
International Journal of Computer Applications (0975 – 8887)

Volume 184– No.40, December 2022

41

Improved Task Scheduling for Virtual Machines in the

Cloud based on the Gravitational Search Algorithm

Basilis Mamalis
University of West Attica

Ag. Spyridonos, 12243, Athens, Greece

Marios Perlitis
Democritus University of Thrace,

Campus, 69100, Komotini, Greece

ABSTRACT

The rapid and convenient provision of the available

computing resources is a crucial requirement in modern cloud

computing environments. However, if only the execution time

is taken into account when the resources are scheduled, it

could lead to imbalanced workloads as well as to significant

under-utilisation of the involved Virtual Machines (VMs). In

the present work a novel task scheduling scheme is

introduced, which is based on the proper adaptation of a

modern and quite effective evolutionary optimization method,

the Gravitational Search Algorithm (GSA). The proposed

scheme aims at optimizing the entire scheduling procedure, in

terms of both the tasks execution time and the system (VMs)

resource utilisation. Moreover, the fitness function was

properly selected considering both the above factors in an

appropriately weighted function in order to obtain better

results for large inputs. Sufficient simulation experiments

show the efficiency of the proposed scheme, as well as its

excellence over related approaches of the bibliography, with

similar objectives.

General Terms

Distributed Systems, Operating Systems, Algorithms

Keywords

Cloud Computing, Evolutionary Optimization, Gravitational

Search Algorithm, Task Scheduling, Load Balancing,

Resource Allocation, Virtual Machines

1. INTRODUCTION
During the last decade, cloud computing has evolved into an

extremely popular (used both publicly and commercially)

computing paradigm. In this context, a cloud computing

platform can provide efficiently plenty of services to users

with VM infrastructure as the main component [1,2]. For the

end users all underlying resources are transparent. Actually,

each submitted job occupies an independent VM. The relevant

computing and memory resources are properly set in a

mutually isolated status [3]. In such environments, each

physical machine can host many VMs, thus ensuring that all

users‟ applications will run independently and efficiently. As

a result, in cloud computing platforms, task scheduling is

actually taking place among the available VMs. Moreover,

preserving load balancing among the VMs is still a difficult

problem in such infrastructures.

In the above context, one of the most significant problems in

modern cloud computing environments is task allocation. The

main advantage of modern cloud platforms is the ability to be

sufficiently elastic, i.e. being rapidly grown and teared down

at any moment. This goal needs the support of novel task

allocation algorithms to optimize key parameters like the total

makespan, the responses times and the average utilisation of

the resources. The function of scheduling in modern cloud

computing is to allocate tasks on VMs in such a way that

makespan and response times are minimized and resource

utilisation is maximized.

Obviously, finding the proper mappings between the jobs

submitted by end users and the dynamic resources of the

available VMs is an NP-hard optimization problem. For this

problem, a variety of dynamic, static and mixed scheduling

algorithms have been proposed [4-10]. Some of the well-

known early static scheduling schemes were based on ISH,

MCP and ETF algorithms [8-10]. Most of these algorithms

were built for the BNP class and were suitable for high

efficiency network platforms in distributed environments.

However, the relevant needs in cloud infrastructures are more

advanced, whereas the costs of the provided services usually

depend on the amount of usages. As a consequence, the

typical early static algorithms can‟t play significant role.

Provided that the needs for efficient job/task assignments in

cloud platforms have rapidly evolved, it is crucial to

strengthen the total efficiency of the underlying system

infrastructure. Combining system efficiency and optimized

tasks execution time is a hard problem for task scheduling in

cloud platforms. Some of the more recent improved

scheduling algorithms used for addressing the above problems

were SJF, FCFS, MET, MCT, Min-Min, Max-Min, LBSM

etc. [11-27]. Recently, the swarm intelligence algorithms (like

PSO) have also been used effectively towards the above

direction [28-30]. A more comprehensive analysis of the most

important of the above schemes is given in the following

section.

In the present work, a new job/task scheduling scheme is

introduced using the Gravitational Search Algorithm (GSA),

i.e. a quite recent and effective evolutionary optimization

method. The basic purpose of the given scheme is to optimize

the whole scheduling procedure, in terms of both the total

completion time of the scheduled tasks and the system

resource utilisation. One of the key issues of the proposed

method is the proper adaptation of the relevant fitness

function, which is chosen considering both the above crucial

factors (execution time, resource utilisation) in a properly

weighted manner, in order to get better results for large inputs.

The corresponding simulation experiments show the

effectiveness of the proposed approach, and its excellence

over other related approaches in the bibliography (like OLB

[17], Min-Min [19], ESTA [27] and improved PSO [30]).

The remainder of the paper has been organized in the

following form: In the next section (Section 2), the most

recent related work is presented. Section 3 gives the necessary

knowledge with respect to the GSA method. In section 4, the

proposed GSA-based task scheduling scheme is further

presented and properly documented. Section 5 demonstrates

International Journal of Computer Applications (0975 – 8887)

Volume 184– No.40, December 2022

42

the experimental evaluation of the proposed scheme, whereas

section 6 concludes the paper.

