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ABSTRACT 

In this paper, the authors study the reliability measures of a 

complex engineering system consisting of three subsystems 

namely 1, 2 and 3 in series configuration. The subsystem-1 

has three units working under 1-out-of-3: G; policy, the 

subsystem-2 has two units working under 1-ot-of-2: G policy 

and the subsystem-3 has one unit working under 1-out-of-1: 

G; policy. Moreover, the system may face catastrophic failure 

at any time t. The failure rates of units of all the subsystems 

are constant and assumed to follow exponential distribution, 

but their repair supports two types of distribution namely 

general distribution and Gumbel-Hougaard family copula 

distribution. The system is analyzed by using the 

supplementary variable technique, Laplace transformation and 

Gumbel-Hougaard family of copula to derive differential 

equations and obtain important reliability characteristics such 

as availability of the system, reliability of the system and 

profit analysis. It gives a new aspect to scientific community 

to adopt multi-dimension repair in form of copula. 

Furthermore, the results of the model are beneficial for system 

engineers and designers, reliability and maintenance 

managers. 
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1. INTRODUCTION 
A variety of standby systems have been designed and 

analyzed during the last few decades. The main objective of 

these studies has been to develop methods and tools for 

evaluation and to demonstrate the reliability, availability, and 

cost analysis. Redundant systems, which have been widely 

used in practice, such as space shuttles, communication 

satellites, Nuclear reactors, or a fighter plane, are frequently 

discussed in research literature. Initially, redundant parts are 

design to improve the reliability of the system, meaning that 

some additional paths are developed or identical components 

connected in such a way that when one component fails the 

others will keep the system functioning. It is a technique 

called redundancy commonly used to improve system 

reliability and availability. It can be defined as cold standby, 

hot standby and warm standby. Moreover, redundancy is 

highly cost effective in achieving reliability. Therefore, in 

order to enhance reliability k-out-of-n system structure in 

which at least k components out of n must be functioning for 

the system to be operational play a vital role. In order to 

improve the reliability of k-out-of-n systems, numerous 

researches have presented their works and contributions by 

constructing different types of complex repairable systems 

under the different types of failure and repair distributions. 

For instance, authors consider warm standby system by She 

and Pecht [21], generalized multi state system by Huang et al. 

[3], repairable consecutive systems with r repairman by Wu 

and Guan [20], two-stage weighted systems with components 

in common by Chen and Yang [2], main unit with helping unit 

by Kumar and Gupta [5], Markov repairable system with 

neglected or delayed failures by Bao and Cui [1], evaluated 

exact reliability formula for consecutive repairable systems by 

Liang et al. [9], general system with non-identical components 

considering shut-off rules using quasi-birth-death process by 

Moghaddass et al. [10], generalized block replacement policy 

with respect to a threshold number of failed components and 

risk costs by Park and Pham [11], and repairable multi-state 

system when repair time can be neglected by Jia et al. [4]. 

The k-out-of-n effective policy plays a crucial role into 

maintaining the reliability of repairable systems. The 

researchers have paid their attention in evaluating reliability 

and availability of redundant repairable systems like k-out-of-

n in series configuration. In particular, Kumar and Sirohi [6, 

7, 8] analyzed a two-unit cold standby system with delayed 

repair of partially failed unit and better utilization of units. 

Sirohi et al. [19] studied an engineering system, which 

consists of two subsystems, viz. subsystem-1 and subsystem-2 

with switching device in series. Subsystem-1 and 2 works 

under the k-out-of- n: good policy consists of three and two 

identical units in parallel configuration respectively. Authors 

evaluated reliability characteristics using supplementary 

variable technique. Poonia et al. [16] and Singh and Poonia 

[17] provided exact reliability formula for a warm standby 

repairable k-out-of-n computer lab network with similar 

computers and all the computers are connected in parallel to a 

data server and a router. The author modelled the problem as a 

finite series using supplementary variable technique, Laplace 

transform and copula repair. Singh et al. [18] and Sirohi and 

Poonia [15] studied k-out-of-n: G type of subsystems in series 

configuration for various values of n and k. The authors used 

copula repair for completely failed units with switching 

device in one or both the subsystems under catastrophic 

failure. They compared cost analysis under copula and general 

repair and proved that system performance is better if copula 

repair is being used for repairing. Poonia [13] analyzed a 

computer network system comprising of two load balancers, 

five web servers, and three database replica servers as a series 

parallel system with four subsystems. In this model the author 

developed the first order partial differential equations and 

solved using supplementary variable techniques and copula 

modus-operandi. The analysis of results indicates that copula 

repair is more effective in availability and expected profit 

analysis. Lastly Poonia [12, 14] considered a computer 
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network and studied reliability physiognomies using 

supplementary variable technique.  

