071 / 0.6035 0.5286 / 0.4940 / 0.5107 0.6647 / 0.6964 / 0.6802 0.7865 / 0.7678 / 0.7771 0.6619
Euclidean and Nb = 5 0.7209 / 0.7380 / 0.7294 0.6265 / 0.6190 / 0.6227 0.5476 / 0.5476 / 0.5476 0.6483 / 0.7023 / 0.6742 0.7960 / 0.7202 / 0.7562 0.6654
Euclidean and Nb = 7 0.7622 / 0.7440 / 0.7530 0.6333 / 0.6785 / 0.6551 0.5647 / 0.5714 / 0.5680 0.6946 / 0.6904 / 0.6925 0.7987 / 0.756 / 0.7767 0.6880
Euclidean and Nb = 9 0.7530 / 0.7440 / 0.7485 0.6145 / 0.6547 / 0.6340 0.5523 / 0.5654 / 0.5588 0.7083 / 0.7083 / 0.7083 0.8258 / 0.7619 / 0.7925 0.6869
Minkowski and Nb = 1 0.7117 / 0.7202 / 0.7159 0.6176 / 0.625 / 0.6213 0.5379 / 0.5059 / 0.5214 0.64 / 0.6666 / 0.6530 0.7664 / 0.7619 / 0.7641 0.6559
Minkowski and Nb = 3 0.7225 / 0.7440 / 0.7331 0.6 / 0.6071 / 0.6035 0.5286 / 0.4940 / 0.5107 0.6647 / 0.6964 / 0.6802 0.7865 / 0.7678 / 0.7771 0.6619
Minkowski and Nb = 5 0.7209 / 0.7380 / 0.7294 0.6265 / 0.6190 / 0.6227 0.5476 / 0.5476 / 0.5476 0.6483 / 0.7023 / 0.6742 0.7960 / 0.7202 / 0.7562 0.6654
Minkowski and Nb = 7 0.7622 / 0.7440 / 0.7530 0.6333 / 0.6785 / 0.6551 0.5647 / 0.5714 / 0.5680 0.6946 / 0.6904 / 0.6925 0.7987 / 0.756 / 0.7767 0.6880
Minkowski and Nb = 9 0.7530 / 0.7440 / 0.7485 0.6145 / 0.6547 / 0.6340 0.5523 / 0.5654 / 0.5588 0.7083 / 0.7083 / 0.7083 0.8258 / 0.7619 / 0.7925 0.6869

Table 7. : SVM classifier performance using distinct configurations and FFT+STAT input features

SVM Configuration
Precision/Recall/

F1-score(Healthy rotor)
Precision/Recall/
F1-score(1BB)

Precision/Recall/
F1-score(2BB)

Precision/Recall/
F1-score(3BB)

Precision/Recall/
F1-score(4BB)