2. RELATED WORK
As referred previously, job/task scheduling schemes are

mainly distinguished in static and dynamic. With respect to

static scheduling, all the necessary info for tasks execution

(such as task execution time, VM capacity, weight of task

etc.) is known before execution, whereas in dynamic

scheduling, the decision is taken during runtime, according to

probably changed parameters during the execution [11]. Both

the above task scheduling types can be used on homogeneous

and heterogeneous systems.

The task scheduling algorithms can also be distinguished into

dependent and independent. In independent job/task

scheduling no dependencies are assumed among the tasks [21-

25]. All the tasks may be executed separately, and there is no

need to keep any precedence log among them. On the

contrary, considering dependent job/task scheduling specific

precedence log must be maintained and relevant constraints

must be satisfied before allocating the tasks to VMs [26].

Trying to address the most known independent job/task

scheduling schemes of the literature, one should definitely

refer to classical approaches like OLB, MET [17-18], Min-

Min, Max-Min [19-20], LBSM [21]), MCT [22], Sufferage

[23], LBMM [24], LJFR-SJFR [25], and RDLBS [26], as well

as to more recent ones (based on modern combined

techniques) like ESTA [27] and improved PSO [30].

In more details, OLB [17] allocates each task at random to

subsequent nodes/VMs, provided they are available. The main

objective of OLB is to achieve the maximum utilisation of the

available VMs by keeping busy all the nodes involved in the

system. However, it usually leads to poor makespan, since it

allocates the tasks to particular nodes without taking in

account their expected execution time. On the contrary, the

main objective of MET algorithm [18] is to place the tasks

with minimum expected execution time to the available VMs

without considering the availability of the nodes. Since also

the assignment of the tasks is mainly targeted to the faster

nodes, the whole scheduling scheme offers higher

performance. However, due to the above fact, the entire

allocation leads also to significant imbalance of the total load,

especially in the case of heterogeneous systems. Similarly, the

main objective of MCT [22] is to allocate the task with the

minimum expected completion time to the available VMs and

along with it also allocate the tasks that don‟t have minimum

completion time for the given resources. Since a portion of the

tasks is to be assigned to resources without having minimum

completion time, MCT combines the main features of both

OLB and MET, and it naturally leads to better performance.

Considering the Min-Min heuristic [19-20], first, all the

necessary info related to each task is supposed to be known at

first. The Min-Min procedure is executed in two stages as

below: (a) First, the MCT for each task is found, next the

minimum time to completion of all tasks present in the batch

is calculated; (b) Finally, the task with the minimum time to

completion is chosen and then it‟s allocated to the proper node

and removed from the batch when it completes. The Min-Min

procedure is one of the easier methods to efficiently assign

tasks to the available resources. However, it also has a

significant disadvantage; specifically, the largest in size tasks

will probably be waiting for undesirably long time. Further,

the LBMM [24] heuristic stands as the combination of Min-

Min and OLB scheduling schemes, thus leading to even better

performance on makespan.

On the other hand, the Max-Min algorithm [19-20] also works

into two stages, with a small difference: (a) First, the MCT for

each task is found, then the maximum time to completion of

all tasks present in the batch is calculated; (b) Finally, the task

with the maximum time to completion is chosen and then it‟s

given to the proper node and removed from the batch. The

Max-Min scheme is usually the basis for such algorithms in

distributed environments. The Max-Min approach represents

the method of mapping tasks on the faster VM/nodes, having

the tasks with longer completion times to run first. So, it is

naturally expected to behave better than the Min-Min

approach.

In Sufferage [23], the work is also separated in two stages.

Firstly, the MCT is computed and then the second MCT is

also computed for each task. Finally, the difference between

the first and the second MCT values is also computed. This

difference is the sufferage value; next, the task with the largest

sufferage value is determined and then it‟s assigned to the

appropriate resource with MCT.

Considering the LJFR-SJFR algorithm [25], first, a group of

not-mapped tasks is initiated and also the relevant MCTs are

determined. Next, the task with global MCT is chosen from

the set of MCTs, and it‟s considered as SJFR. Also, the task

with the global maximum completion time value of the tasks

is determined, and it‟s considered as LJFR. Finally, shorter

and longer tasks are assigned to the nodes.

Moreover, in LBSM [21] the authors present an efficient

strategy for load balancing, and then the whole algorithm

executes on specific inter-connection network. Initially, the

assignment of the task is performed at random. After the

initial task allocation, migration of specific tasks may take

place from over-loaded nodes to under-loaded ones, to

preserve load balancing. The above two strategies are almost

similar, with the migration strategy being their only

difference. LBSM performs better in terms of load balancing

and computing components utilisation.

In [27], a new scheme (ESTA) is introduced to schedule tasks

with no dependences in VMs with heterogeneous resources.