Many researchers around the world have presented their 

research works, but no one paid attention to the study of the 

system which having three subsystems connected in series 

configuration with catastrophic failure.Treating the above 

realities in the present study, the model consisting three 

subsystems in series configuration considering catastrophic 

failure. The subsystem-1 has three identical units, subsystem-

2 has two identical units and subsystem-3 has one unit only. 

The subsystem-1 is working under 1-out-of-3: G; scheme, the 

subsystem-2 is working under 1-out-of-2: G; scheme, 

however, the subsystem-3 works under 1-out-of-1: G; scheme. 

The catastrophic failure is treated as complete failed state. The 

failure rates of units of subsystems are constant and assumed 

to follow exponential distribution, but their repair supports 

two types of distribution namely general distribution and 

Gumbel-Hougaard family copula distribution. This present 

study in this paper completed two objectives using 

supplementary variable technique. First is to obtain 

expressions for the reliability of the system, availability of the 

system, mean time to failure and profit function. Second is to 

perform numerical simulation using MAPLE 2017 with 

respect to profit function. The transition state diagram of the 

designed model is shown in Figure-1. 

2. ASSUMPTION 
The following assumptions are made through this paper: 

1. Initially the system is in state 0S , and all the units of 

subsystem-1, 2 and 3 are in good working conditions. 

2. The subsystem-1 works successfully if minimum one 

unit is in good working condition i.e. 1-out-of-3: G
policy, the subsystem-2 works successfully if minimum 

one unit is in good working condition i.e. 1-out-of-2: G
policy, and the subsystem-3 works successfully if the 

lonely unit is in good working condition i.e. 

1-out-of-1: G policy. 

3. There may be unpredictable catastrophic failure to the 

system at any time (t).  

4. One repairperson is available full time with the system. 

5. All failure rates are constant and follows the exponential 

distribution. 

6. The failure rate and repair rate in all the three subsystems 

is same unit wise, while different subsystem wise.  

7. The complete failed system needs repair immediately. 

For this Gumbel-Hougaard, family of copula can be 

employed to restore the system. 

3. NOTATIONS 
The following symbols are made through this paper: 

s , t  Laplace transform / Time scale variable 

 1 1/ x   Failure rate / Repair rate of each unit in 

subsystem-L. 

 2 2/ x   Failure rate / Repair rate of each unit in 

subsystem-M. 

3  Failure rate of the unit in subsystem-N. 

E  Deliberate failure rate when two units  

in subsystem-L and one unit in     

subsystem-M failed. 

C  Failure rate related to catastrophic  

failure mode. 

 0P t  The state transition probability that the       

system is in Sistate at an instant for 0i  . 

 P s  Laplace transformation of the state transition 

probability  P t . 

 ,iP x t  The Probability that the system is in state iS for 

1 to 9, E, C i  and the system is under repair 

with elapsed repair time is ,x t .  

 pE t  Expected profit in the interval 0,t . 

1 2,K K  Revenue generated and service cost per unit time 

respectively. 

 0 x  An expression of the joint probability from failed 

state Si to good state S0 according to Gumbel-

Hougaard family copula 
 

4. STATE DESCRIPTION 
In transition diagram, S0 is perfect state, S1, S2, S3, S4 and S5 

partial failed/degraded and S6, S7, S8, S9, SE and SC are 

complete failed states. Due to failure of unit (s) in the 

subsystem-1, 2 or/and 3, the transitions approach to partially 

failed states S1, S2, S3 S4 and S5 and the general repair is 

employed. The state S6, S7, S8 and S9 are complete failed 

states due to failure of units in all the subsystems, while SE is 

completely failed state due to deliberate failure. The states SC 

is complete failed state due to catastrophic failure. Repair is 

being applied using Gumbel-Hougaard family copula 

distribution. 

Table 1 State Description 

State Description 

S0 
This is a perfect state and all units of subsystem-1, 

2 and 3 are in good working condition. 