Accuracy

C = 1 and g = 0.0025 0.9859 / 0.4166 / 0.5857 0.2996 / 0.5833 / 0.3959 0.3212 / 0.3690 / 0.3435 0.7383 / 0.4702 / 0.5745 0.7183 / 0.6071 / 0.6580 0.4892
C = 1 and g = 0.25 0.7588 / 0.7678 / 0.7633 0.6419 / 0.619 / 0.6303 0.5579 / 0.6309 / 0.5921 0.7302 / 0.6607 / 0.6937 0.7951 / 0.7857 / 0.7904 0.6928
C = 1 and g = 0.50 0.7337 / 0.7380 / 0.7359 0.6583 / 0.6309 / 0.6443 0.581/ 0.619 / 0.5994 0.7116 / 0.6904 / 0.7009 0.7916 / 0.7916 / 0.7916 0.6940
C = 100 and g = 0.0025 0.7239 / 0.7023 / 0.713 0.4972 / 0.5297 / 0.5129 0.4088 / 0.5476 / 0.4682 0.7843 / 0.4762 / 0.5925 0.7309 / 0.7440 / 0.7374 0.6
C = 100 and g = 0.25 0.6614 / 0.756 / 0.7055 0.6121 / 0.6012 / 0.6066 0.5411 / 0.5476 / 0.5443 0.6484 / 0.6369 / 0.6426 0.8378 / 0.7380 / 0.7848 0.656
C = 100 and g = 0.50 0.6815 / 0.7261 / 0.7031 0.6234/ 0.6012 / 0.6121 0.52 / 0.5416 / 0.5306 0.6667 / 0.6547 / 0.6606 0.8427 / 0.7976 / 0.8195 0.6643
C = 200 and g = 0.0025 0.7219 / 0.7262 / 0.7240 0.4971 / 0.5238 / 0.5101 0.4318 / 0.5654 / 0.4897 0.7663 / 0.488 / 0.5963 0.7365 / 0.7321 / 0.7343 0.6071
C = 200 and g = 0.25 0.6756 / 0.7440 / 0.7082 0.5955 / 0.6309 / 0.6127 0.5460 / 0.5297 / 0.5377 0.6407 / 0.6369 / 0.6388 0.8367 / 0.7321 / 0.7809 0.6547
C = 200 and g = 0.50 0.6910 / 0.7321 / 0.7109 0.6 / 0.5892 / 0.5946 0.52 / 0.5416 / 0.5306 0.6606 / 0.6488 / 0.6546 0.8471 / 0.7916 / 0.8184 0.6607
C = 300 and g = 0.0025 0.6949 / 0.7321 / 0.7130 0.5060 / 0.494 / 0.5 0.4208 / 0.5535 / 0.4781 0.7798 / 0.5059 / 0.6137 0.7337 / 0.7380 / 0.7359 0.6047
C = 300 and g = 0.25 0.6684 / 0.7321 / 0.6988 0.5847 / 0.5952 / 0.5899 0.5083 / 0.5416 / 0.5244 0.6441 / 0.625 / 0.6344 0.8531 / 0.7261 / 0.7845 0.6440
C = 300 and g = 0.50 0.6871 / 0.7321 / 0.7089 0.6073 / 0.5892 / 0.5981 0.5170 / 0.5416 / 0.5290 0.6606 / 0.6488 / 0.6546 0.8471 / 0.7916 / 0.8184 0.6607

Table 8. : RL classifier performance using distinct configurations and HTFT+STAT input features

RL Configuration
Precision/Recall/

F1-score(Healthy rotor)
Precision/Recall/
F1-score(1BB)

Precision/Recall/
F1-score(2BB)

Precision/Recall/
F1-score(3BB)

Precision/Recall/
F1-score(4BB)