The main objective of ESTA is to push the utilisation of all

the VMs to the maximum (acting as an IaaS cloud computing

provider), and also push the makespan to the minimum (as

well as the average response time of the tasks). The incoming

tasks are divided by the ESTA scheduler into largest size and

smallest size tasks. The VM manager provides the set of VMs

allocated to physical machines. ESTA is experimentally

evaluated and compared to Min-Min and other competitive

approaches of the bibliography to show its important

performance gains.

Finally, in [30] an improved heuristic approach based on the

PSO algorithm is presented to solve the problem of load

balancing in VMs. By establishing relevant knowledge

between the tasks and the VMs effectively, the main objective

is the calculation of an optimal scheduling pattern, that not

only minimizes the makespan, but also maximizes the VMs

utilisation. Also, a new inertia weight technique is adopted

through the classification of the fitness values. The

corresponding simulations indicate the fast convergence speed

of the algorithm, as well as its high efficiency and its great

practical effect. Generally, the use of advanced heuristic

algorithms with carefully selected fitness functions seems to

International Journal of Computer Applications (0975 – 8887)

Volume 184– No.40, December 2022

43

be quite promising and effective even when the problem

continues to expand, preserving scalability.

3. THE GRAVITATIONAL SEARCH

ALGORITHM
GSA is a relatively new optimization algorithm based on the

law of gravity and mass interactions. In the corresponding

algorithm, the searcher agents are a collection of masses

which interact with each other based on the Newtonian gravity

and the laws of motion. A detailed description of the GSA

approach is given in [3]. Let‟s suppose that initially there is

set of agents, SA. Each one of these agents is expected to

eventually offer a portion of the final solution. Let‟s also

denote the location of agent Li, 1 ≤ i ≤ SA in dimension k as xi
k

and the velocity of agent Li as vi
k, 1≤k ≤ K. It is also assumed

that each agent has the same dimension. Each one of the

agents is then evaluated to verify the eligibility of the result

using a specific fitness function. Moreover, if the ith location

of an agent Li is being represented as Xi = (xi
1, xi

2,…, xi
K), then

the following formula represents the force applied on the ith

agent by the jth agent.

𝐹𝑖𝑗
𝑘(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖 (𝑡) ×𝑀𝛼𝑗 (𝑡)

𝑅𝑖𝑗 (𝑡)
(𝑥𝑗
𝑘(𝑡) − 𝑥𝑖

𝑘(𝑡))

In the above expression, Mpi denotes the passive mass of the

ith agent, Maj denotes the relevant active mass of the jth agent,

whereas α is a constant. Also, G(t) is defined to be equal to

G0(t0/tmax)
ϕ, in which G0 stands also as a constant. Rij(t)

denotes the Euclidean distance from ith agent by jth agent. So,

the total force applied by the set of agents over agent i in

dimension d is defined as given below.

𝐹𝑖
𝑘(𝑡) = 𝑟𝑎𝑛𝑑𝑗 × 𝐹𝑖𝑗

𝑘(𝑡)

𝑆𝐴

𝑗=1,𝑗≠𝑖

The gravitational and the inertial mass are calculated by

evaluating the fitness function. The greater the mass of an

agent the greater the efficiency of the solution it represents.

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) −𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) −𝑤𝑜𝑟𝑠𝑡(𝑡)
+ 휀

Here, ε represents a limited constant, fiti(t) is the fitness of the

ith agent, and worst (t) / best (t) are as follows.

𝑏𝑒𝑠𝑡(𝑡) = 𝑚𝑖𝑛
𝑗 ∈{1...𝑆𝐴 }

𝑓𝑖𝑡𝑗 (𝑡) 𝑤𝑜𝑟𝑠𝑡(𝑡) = 𝑚𝑎𝑥
𝑗∈{1...𝑆𝐴 }

𝑓𝑖𝑡𝑗 (𝑡)

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

 𝑚𝑗 (𝑡)
𝑆𝐴
𝑗=1

In the above, it‟s also assumed that Mpi, Mai, Mi and Mii are all

equal to each other. According to the 2nd law of Newton, the

following formula holds.

𝑎𝑖
𝑘(𝑡) =

𝐹𝑖
𝑘(𝑡)

𝑀𝑖𝑖(𝑡)

More concretely, the inertial mass of the ith agent is given by

Mii, and it‟s acceleration is given by ai
k(t).

4. THE PROPOSED SCHEDULING

SCHEME
As it was also discussed, in cloud platforms the user-

submitted jobs to the available VMs can be distinguished in

two basic types: independent and interrelated. Moreover, the

interrelated jobs can usually be spread into multiple small

independent tasks that may run separately (without

communicating with each other), so it is sufficient to address

how the proper balance of the VMs workload is preserved

with independent tasks only. The main objectives of the

proposed here solution are to achieve the maximum resource

utilisation of the VMs along with the minimum execution time

of the tasks. It has also been assume (as in [30]) that the VM

is the basic resource unit and the demands of each task for

resources is the same for all VMs. This assumption is

somewhat against the best behavior of some of the

competitive approaches (like ESTA and Min-Min), however

it's a good starting point for comparison.

