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ABSTRACT 

Cell is the fundamental entity of all living organisms. 

Understanding cell behaviour is improtant to study the 

biological processes in living organisms. In this work 

semantic segmentation of cells in microscopy images is 

studied. Specifically a novel deep learning architechture, BRB 

U-Net is proposed for the semantic segmentation of cells in 

microscopy. Bottleneck residual blocks are incorporated in U-

Net architechture to achieve a light weight semantic 

segmentation model. The proposed method is evaluated with 

Phc-C2DH-U373 dataset of cell tracking challenge and 

achieves 0.9430 and 0.8383 dice similarity coefficient and 

intersection over union respectively. BRB U-Net achieved 

7.68 times less number of parameters and model size is 7.35 

times lesser than U-Net. 
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1. INTRODUCTION 
Analysis of biological cells plays critical role in understanding 

the cells behavior in different settings like response of cells to 

new drugs for drug discovery[1], real time observation of 

biological process like angiogenesis[2], studying cell 

proliferation to observe severity of tumors[3], understanding 

dynamics of cells in wound healing[4], understanding cell 

growth in embryos known as embryogenesis[5]and also to 

study different phases of cell cycle like mitosis[6]. One of the 

ways to analyze these cells is by capturing the cell images 

using time-lapse microscopy. Time lapse microscopy is a 

method of capturing microscopy images of cells periodically 

after certain intervals of time so that one can study the 

spatiotemporal dynamics of cells. The research in microscopy 

image analysis is popular from many years. Generally, 

analysis of microscopy involves two tasks: Cell segmentation 

in which individual cells are detected and localized; Cell 

tracking in which each cell is tracked in timelapse microscopy 

images. Traditionally these images are analysed manually by 

human experts, which takes long hours of human curation, 

may subject to inter human variability, and the same expert 

may analyze differently at different times due to complex 

nature of cell images in microscopy. The complexities of 

these images are topological changes of cells, cells 

arecrowded, sometimes cells touch each other, low contrast of 

foreground and background, cells moving in and out of the 

frame to name a few. Due to these challenges involved and 

laborious manual analysis, automatic or semi-automatic 

analysis of microscopyimages are essential. In line with that, 

there are many image processing techniques proposed by 

researchers around the globe. Currently due to extraordinary 

results of deep learning methods, lot of research is still going 

on for much efficient and accurate deep learning models to 

address the complex issues involved in the analysis of cells in 

microscopy images.  

U-Net[7] is the most celebrated deep learning architecture for 

the segmentation of biomedical images. U-Net consists of a 

contracting path, bottleneck, and expanding path. Innumerable 

methods have been proposed which follow the U-Net style: 

UNet++[8], ResUNet-a[9],Inception UNet v1and Inception 

UNet v2[10], Attention UNet[11], Squeeze U-Net [12] to 

name a few. U-Net consists of a encoder CNN (contracting 

path or down sampling path), bottleneck, decoder CNN 

(expansive path or upsampling path) and skip connections. 

Contracting path mainly extracts the contextual features from 

the image. Bottleneck is used to produce only the important 

features that can reconstruct the segmentation map. 

Upsampling path does the localization of features extracted. 

Skip connections are included between the corresponding 

layers to retain the spatial information which would have lost 

during downsampling path. In UNet++ the skip pathways are 

reengineered consisting of dense convolution blocks between 

the contracting and expansive path sub-networks which 

resulted in improved segmentation accuracy. ResUNet-a is an 

encoder/decoder like network in which traditional 

convolutions are replaced with ResNet units with several 

parallel atrous convolutions. In addition, pyramid scene 

parsing pooling is included for enhancing the performance of 

the network. Inception UNet-v1 and Inception Unet-v2 are 

encoder/decoder type networks designed by combining 

inception blocks[13] with convolutional layers for obtaining 

improved performance. Attention U-Net is an 

encoder/decoder type architecture which utilizes a novel 

attention gate in the decoder path. Attention gate helps the 

network to learn the salient features thus improving the 

network performance. Squeeze U-Net use fire modules[14] 

and transposed fire modules in the encoding and expanding 

paths respectively in order to reduce the model size to 

generate memory and power efficient segmentation model so 

that it can be used for real-time applications. 

In Usiigachi[15] mask regional convolutional neural 

networks(Mask RCNN) [16]is used for the segmentation of 

cell instances. In DeepLabv3[17]atrous convolution in 

cascade or in parallel is used to obtain multiscale object 

segmentation by employing different atrous rates. Also, atrous 

spatial pyramid pooling module is combined with image level 

features to improve the segmentation performance. 