Accuracy

Newton-cg solver and Cs = 1.6 0.9314 / 0.9702 / 0.9504 0524 / 0.06488 / 0.5797 0.3841 / 0.3452 / 0.3636 0.6397 / 0.5178 / 0.5723 0.7353 / 0.744 / 0.7396 0.6452
Newton-cg solver and Cs = 0.16 0.9044 / 0.9583 / 0.9306 0.505 / 0.5952 / 0.5464 0.3947 / 0.3571 / 0.375 0.6304 / 0.5178 / 0.5686 0.7299 / 0.756 / 0.7427 0.6369
Newton-cg solver and Cs = 0.016 0.8077 / 0.875 / 0.84 0.4398 / 0.5654 / 0.4948 0.4298 / 0.2916 / 0.3475 0.6124 / 0.5178 / 0.5649 0.6914 / 0.7738 / 0.7303 0.6047
Newton-cg solver and Cs = 0.0016 0.6271 / 0.6607 / 0.6434 0.3788 / 0.5119 / 0.4354 0.4090 / 0.1607 / 0.2307 0.55 / 0.5238 / 0.5365 0.6238 / 0.7797 / 0.6931 0.5274
Sag solver and Cs = 1.6 0.8846 / 0.9583 / 0.92 0.5151 / 0.6071 / 0.5573 0.4013 / 0.3630 / 0.3812 0.6397 / 0.5178 / 0.5723 0.7441 / 0.7619 / 0.7529 0.6416
Sag solver and Cs = 0.16 0.8833 / 0.9464 / 0.9138 0.505 / 0.6012 / 0.5489 0.3959 / 0.3512 / 0.3722 0.6304 / 0.5178 / 0.5686 0.7341 / 0.756 / 0.7448 0.6345
Sag solver and Cs = 0.016 0.8077 / 0.875 / 0.84 0.4398 / 0.5654 / 0.4948 0.4298 / 0.2916 / 0.3475 0.6214 / 0.5178 / 0.5649 0.6914 / 0.7738 / 0.7303 0.6047
Sag solver and Cs = 0.0016 0.6271 / 0.6607 / 0.6434 0.3788 / 0.5119 / 0.4354 0.4090 / 0.1607 / 0.2307 0.55 / 0.5238 / 0.5365 0.6238 / 0.7797 / 0.6931 0.5273
Saga solver and Cs = 1.6 0.8449 / 0.9404 / 0.8901 0.4925 / 0.5892 / 0.5365 0.3943 / 0.3333 / 0.3613 0.6350 / 0.5178 / 0.5704 0.7341 / 0.7559 / 0.7448 0.6274
Saga solver and Cs = 0.16 0.8449 / 0.9404 / 0.8901 0.4901 / 0.5952 / 0.5376 0.3956 / 0.3273 / 0.3583 0.6397 / 0.5178 / 0.5723 0.7298 / 0.7559 / 0.7427 0.6274
Saga solver and Cs = 0.016 0.8066 / 0.8690 / 0.8366 0.4377 / 0.5654 / 0.4935 0.4298 / 0.2916 / 0.3475 0.6214 / 0.5178 / 0.5649 0.6914 / 0.7738 / 0.7303 0.6035
Saga solver and Cs = 0.0016 0.6166 / 0.6607 / 0.6379 0.3788 / 0.5119 / 0.4354 0.4127 / 0.1547 / 0.2251 0.5528 / 0.5297 / 0.5410 0.6267 / 0.7797 / 0.6949 0.5274
Lbfgs solver and Cs = 1.6 0.9314 / 0.9702 / 0.9504 0.5240 / 0.6488 / 0.5797 0.3815 / 0.3452 / 0.3625 0.6397 / 0.5178 / 0.5723 0.7396 / 0.7440 / 0.7418 0.6452
Lbfgs solver and Cs = 0.016 0.8077 / 0.875 / 0.84 0.4398 / 0.5654 / 0.4948 0.4298 / 0.2916 / 0.3475 0.6214 / 0.5178 / 0.5649 0.6914 / 0.7738 / 0.7303 0.6047
Lbfgs solver and Cs = 0.0016 0.6271 / 0.6607 / 0.6434 0.3788 / 0.5119 / 0.4354 0.4090 / 0.1607 / 0.2307 0.55 / 0.5238 / 0.5365 0.6238 / 0.7797 / 0.6931 0.5273

Table 9. : KNN classifier performance using distinct configurations and HTFT+STAT input features

KNN Configuration
Precision/Recall/

F1-score(Healthy rotor)
Precision/Recall/
F1-score(1BB)

Precision/Recall/
F1-score(2BB)

Precision/Recall/
F1-score(3BB)

Precision/Recall/
F1-score(4BB)