More concretely, it‟s assumed that there are m VMs inter-

connected adequately. The set V of the available VMs can be

represented as (v1,v2,…vm), where vi denotes the max amount

of resources of VM i, with i=1…m. Also, there is a set T of

tasks which can be represented as (t1,t2,…tn), where tj denotes

the task j, with j=1…n. Each task tj is further represented by a

pair of values (timeReq, resourceReq), in which timeReq

denotes the required execution time of tj, and resourceReq

denotes the resource requirements of tj.

The design of the proposed task scheduling scheme has been

partially based on the way the GSA algorithm is utilised in

[31], and it is suitably adapted over the total set of tasks to be

scheduled. The fact that the set of the tasks is of controlled

size makes possible the centralized use of fast evolutionary

techniques that are highly accurate. Further, the proposed

adapted GSA-based algorithm is executed to associate subsets

of tasks to specific VMs for their eventual execution. Since

also the maximization of the resource utilisation of the

available VMs is of high priority, the fitness function was

suitably modified / optimized to achieve proper balancing and

get better results for large and very large inputs.

Specifically, the main set of agents (SA) is first initialized; it

must be noted here that the agents themselves stand as

potential solutions. Moreover, as mentioned above, in the

present context of scheduling the agents represent the

associations of tasks to relevant VMs. So, assuming that Li is

agent i, each item xi
k(t) assigns the corresponding task to a

VM and 1 ≤ i ≤ SA, where 1 ≤ k ≤ K (K equals to n). Thus, the

following expression could represent agent i [31], and the

adapted GSA algorithm could then execute as follows (see next

page, Algorithm 1)..

𝐿𝑖 = [𝑥𝑖
1(𝑡), 𝑥𝑖

2(𝑡), 𝑥𝑖
3(𝑡), . . . , 𝑥𝑖

𝐾(𝑡)]

4.1 Determining the Fitness Function

The fitness function (f) has to be suitably determined taking in

account two main factors:

(a) The total execution time of all the tasks in the available

VMs (let‟s name it Texec_max), which equals to the maximum

time required among all the VMs to execute its own tasks. So,

if it‟s assumed that each VM i (i=1...m) has been assigned a

set of Ni tasks (denoted as tij, where j=1...Ni), Texec_max can be

expressed as follows:

𝑇𝑒𝑥𝑒𝑐 _𝑚𝑎𝑥 = 𝑚𝑎𝑥𝑖=1
𝑚 (𝑡𝑖𝑗 . 𝑡𝑖𝑚𝑒𝑅𝑒𝑞

𝑁𝑖
𝑗=1)

(b) The total resource utilisation of the VMs during the

execution of all the tasks (let‟s name it Rutil_sum), which equals

to the sum of the resource utilisations of all the VMs, having

each of them executing its own tasks. So, if it‟s assumed here

International Journal of Computer Applications (0975 – 8887)

Volume 184– No.40, December 2022

44

again that each VM i (i=1...m) has been assigned a set of Ni

tasks (denoted as tij, where j=1...Ni), Rutil_sum can be expressed

as follows:

𝑅𝑢𝑡𝑖𝑙 _𝑠𝑢𝑚 = (
 𝑡𝑖𝑗 .𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝑞
𝑁𝑖
𝑗=1

𝑣𝑖

𝑚
𝑖=1)

Algorithm 1. GSA-based Task Scheduling

Input:

Set of Tasks to be scheduled: T = {t1, t2, t3, … , tn}

Set of VMs for tasks execution: V = {v1, v2, v3, … , vm}

Set of initial agents, having size equal to SA

Dimension of each agent = # of Tasks = n

Output:

The optimized tasks assignments to specific VMs

GSA_scheduling_procedure:

Agent Li is initialized, i, 1<=i<= SA

The assignment function is defined (for every tk to a vj)

do /* suppose at the beginning t=0 */

 for i=1 to SA

 The fitness value Li is calculated

 The values best and worst are updated for all Li

 ai
k(t) and Mi(t) are computed for each agent Li

 The position and the velocity of Li are updated

 endfor

while the termination criteria are not satisfied

Fitness Function

Objective 1:

Minimize 𝑇𝑒𝑥𝑒𝑐 _𝑚𝑎𝑥 =

𝑚𝑎𝑥𝑖=1
𝑚 (𝑡𝑖𝑗 . 𝑡𝑖𝑚𝑒𝑅𝑒𝑞

𝑁𝑖

𝑗=1

)

Objective 2:

Maximize 𝑅𝑢𝑡𝑖𝑙 _𝑠𝑢𝑚 =

 (
 𝑡𝑖𝑗 . 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝑞
𝑁𝑖
𝑗=1

𝑣𝑖

𝑚

𝑖=1
)

Total Objective:

Minimize f =

𝛾 × 𝑇𝑒𝑥𝑒𝑐 _𝑚𝑎𝑥 + 휀1

𝛿 × 𝑅𝑢𝑡𝑖𝑙 _𝑠𝑢𝑚 + 휀2

As it was also discussed in the previous sections, in a modern

cloud computing environment (datacenter) the minimization

of the total execution time of the tasks is not the only priority.