S1 

The indicated state is degraded but is in operational 

mode after the failure of the one unit in subsystem-

1. All units of subsystem-2 and 3 are in the good 

operational state. The system is under general 

repair. 

S2 

The indicated state is degraded but is in operational 

mode after the failure of two units in subsystem-1. 

All units of subsystem-2 and 3 are in the good 

operational state. The system is under general 

repair. 

S3 

The indicated state is degraded but is in operational 

mode after the failure of the one unit in subsystem-

2. All units of subsystem-1 and 2 are in the good 

operational state. The system is under general 

repair. 

S4 

The indicated state is degraded but is in operational 

mode after the failure of the one unit in subsystem-

1 and one unit in subsystem-2. All units of 

subsystem-3 are in the good operational state. The 

system is under general repair. 

S5 

The indicated state is degraded but is in operational 

mode after the failure of two units in subsystem-1 

and one unit in subsystem-2. All units of 

subsystem-3 are in the good operational state. The 

system is under general repair. 

S6, S7 

S8, S9 

SE, 

SC 

The states represent that the system is in 

completely failure mode and the system is under 

repair using Gumbel-Hougaard family copula 

distribution. 
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Fig 1: State transition diagram of the model 

 

5. FORMULATION OF 

MATHEMATICAL MODEL 
By probability of considerations and continuity arguments, we 

can obtain the following set of difference-differential 

equations associated with the present mathematical model:  

1 2 3 0 1 1

0

2 3 0

0 0

3 2 ( ) ( ) ( , )

( ) ( , ) ( ) ( , )

C

k
k

P t x P x t dx
t

x P x t dx x P x t dx

    

 



 

 
      

 



 

(1) 

where 6,7,8,9, ,k E C  

 1 2 3 1 12 2 ( , ) 0C x P x t
t x

    
  
         

(2) 

 1 2 3 1 22 ( , ) 0C x P x t
t x

    
  
         

(3) 

 1 2 3 2 33 ( , ) 0C x P x t
t x

    
  
         

(4) 

   1 2 3 1 2 42 ( , ) 0C x x P x t
t x

     
  
          

     (5) 

   1 2 5 ( , ) 0E C x x P x t
t x

   
  
        

(6) 

  
1

exp log ( , ) 0kx x P x t
t x

  
            

(7) 

6,7,8,9, ,k E C  

Boundary Conditions, 

1 1 0(0, ) 3 ( )P t P t    (8) 

2

2 1 1 1 0(0, ) 2 (0, ) 6 ( )P t P t P t     (9) 

3 2 0(0, ) 2 ( )P t P t              (10) 

4 1 3 2 1 1 2 0(0, ) 3 (0, ) 2 (0, ) 12 ( )P t P t P t P t              (11) 

2

5 2 2 1 4 1 2 0(0, ) 2 (0, ) 2 (0, ) 36 ( )P t P t P t P t            (12) 

3

6 1 2 1 0(0, ) (0, ) 6 ( )P t P t P t                (13) 

2

7 2 3 2 0(0, ) (0, ) 2 ( )P t P t P t                (14) 

2

8 2 4 1 2 0(0, ) (0, ) 12 ( )P t P t P t                 (15) 

 2

9 3 1 1 2 1 2 0(0, ) 1 3 6 2 12 ( )P t P t           (16) 

3 2 0(0, ) (0, ) 2 ( )E E EP t P t P t        (17) 
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 2 2

1 1 2 1 2 1 2 0(0, ) 1 3 6 2 12 36 ( )C CP t P t            

(18) 

Initials conditions 

 0 0 1P  , and other state probabilities are zero at 0t   

    (19) 

Taking Laplace transformation of equations (1) to (18) and 

using equation (19), we obtain 

 1 2 3 0 1 1

0

2 3 0

0 0

3 2 ( ) 1 ( ) ( , )

( ) ( , ) ( ) ( , )

C

k
k

s P s x P x s dx

x P x s dx x P x s dx

    

 



 

      





 

    

where 6,7,8,9, ,k E C and 
0

( , ) ( , )st

i iP x s e P x t dt


  (20) 

 1 2 3 1 12 2 ( , ) 0Cs x P x s
x

    
 

        
     (21) 

 1 2 3 1 22 ( , ) 0Cs x P x s
x

    
 

        
       (22) 

 1 2 3 2 33 ( , ) 0Cs x P x s
x

    
 

        
       (23) 