Accuracy

Euclidean and Nb = 1 0.9743 / 0.9047 / 0.9382 0.7237 / 0.7797 / 0.7507 0.7106 / 0.6726 / 0.6911 0.7371 / 0.7678 / 0.7521 0.8639 / 0.8690 / 0.8664 0.7988
Euclidean and Nb = 3 0.9697 / 0.9523 / 0.9609 0.7633 / 0.7678 / 0.7655 0.7361 / 0.7142 / 0.7250 0.7307 / 0.7916 / 0.76 0.8695 / 0.8333 / 0.8510 0.8119
Euclidean and Nb = 5 0.9636 / 0.9464 / 0.9549 0.7927 / 0.7738 / 0.7831 0.7613/ 0.7023 / 0.7306 0.7157 / 0.8095 / 0.7597 0.8734 / 0.8630 / 0.8682 0.8190
Euclidean and Nb = 7 0.9634 / 0.9404 / 0.9518 0.7572 / 0.7797 / 0.7683 0.7516 / 0.7023 / 0.7261 0.7311 / 0.8095 / 0.7683 0.8812 / 0.8392 / 0.8597 0.8143
Euclidean and Nb = 9 0.9461 / 0.9404 / 0.9432 0.7485 / 0.7440 / 0.7462 0.7134 / 0.6964 / 0.7048 0.7189 / 0.7916 / 0.7535 0.8789 / 0.8214 / 0.8492 0.7988
Minkowski and Nb = 1 0.9743 / 0.9047 / 0.9382 0.7237 / 0.7797 / 0.7507 0.7106 / 0.6726 / 0.6911 0.7371 / 0.7678 / 0.7521 0.8639 / 0.8690 / 0.8664 0.7988
Minkowski and Nb = 3 0.9697 / 0.9523 / 0.9609 0.7633 / 0.7678 / 0.7655 0.7361 / 0.7142 / 0.7250 0.7307 / 0.7916 / 0.76 0.8695 / 0.8333 / 0.8510 0.8119
Minkowski and Nb = 5 0.9636 / 0.9464 / 0.9549 0.7927 / 0.7738 / 0.7831 0.7613/ 0.7023 / 0.7306 0.7157 / 0.8095 / 0.7597 0.8734 / 0.8630 / 0.8682 0.8190
Minkowski and Nb = 7 0.9634 / 0.9404 / 0.9518 0.7572 / 0.7797 / 0.7683 0.7516 / 0.7023 / 0.7261 0.7311 / 0.8095 / 0.7683 0.8812 / 0.8392 / 0.8597 0.8143
Minkowski and Nb = 9 0.9461 / 0.9404 / 0.9432 0.7485 / 0.7440 / 0.7462 0.7134 / 0.6964 / 0.7048 0.7189 / 0.7916 / 0.7535 0.8789 / 0.8214 / 0.8492 0.7988

Table 10. : SVM classifier performance using distinct configurations and HTFT+STAT input features

SVM Configuration
Precision/Recall/

F1-score(Healthy rotor)
Precision/Recall/
F1-score(1BB)

Precision/Recall/
F1-score(2BB)

Precision/Recall/
F1-score(3BB)

Precision/Recall/
F1-score(4BB)