The maximization of the utilisation of the VMs involved is

also an equivalently important performance factor. In many

cases the tasks are accompanied with specific time limits that

have to be satisfied; these limits represent also the highest

expected task execution time by the cloud VM infrastructure

(i.e. faster execution times make no sense). In such

environments, the maximization of the VMs utilisation may

reliably lead to significant savings of VM resources

(preserving in any case the execution time of the tasks in the

desirable levels), which then could mean that more tasks/jobs

may be admitted and executed in time by the same/entire VM

infrastructure. Furthermore, through the specific fitness

function an optimized approach is proposed, aiming at the

maximum possible balance on the actual behavior of the two

main factors discussed above. Note that γ,δ and ε1,ε2 are

suitably selected constants (dependent and independent to the

total tasks execution time / resource utilization, respectively).

Moreover, the function value is normalized appropriately

within [0,1] to optimize the result. The fitness function

proposed here, does not only properly distribute the weight of

both the basic factors referred above (resource utilization and

execution time) in the overall calculation. It also gives the

developer the capability to fix/repair (using γ,δ) adequately

the non-unpredictable (as well as non-canonical) differences

caused by the potentially different measure units. It also offers

the convenience to incorporate (using ε1,ε2) in the

optimization procedure other important factors / parameters

too. Other types of fitness functions [31] could also be applied

and evaluated, which is of high priority in future research.

5. PERFORMANCE EVALUATION
In the following, a set of extended simulation experiments is

presented in details, performed to estimate the efficiency of

the proposed GSA-based task scheduling algorithm in

comparison to OLB [17], Min-Min [19], ESTA [27] and

improved PSO [30]. The first two of the above algorithms

(OLB, Min-Min) are typical representatives of early static task

scheduling algorithms, whereas the rest (ESTA, PSO) are two

of the more recent highly effective task scheduling algorithms

based on modern techniques. The Cloudsim 4.0 simulator [31]

has been used, deploying small to large scale random test

inputs. Each VM has 1GHz CPU, 16-64GB memory and 1000

Mbits/s bandwidth. To check the performance of the GSA-

based algorithm, experiments involving from 16 up to 1024

VMs and from 1000 up to 50000 tasks were performed.

5.1. Results for varying number of tasks
In the first set of experiments, the influence of varying values

in the number of tasks to fixed number of VMs is examined

on total performance. More concretely, it‟s assumed there are

16 VMs, and a varying number of tasks is deployed;

specifically ranging from 1000 up to 50000 tasks. The main

observations are as follows.

As the number of tasks increases, makespan on the VMs also

increases, as shown in Fig. 1. Moreover, as seen in Fig. 1, the

proposed GSA-based scheduling approach performs better on

makespan among all the considered competitors. Specifically,

the average performance gain of GSA over ESTA, PSO, Min-

Min and OLB, is 5.1, 9.4, 6.8 and 31.3%, respectively. When

there are more varying tasks at the same number of VMs,

ESTA is very close to Min-Min, quite better than PSO and

clearly better than OLB strategy; which has the worst

performance on makespan, as it was expected due to the fact

that it assigns the tasks to VMs without taking in account their

expected execution time.

Furthermore, in Fig. 2 the results of average utilisation of the

system are shown for each case. Here again, the first

observation is that, as it was normally expected, the average

utilisation progressively increases (up to 97.3% for 50000

tasks if the GSA algorithm is considered) as the number of

International Journal of Computer Applications (0975 – 8887)

Volume 184– No.40, December 2022

45

tasks increases. Moreover, the performance of the proposed

GSA-based scheduling algorithm remains the best among all

the considered heuristic strategies. More concretely, the

average utilisation improvement of GSA over ESTA, PSO,

Min-Min and OLB, is 4.7, 7.2, 10.7 and 43.5%, respectively.

Also, when there are more varying tasks at same number of

VMs, ESTA is very close to PSO, quite better than Min-Min

and substantially better than OLB strategy.

Note here that the improved PSO approach behaves better

than Min-Min, since the maximization of the system resource

utilisation is inherently one of its main objectives. On the

contrary, the Min-Min algorithm behaves better on makespan;

which has the main priority in its design objectives.

Fig 1. Makespan for varying # of tasks

Fig 2. Average utilisation for varying # of tasks

5.2. Results for varying number of VMs
In the second set of experiments, the influence of different

values of the number of VMs to fixed number of tasks, is

examined on total performance. More concretely, it‟s assumed

there is a fixed number of 50000 tasks, whereas the number of

VMs (in which the tasks will be deployed) varies from 16 to

1024. The main observations are as follows.

As the number of VMs increases, both the makespan and the

average utilisation values decrease, as shown in Fig. 3-4.

Moreover, as indicated in Fig. 3, the proposed GSA-based

scheduling approach performs better on makespan among all

the considered heuristic strategies. Specifically, the average

performance gain of GSA over ESTA, PSO, Min-Min and

OLB, is 3.5, 7.7, 5.1 and 27.3%, respectively. Additionally,

when there are more VMs at the same number of tasks, ESTA

is very close to Min-Min, quite better than PSO and clearly

better than OLB strategy; which has the worst performance on

makespan for the same reasons as it was explained above (in

the context of the first experiment).