   1 2 3 1 2 42 ( , ) 0Cs x x P x s
x

     
 

         

                 (24) 

   1 2 5 ( , ) 0E Cs x x P x s
x

   
 

       
           (25) 

  
1

exp log ( , ) 0ks x x P x s
x

  
          

         

(26) 

6,7,8,9, ,k E C  

Boundary Conditions, 

1 1 0(0, ) 3 ( )P s P s                (27) 

2

2 1 1 1 0(0, ) 2 (0, ) 6 ( )P s P s P s                 (28) 

3 2 0(0, ) 2 ( )P s P s                (29) 

4 1 3 2 1 1 2 0(0, ) 3 (0, ) 2 (0, ) 12 ( )P s P s P s P s              (30) 

2

5 2 2 1 4 1 2 0(0, ) 2 (0, ) 2 (0, ) 36 ( )P s P s P s P s           (31) 

3

6 1 2 1 0(0, ) (0, ) 6 ( )P s P s P s                 (32) 

2

7 2 3 2 0(0, ) (0, ) 2 ( )P s P s P s                 (33) 

2

8 2 4 1 2 0(0, ) (0, ) 12 ( )P s P s P s                  (34) 

 2

9 3 1 1 2 1 2 0(0, ) 1 3 6 2 12 ( )P s P s           (35) 

3 2 0(0, ) (0, ) 2 ( )E E EP s P s P s                                (36) 

 2 2

1 1 2 1 2 1 2 0(0, ) 1 3 6 2 12 36 ( )C CP s P s            

                 (37) 

Change in Laplace transformation of boundary conditions 

after repair, if any 

       1 1 0 1 2

0

0, 3 ,P s P s x P x s dx 


                (38) 

       2 1 1 2 5

0

0, 2 0, ,P s P s x P x s dx 


                (39) 

       3 2 0 1 4

0

0, 2 ,P s P s x P x s dx 


                (40) 

   4 1 3 2 1 1 5

0

(0, ) 3 (0, ) 2 (0, ) ,P s P s P s x P x s dx  


     

                 (41) 

Now solving all the equations with the boundary conditions, 

one may get 

 
 0

1
P s

D s
                 (42) 

1

1

1 2 3

3 1
( )

( ) 2 2 C

P
P s

D s s



   




   
             (43) 

2

1

2

1 2 3

6 1
( )

( ) 2 C

Q
P s

D s s



   




   
              (44) 

  2

3

1 2 3

2 1

( ) 3 C

R
P s

D s s



   




   
              (45) 

  1 2

4

1 2 3

12 1

( ) 2 C

S
P s

D s s

 

   




   
             (46) 

 
2

1 2

5

36 1

( ) E C

T
P s

D s s

 

 




 
              (47) 

 
 0

3 3

1 1

6

16 6 1

( ) ( )

S s U
P s

D s s D s s

  
               (48) 

 
 0

2 2

2 2

7

12 2 1

( ) ( )

S s U
P s

D s s D s s

  
               (49) 

 
 0

2 2

1 2 1 2

8

112 12 1

( ) ( )

S s U
P s

D s s D s s

    
               (50) 

  3

9

1

( )

V U
P s

D s s

 
                (51) 

 
 02 2

12 2 1

( ) ( )

E E

E

S s U
P s

D s s D s s

    
               (52) 

 
 

 

2

1 236 1C

C

V U
P s

D s s

   
               (53) 

Where,   

  1 2 3 1 23 2 3 2CD s s P R UW              

1

1 2 3 12 2 C

P
s



    


    
 

1

1 2 3 12 C

Q
s



    


    
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2

1 2 3 23 C

R
s



    


    
 

3

1 2 3 32 C

S
s



    


    
 

 3

3

3

E C

E C

T S s
s




 

  
   

  
,  

 
0

0

0

U S s
s






 


,  

2

1 1 2 1 21 3 6 2 12V           

and 

 3 2 2 2

1 2 1 2 2 3 1 26 2 12 2 36E C CW V                

Sum of Laplace transformations of the state transitions, where 

the system is in operational mode and failed state at any time, 

is as follows 

             0 1 2 3 4 5upP s P s P s P s P s P s P s     

        (54) 

   1down upP s P s     (55) 

 

6. ANALYTICAL STUDY 

6.1 Availability Analysis 
When repair follows general and Gumbel-Hougaard family 

copula distribution, we have 
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. Following cases have 

been considered: 