Inspired by U-Net and MobileNetV2[18], we design a novel 

deep learning architecture for segmentation of cells in time-

lapse microscopy images. 

The contributions of this work are listed below: 
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1. A novel deep learning architecture for segmentation of 

cells in time-lapse microscopy images with a smaller 

number of parameters is designed. 

2. Comparative analysis of the proposed architecture with 

U-Net architecture for time-lapse microscopy images is 

performed. 

3. Quantitative Performance of the proposed deep learning 

framework : Dice similarity coefficient, Intersection over 

Union(IoU) is demonstrated. 

The organization of the remaining article is as follows. 

Section 2 depicts the methodology used in this work. Section 

3 illustrates the results obtained. Section 4 mentions the 

conclusion which is followed by the references. 

2. MATERIALS AND METHODS 

2.1 Reference data and Data Augmentation 
The dataset for the current research is Phc-C2DH-U373 

dataset and is taken from ISBI cell tracking 

challenge[19].This dataset has two time-lapse image 

sequences of Glioblastoma-astrocytoma U373 cells consisting 

of 114 frames each, thus it consists of a total of 228 frames of 

2D phase contrast microscopy images of mouse stem cells. To 

increase the dataset size so that a deep learning model is more 

generalizable, the following data augmentation techniques are 

employed: performed horizontal flip, vertical flip, image shear 

by 30%, image zoom by 5%, image width shift by 5%, image 

height shift by 5%, and image rotation by 90 degrees thus 

increasing the dataset size by seven times. Following data 

augmentation, image normalization is done by dividing each 

pixel value by 255, which helps in faster convergence. The 

whole dataset is partitioned into 85% train data, 10% 

validation data and 5% test data. 

2.2 Methodology 
The proposed architecture namely BRB U-Net is inspired by 

U-Net [7] and bottleneck residual blocks of MobileNetV2 

[18]. The number of parameters is reduced drastically with the 

use of bottleneck residual blocks producing a lightweight 

model which can be used for real time applications or 

specifically for mobile devices. 

2.2.1 Deep Learning Architecture 
The proposedarchitecture as shown in Fig. 1, is a U-Net type 

consisting of encoder (contracting path), bridge and decoder 

(expansive path). The novel idea in the proposed architecture 

is the use of basic building blocks of 

MobileNetV2namelybottleneck depth separable convolution 

with residuals or bottleneck residual blocks. In this work a 

bottleneck residual blocks with ReLU activation functionare 

employed. It is based on an inverted residual structure where 

the residual connections are between the bottleneck layers. 

Lightweight depthwise convolutions are used in the 

intermediate expansion layer as a source of non-linearity to 

filter features. İn this building block, first the channels are 

expanded using a greater number of 1x1 kernels followed by 

depthwise convolution with kernel size 3x3. This is followed 

by 1x1 convolution to squeeze (compress) the channels. The 

squeeze operation is concatenated with the input of the block. 

This block concatenates the narrow layers while the channels 

in between are wide. 

 

Fig 1: BRB U-Net Architechture

The original input image is resized to 256 x 256 and is given 

to the network. The first operation is standard 3x3 convolution 

followed by ReLU activation function. Then max pooling is 

done by kernel size of 3x3, stride 2x2 and same padding. 

Maxpooling helps in extracting the prominent features and 

helps in dimensionality reduction. This results in image size 

which is reduced by half of the input. This is followed by two 

bottleneck depth separable convolution with residual blocks 

of parameters expand consisting of 64 channels and squeeze 

consisting of 16 channels. This is followed by maxpooling 

which further reduces image size by half namely 64x64. Next 

two bottleneck depth separable convolution with residual 

blocks with parameters expand consisting of 128 channels and 

squeeze consisting of 32 channels are used.The expand and 

squeeze channels are doubled from the previous layers to 

extract more features. This operation is followed by 

maxpooling. This operation is followed by two bottleneck 

depth separable convolution with residual blocks of 192 

channels in expand and 48 channels in squeeze followed by 

dropout. Dropout is used to reduce overfitting. In the up-

sampling path, initially up-sampling operation is done by 

transposed convolutions of 128 filters, kernel size 3 and stride 

1x1. This is followed by two bottleneck depth separable 

convolution with residual blocks.The decoder consists of a 

series of transposed convolution and one bottleneck depth 

separable convolution with residual block as shown in the fig. 
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1. Skip concatenation is done from output of max pooling of 

the encoder to transposed convolution block of the decoder. 