Furthermore, in Fig. 4 the results of average utilisation of the

system are shown for each case. Here again, the first

observation is that, as it was normally expected, the average

utilisation progressively decreases (down to approximately

90% for 1024 VMs if the GSA algorithm is considered) as the

number of VMs increases. Moreover, the performance of the

proposed GSA-based scheduling algorithm remains the best

among all the considered heuristic strategies. More concretely,

the average utilisation improvement of GSA over ESTA,

PSO, Min-Min and OLB, is 6.7, 9.2, 14.5 and 68.7%,

respectively. Having also more varying VMs at the same

number of tasks, ESTA is very close to PSO, quite better than

Min-Min and substantially better than OLB strategy. Note

here also (as it was observed for varying number of tasks too

in the first experiment) that the improved PSO approach

behaves better than Min-Min, since the maximization of the

system resource utilisation is inherently one of its main

objectives.

Fig 3. Makespan for varying # of VMs

 Fig 4. Average utilisation for varying # of VMs

5.3 Comparing to Improved PSO
As mentioned in the previous section, the comparison of the

proposed GSA-based approach with the improved PSO

approach [30] is the most fair and representative one, since the

two algorithms not only have the same objectives, but also

adopt exactly the same assumptions.

Moreover, they both come from the same base area of the

evolutionary optimization algorithms, i.e. they may be

regarded as two competitive approaches from the same

„family‟. In the above context, beyond the results shown in

Fig. 1-4, the corresponding makespan and utilisation curves

for only the GSA-based and improved PSO approaches are

presented also in Fig. 5-8, for direct comparison.

0

100

200

300

400

500

600

1000 5000 100002000050000

M
ak

es
p

an
 (

1
0

^3
)

Number of Tasks

ESTA

MIN-MIN

OLB

PSO

GSA

0

0.2

0.4

0.6

0.8

1

1000 5000 10000 20000 50000A
ve

ra
ge

 U
ti

lis
at

io
n

Number of Tasks

ESTA

MIN-MIN

OLB

PSO

GSA

0

100

200

300

400

500

600

16 64 256 512 1024

M
ak

es
p

an
 (

1
0

^3
)

Number of VMs

ESTA

MIN-MIN

OLB

PSO

GSA

0

0.2

0.4

0.6

0.8

1

16 64 256 512 1024A
ve

ra
ge

 U
ti

lis
at

io
n

Number of VMs

ESTA

MIN-MIN

OLB

PSO

GSA

International Journal of Computer Applications (0975 – 8887)

Volume 184– No.40, December 2022

46

As it can be easily observed in Fig. 5, the makespan achieved

by the GSA-based approach is clearly better than the

makespan of improved PSO scheme, especially for large

number of tasks (i.e. in cases of 20000 and 50000 tasks). For

smaller numbers of tasks the improved PSO algorithm

behaves quite efficiently and achieves makespan values that

are very close to the ones of the GSA-based algorithm.

Moreover, in Fig. 6 the corresponding utilisation curves are

presented. As shown in Fig. 6, as the number of tasks

increases, the average resource utilization increases too for

both approaches. Furthermore, the relevant increase for the

GSA-based approach is sharper and finally leads to a much

better utilization value (0.97) for 50000 tasks. Here also again,

the improved PSO algorithm behaves more efficiently for

smaller numbers of tasks, leading to utilisation values quite

close to the ones of the GSA-based algorithm.

Additionally, in Fig. 7 the makespan curves are presented for

varying number of VMs. As it can be easily observed here

also, the makespan achieved by the GSA-based approach is

clearly better than the makespan of the improved PSO

scheme, especially for smaller number of VMs (i.e. in cases of

16 and 64 VMs). Actually, the percentage difference between

the two approaches is approximately the same for all the

varying numbers of VMs; and just the absolute values

difference is more visible in the case of smaller number of

VMs.

The above conclusion may also be drawn by observing Fig. 8,

where the corresponding average utilisation curves are given.

More concretely, as it can be seen in Fig. 8 the average

resource utilization achieved by the GSA-based approach is

clearly better than the one of the improved PSO approach, for

all the numbers of available VMs. However, the improved

PSO algorithm behaves quite efficiently too, and achieves

very satisfactory utilisation values even for large number of

VMs (0.85 for 1024 VMs vs. 0.91 achieved by GSA).

Fig 5. Makespan curves for varying # of tasks

Fig 6. Utilisation curves for varying # of tasks

Fig 7. Makespan curves for varying # of VMs

Fig 8. Utilisation curves for varying # of VMs

6. CONCLUSION
An efficient task scheduling scheme based on the

Gravitational Search Algorithm (GSA) is presented and

evaluated throughout the paper. The proposed method is a

novel approach that exploits the effectiveness of a modern and

quite efficient evolutionary optimization technique, to

optimize the basic task scheduling procedure in cloud

computing environments. It considers both the total tasks

execution time and the system resource utilisation as the

critical factors for optimization, and adapts adequately the

relevant fitness function in order to obtain sufficiently

accurate solutions even for large inputs. The experimental

evaluation of the proposed scheme shows its high efficiency

in terms of makespan and resource utilisation, as well as its

superiority over other competitive approaches of the literature

(like OLB, Min-Min, ESTA and improved PSO). The suitable

adaptation and evaluation of alternative types of fitness

functions is of high priority in future research.