Accuracy

C = 1 and g = 0.0025 0.9733 / 0.4345 / 0.6008 0.3659 / 0.8690 / 0.5149 0.4947 / 0.2797 / 0.3574 0.7339 / 0.4761 / 0.5776 0.7469 / 0.7202 / 0.7333 0.5559
C = 1 and g = 0.25 0.9537 / 0.9821 / 0.9677 0.7622 / 0.7440 / 0.7530 0.5970 / 0.7142 / 0.6504 0.7635 / 0.6726 / 0.7151 0.8506 / 0.7797 / 0.8136 0.7785
C = 1 and g = 0.50 0.9422 / 0.9702 / 0.9560 0.7485 / 0.7440 / 0.7462 0.6647/ 0.6964 / 0.6802 0.7711 / 0.7619 / 0.7664 0.8734 / 0.8214 / 0.8466 0.7988
C = 100 and g = 0.0025 0.9485 / 0.9880 / 0.9679 0.5541 / 0.7916 / 0.6519 0.4782 / 0.4583 / 0.4680 0.767 / 0.4702 / 0.583 0.795 / 0.7619 / 0.7781 0.694
C = 100 and g = 0.25 0.9878 / 0.9642 / 0.9759 0.841 / 0.7559 / 0.7962 0.7458 / 0.8035 / 0.7736 0.783 / 0.8809 / 0.8291 0.8967 / 0.8273 / 0.8607 0.8464
C = 100 and g = 0.50 0.9699 / 0.9583 / 0.9640 0.817/ 0.744 / 0.7788 0.7329 / 0.7678 / 0.75 0.7945 / 0.875 / 0.8328 0.906 / 0.863 / 0.8841 0.8416
C = 200 and g = 0.0025 0.9593 / 0.9821 / 0.9705 0.5826 / 0.7976 / 0.6733 0.4942 / 0.5119 / 0.5029 0.77 / 0.4583 / 0.5746 0.7865 / 0.7678 / 0.777 0.7035
C = 200 and g = 0.25 0.9818 / 0.9642 / 0.9729 0.8193 / 0.756 / 0.7863 0.7237 / 0.7797 / 0.7507 0.7868 / 0.8571 / 0.8205 0.8846 / 0.8214 / 0.8518 0.8357
C = 200 and g = 0.50 0.9698 / 0.9583 / 0.964 0.7961 / 0.7440 / 0.7692 0.7192 / 0.7321 / 0.7256 0.7736 / 0.875 / 0.8212 0.9038 / 0.8392 / 0.8703 0.8297
C = 300 and g = 0.0025 0.9482 / 0.9821 / 0.9649 0.5826 / 0.7976 / 0.6733 0.5058 / 0.5178 / 0.5117 0.76 / 0.4523 / 0.5671 0.7926 / 0.7738 / 0.7831 0.7047
C = 300 and g = 0.25 0.9757 / 0.9583 / 0.967 0.8089 / 0.7559 / 0.7815 0.715 / 0.7619 / 0.7377 0.7826 / 0.8571 / 0.8181 0.8903 / 0.8214 / 0.8544 0.8309
C = 300 and g = 0.50 0.964 / 0.9583 / 0.9611 0.7888 / 0.7559 / 0.772 0.730 / 0.7083 / 0.719 0.7668 / 0.8809 / 0.8199 0.8974 / 0.8333 / 0.8641 0.8273
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Table 11. : Comparison between the best accuracy results using or not PCC

Number of fea-
tures

SVM parame-
ters

Accuracy

20 (No-PCC) C = 100 / g = 0.25 0.8464
10 (PCC) C = 100 / g = 0.50 0.8274

duced number of features using PCC is capable of evaluate the rotor
structure with the same effectiveness as the case with 20 features.
Therefore, the severity of a failure, for example, can be investigated
using 10 features instead of 20.

Fig. 6: ROC curves for SVM classifier and features after applying PCC (C
= 100 and g = 0.50)

7. CONCLUSION
This paper presents a wide experimental comparison between some
important signal processing techniques used for fault diagnosis in
rotating electrical machines and some common machine learning
methods also used in this field, for broken rotor bars detection
and/or classification.In addition, the present study has proposed a
relevant approach using only data for a induction motor running
at very low slip, since this operational condition is particularly ad-
verse for broken rotor bars detection using the traditional method
MCSA. It was clear that the use of Hilbert and FFT techniques
is capable of extract more insightful information about the rotor
condition using the stator current as data source. Although FFT
and SVM, as shown in the results (Figures 10, 11 and Table 8),
have demonstrated good results, the use of HT+STAT features have
clearly indicated best accuracy values. However, the classifier pa-
rameters, as noted in all cases, must be carefully chosen, in order
to avoid false positive and false negative alarms. The present work
has also evaluated the use of Pearson correlation coefficient to se-
lect stator current features and the results has proven the capacity
of maintain a good accuracy using a reduced number of inputs.
Therefore, the main contributions of this paper can be summarized
as follows:
i-) ability to use several classifiers by combining distinct parame-
ters in this kind of technical problem;
ii-) possibility to apply the present approach for an induction motor
running at very low slip condition (close to 1%). The rated slip of

the tested motor is 3.4%;
iii-) it is possible to classify the damaged rotor severity for a motor
fed by an inverter;
iv-) possibility do identify not only a fault, but its severity with a
good accuracy;
v-) the proposed study allows the use of a reduced number of input
features, combining frequency domain and statistical features.
Further investigations should be conducted to evaluate the rotor
faults at variable speeds and using distinct feature reduced meth-
ods.In addition, the authors are carrying out new studies using other
types of digital signal processing for performing better feature ex-
traction.
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