Skip concatenation helps to preserve the spatial features of the 

encoder. The final layer consists of 3x3 convolution followed 

by ReLU and 1x1 convolution followed by sigmoid activation 

function so that each pixel is either labelled cell or 

background. 

2.2.2 Deep Learning Training 
The network is trained with Phc-C2DH-U373 datasets. Data 

augmentation is performed to increase the dataset size by 

seven times. The entire dataset is divided into 85% training 

data, 10% validation data and 5% test data. Input image pixel 

values are divided by 255 so that pixels are normalized to lie 

between 0 to 1. The weight initialization for the filters is done 

by Glorot_uniform method. Batch size of 16 is applied. Adam 

optimizer[20]is used with learning rate of 0.0001, decayed 

every 6 epochs of using exponential rate of 0.6.The network is 

trained for 60epochs. The Loss function is the sum of binary 

cross entropy and Dice Loss. The deep learning framework is 

developed in TensorFlow in Python. The networkis trained 

using Google colaboratory. Hyperparameters used in the 

proposed BRB U-net is shown in Table 1. 

Table 1. Hyperparameters used in the proposed 

architecture 

Hyperparameter Input 

Epochs in training a 

CNN 

60 

Batch Size 16 

Kernel size 1x1, 3x3, 3x3 depthwise 

Padding Same 

Learning Rate 0.0001 

Loss function Binary Cross Entropy + Dice 

Loss 

Optimizer Adam 

Metric Accuracy, Dice coefficient 

Train-validation-

test split ratio 

8.5:1: .5 

Activation function ReLU, Sigmoid 

 

3. RESULTS 

3.1 Evaluation Metrics 
The segmentation output of the proposed model is evaluated 

using the following two metrics. 

Dice Similarity Coefficient (DSC) and Intersection over 

Union (IoU) as shown in equations (1) and (2). 

𝐷𝑆𝐶 =
2 𝑋 𝑇𝑃

2 𝑋 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                 (1) 

 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
                                          (2) 

 
where, where TP, FP, FN, and TN are true positive, false 

positive, false negative, and true negative metrics, 

respectively. 

3.2 Training Curves 
The training Dice Coefficient and Loss and Accuracy curves 

are shown in Fig. 2(a), Fig.2(b) and Fig. 2(c) respectively. 

These curves show the training performance of the proposed 

model. As can be seen, the proposed method depicted in red 

line converges faster compared to the other method. 

 
(a) 

 
(b) 

 
(c) 

Fig 2: Training Dice Coefficient, Loss, and Accuracy 

curves 

Quantitative Results 

The quantitative results of the above metrics for the 

segmentation of Phc-C2DH-U373 is shown in the Table 2. 
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Table 2. Performance Segmentation Metrics 

Dataset Method Quality Metrics 

DSC IoU Parameters Model size 

 

Phc-C2DH-U373 U-Net 0.9446 0.8426 7759521 89MB 

 

BRB U-Net 

(Proposed 

Method) 

0.9430 0.8383 1009153 12.1MB 

 

    

(a) Original Image (b) Ground Truth (c) U-Net (d) BRB U-Net 

Fig 3: Qualitative Results 

The quantitative evaluation metrics used are DSC and IoU. 

Also,the number of parameters and the model size are 

compared. The results indicate that the DSC and IoU of the 

proposed method i.e., BRB U-Net is almost the same as U-

Net, but the number of parameters and the model size of BRB 

U-Net is much smaller than U-Net. Hence BRB U-Net is 

recommended for real time and memory efficient applications. 

3.3 Qualitative Results 
The qualitative results are shown in Fig. 3. The proposed BRB 

U-Net method in Fig. 3(d) has performed well as compared to 

the U-Net method Fig. 3(c) and is closer to the ground truth 

Fig. 3(b). The input image to both the methods is shown in 

Fig. 3(a). 

4. CONCLUSIONS 
In this article, a novel deep learning architecture known as 

BRB U-Net is proposed. This architecture utilizes bottleneck 

residual blocks in U-Net for achieving light weight 

segmentation model for semantic segmentation of microscopy 

images. This architecture may be trained for any semantic 

segmentation problem in general. BRB U-Net gave Dice 

Similarity Coefficient and Intersection over Union of0.9430 

and 0.8383 respectively. BRB U-Net has 7.68 times lesser 

parameters than U-Net and model size is 7.35 times lesser 

than U-Net. This is due to the use of bottleneck residual 

blocks in U-Net. Hence BRB U-Net can be used for real time 

applications, in embedded devices where memory efficiency 

is needed and mobile devices. This method may be used for 

semantic segmentation in general.  
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