0

100

200

300

400

500

1000 5000 10000 20000 50000

M
ak

es
p

an
 (

1
0

^3
)

Number of Tasks

PSO

GSA

0.7

0.75

0.8

0.85

0.9

0.95

1

1000 5000 10000 20000 50000A
ve

ra
ge

 U
ti

liz
at

io
n

Number of Tasks

PSO

GSA

0

100

200

300

400

500

16 64 256 512 1024

M
ak

es
p

an
 (

1
0

^3
)

Number of VMs

PSO

GSA

0.7

0.75

0.8

0.85

0.9

0.95

1

16 64 256 512 1024A
ve

ra
ge

 U
ti

liz
at

io
n

Number of VMs

PSO

GSA

International Journal of Computer Applications (0975 – 8887)

Volume 184– No.40, December 2022

47

7. REFERENCES
[1] T. Erl, R. Puttini, Z. Mahmood, Cloud Computing:

Concepts, Technology & Architecture, Prentice Hall,

2015.

[2] Hu, J., Gu, J., Sun, G., et al.: A Scheduling Strategy on

Load Balancing of Virtual Machine Resources in Cloud

Computing Environment. In: 3rd International

Symposium on Parallel Architectures, Algorithms and

Programming, Dalian, Liaoning, China, pp. 89–96 (2010)

[3] Fang, Y., Wang, F., Ge, J.: A Task Scheduling Algorithm

Based on Load Balancing in Cloud Computing. In:

Wang, F.L., Gong, Z., Luo, X., Lei, J. (eds.) WISM

2010. LNCS, vol. 6318, pp. 271–277. Springer,

Heidelberg (2010)

[4] Paton, N.W., de Aragao, M.A.T., Lee, K., Fernandes,

A.A.A.: Optimizing Utility in Cloud Computing through

Automatic Workload Execution. IEEE Data Eng. Bull.

32, 51–58 (2009)

[5] Li, L.: An Optimistic Differentiated Service Job

Scheduling System for Cloud Computing Service Users

and Providers. In: Third International Conference on

Multimedia and Ubiquitous Engineering, Qingdao,

China, pp. 295–299 (2009)

[6] Wei, G., Athanasios, V.V., Yao, Z., et al.: A game-

theoretic method of fair resource allocation for Cloud

Computing Services. The Journal of SuperComputing 2,

252–269 (2009)

[7] Martin, R., David, L., Taleb-Bendiab, A.: A Comparative

Study into Distributed Load Balancing Algorithms for

Cloud Computing. In: 2010 IEEE 24th International

Conference on Advanced Information Netwoking and

Applications Workshops, Perth, Australia, pp. 551–556

(2010)

[8] Zhang, B., Gao, J., Ai, J.: Cloud Loading Balance

Algorithm. In: 2nd International Conference on

Information and Engineering, ICISE 2010, Hangzhou,

China, pp. 5001–5004 (2010)

[9] Laura, G., David, I., Varun, M., et al.: Harnessing Virtual

Machine Resource Control for Job Management. In: The

1st Workshop on System-level Virtualization for High

Performance Computing, Lisbon, Portugal (2007)

[10] Kwok, Y.-K., Ahmad, I.: Static scheduling algorithms for

allocating directed task graphs to multiprocessors. ACM

Computing Surveys 4, 406–471 (2009)

[11] Singh, K., Alam, M. and Sharma, S.K. (2015), “A survey

of static scheduling algorithm for distributed computing

system”, International Journal of Computer Applications,

Vol. 129 No. 2.

[12] You, T., Li, W., Fang, Z., Wang, H. and Qu, G. (2014),

“Performance evaluation of dynamic load balancing

algorithms”, Indonesian Journal of Electrical Engineering

and Computer Science, Vol. 12 No. 4, pp. 2850-2859.

[13] Rafsanjani,M.K. and Bardsiri, A.K. (2012), “A new

heuristic approach for scheduling independent tasks on

heterogeneous computing systems”, International Journal

of Machine Learning and Computing, Vol. 2 No. 4, p.

371.

[14] Kumar,M. and Sharma, S.C. (2018), “Load balancing

algorithm to minimize the makespan time in cloud

environment”, World Journal of Modelling and

Simulation, Vol. 14 No. 4, pp. 276-288.

[15] Vedle, V. and Rama, B. (2018), “A framework for user

priority guidance based scheduling for load balancing in

cloud computing”, International Journal of Simulation-

Systems, Science and Technology, Vol. 19 No. 6.