(a) Taking the values of different parameters as
1 0.020, 

2 0.025,  3 0.030,  0.040,E 

 0.015, 1, 1 1,2,3C i x i     in (54) and then 

taking inverse Laplace transform, we obtain the 

availability of the system: 
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(b) Taking the values of different parameters as 0.025  ,

 1, 1 1,2,3i x i    in (54) and then taking inverse 

Laplace transform, we obtain the availability of the 

system: 

1.0500 1.1250

2.7740 1.2549

0.00599

( )

           

1

0.000253 0.001858

0.022656 0.022560

         .002016

up

t t

t t

t

P t e e

e e

e

 

 



 

 





        (57) 

(c) Repair follows general distribution by taking 

   0 ix x   and same values of failure rates as in 

case (a) in (54) and then taking inverse Laplace 

transform, we obtain the availability of the system: 

7
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For different values of time variable 0,10,20,30,40,50,t 

60,70,80,90 and 100 units of time, one may get different 

values of ( )upP t with the help of (51) as shown in Figure-2. 
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Figure-2 Availability as a function of time 

6.2 Reliability Analysis 
Taking all repair rates equal to zero and obtain inverse 

Laplace transform, we get an expression for the reliability of 

the system after taking the failure rates as

1 2 30.020,  0.025,  0.030,  0.040E      

and 0.015C  : 
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         (59) 

For different values of time variable 0,10,20,30,t 

40,50,60,70,80,90 and 100 units of time, one may get 

different values of reliability ( )iR t with the help of (59) as 

shown in Figure-3. 
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Figure 3 Reliability as a function of time 

6.3 Cost Analysis 
For the assumed failure and repair rates in section 5.1 and 

corresponding to the state transition diagram, we have 

computed the incurred profit for two cases when the system 

follows copula repair and general repair in (61) & (62). Let 

the service facility be always available, then expected profit 

during the interval 0, t is 

𝐸𝑝 𝑡 = 𝐾1  𝑃𝑢𝑝
𝑡

0
 𝑡 𝑑𝑡 − 𝐾2(𝑡)                            (60) 

Where 1 2 and K K  are the revenue generation and service 

cost in unit time. For same set of parameters defined in (50), 

one can obtain expression for incurred profit as a function of 

time as: 
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Setting 1 1K  and 2 0.6,0.5,0.4,0.3,0.2 and 0.1K   

respectively and varying 0,10,20,30,40,50,60,70,t 

80,90 and 100 units of time, the results for expected profit 

can be obtain as per table-5 and 6 and figure-5 and 6. 
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Figure-4 Expected profit as a function of time for 

Copula repair 
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Figure-5 Expected profit as a function of time for 

general repair 

7. RESULTS 
This paper studies the reliability characteristics of standby 

system consisting of three subsystems in series configuration 

under catastrophic failure. Explicit expressions have been 

derived using supplementary variable technique.Figure-2 

gives the analysis of availability of the system in three 

different possibilities. One can clearly observe that 

availability of the system initially decreases with respect to 

time. Figure-3 gives information for reliability and it shows a 

steep fall in reliability from top to lowermost in a very short 

period based on failure rate of units. We can observe that 

corresponding values of availability are greater than the 

values of reliability, which highlights the requirement of 

systematic repair for any complex systems for healthier 

performance.  

An acute examination from Figure-6 and Figure-7 reveals that 

expected profit increases as service cost K2 decreases, while 

the revenue cost per unit time is fixed at K1=1 in case of both 

copula and general repair. The calculated expected profit is 

maximum for K2= 0.1 and minimum for K2=0.6. We observe 

that as service cost decreases, profit increase with variation of 

time. In general, for low service cost, the expected profit is 

high in comparison to high service cost. Conclusively, copula 

repair is more effective repair policy for better performance of 
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repairable systems. It gives a new aspect to scientific 

community to adopt multi-dimension repair in form of copula. 

Furthermore, the model developed in this chapter has been 

found to be very useful for power generation and transmission 

systems, as we have six equipment groups and are helpful in 

proper maintenance analysis, decision-making and 

performance assessment. We may expand our work to a 

number of methods, such as the Kolmogorov method and the 

fuzzy reliability method, by considering repair rates as 

constant. Furthermore, the system can be analyzed by taking 

k-out-of-(m+n): G/F policy. 
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