[16] Braun, T.D., Siegel, H.J. and Maciejewski, A.A. (2001),

“Heterogeneous computing: goals, methods, and open

problems, international conference of parallel and

distributed processing techniques and applications

(PDPTA‟01)”, Invited keynote paper, pp 1-12.

[17] Freund, R.F. and Siegel, H.J. (1993), “Heterogeneous

processing: guest editor‟s introduction”, IEEE,

Computer, Vol. 26 No. 6, pp. 13-17.

[18] Freund, R.F., Gherrity, M., Ambrosius, S., Campbell, M.,

Halderman, M., Hensgen, D., Keith, E., Kidd, T.,

Kussow, M., Lima, J.D. and Mirabile, F. (1998),

“Scheduling resources in multi-user, heterogeneous,

computing environments with SmartNet”, in

Heterogeneous Computing Workshop, 1998. (HCW98)

Proceedings. 1998 Seventh, IEEE, pp. 184-199.

[19] Etminani, K. and Naghibzadeh, M. (2007), “A Min-Min

Max-Min selective algorithm for grid task scheduling”,

in Internet, 2007. ICI 2007. 3rd IEEE/IFIP International

Conference in Central Asia on 2007, IEEE, pp. 1-7.

[20] Ibarra, O.H. and Kim, C.E. (1977), “Heuristic algorithms

for scheduling independent tasks on nonidentical

processors”, Journal of the ACM(Jacm)), Vol. 24 No. 2,

pp. 280-289.

[21] Alam, M. and Shahid, M. (2017), “A load balancing

strategy with migration cost for independent batch of

tasks (BoT) on heterogeneous multiprocessor

interconnection networks”, International Journal of

Applied Evolutionary Computation (IJAEC), Vol. 8 No.

3, pp. 74-92, doi: 10.4018/IJAEC.2017070104.

[22] Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L.,

Maheswaran, M., Reuther, A.I. and Freund, R.F. (2001),

“A comparison of eleven static heuristics for mapping a

class of independent tasks onto heterogeneous distributed

computing systems”, Journal of Parallel and Distributed

Computing, Vol. 61 No. 6, pp. 810-837, doi:

10.1006/jpdc.2000.1714.

[23] Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D. and

Freund, R.F. (1999), “Dynamic mapping of a class of

independent tasks onto heterogeneous computing

systems”, Journal of Parallel and Distributed Computing,

Vol. 59 No. 2, pp. 107-131.

[24] Wang, S.C., Yan, K.Q., Liao, W.P. and Wang, S.S.

(2010), “Towards a load balancing in a three-level cloud

computing network”, In 2010 3rd International

Conference on Computer Science and Information

Technology, Vol. 1, IEEE, pp. 108-113.

[25] Abraham, A., Buyya, R. and Nath, B. (2000), “Nature‟s

heuristics for scheduling jobs on computational grids”, in

The 8th IEEE International Conference on Advanced

Computing and Communications (ADCOM2000), pp.

45-52.

[26] Haidri, R.A., Katti, C.P. and Saxena, P.C. (2017),

“Receiver initiated deadline aware load balancing

International Journal of Computer Applications (0975 – 8887)

Volume 184– No.40, December 2022

48

strategy (RDLBS) for cloud environment”, International

Journal of Applied Evolutionary Computation (IJAEC),

Vol. 8 No. 3, pp. 53-73.

[27] Mahfooz Alam, Mahak, Raza Abbas Haidri, Dileep

Kumar Yadav, Efficient task scheduling on virtual

machine in cloud computing environment, International

Journal of Pervasive Computing and Communications,

Emerald Publishing, Vol. 17 No. 3, 2021, pp. 271-287.

[28] Ji, Y.-M., Wang, R.-C.: Study on PSO algorithm in

solving grid task scheduling. Journal on Communications

10, 60–66 (2007).

[29] Pandey, S., Wu, L., Guru, S., et al.: A Particle Swarm

Optimization (PSO)-based Heuristic for Scheduling

Workflow Applications in Cloud Computing

Environments. In: 24th IEEE International Conference

on Advanced Information Networking and Applications,

Perth, Australia, pp. 400–407 (2010).

[30] Zhanghui Liu and Xiaoli Wang. A PSO-Based Algorithm

for Load Balancing in Virtual Machines of Cloud

Computing Environment, Advances in Swarm

Intelligence, Third International Conference, ICSI 2012,

Shenzhen, China, June 17-20. pp. 142–147 (2012).

[31] B. Mamalis, S. Mamalis and M. Perlitis, “Efficient

Multi-level Clustering for Very Large Wireless Sensor

Networks with Gateways Support and Meta-heuristic

Integration”, in International Journal of Computer

Applications (IJCA), Vol. 183, No. 7, pp. 30-38, June

2021.

[32] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov,

Cesar A. F. De Rose, and Rajkumar Buyya, CloudSim: A

Toolkit for Modeling and Simulation of Cloud

Computing Environments and Evaluation of Resource

Provisioning Algorithms, Software: Practice and

Experience (SPE), Volume 41, Number 1, Pages: 23-50,

Wiley Press, New York, USA, January, 2011.

IJCATM : www.ijcaonline.org

