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ABSTRACT 

The rapid and convenient provision of the available 

computing resources is a crucial requirement in modern cloud 

computing environments. However, if only the execution time 

is taken into account when the resources are scheduled, it 

could lead to imbalanced workloads as well as to significant 

under-utilisation of the involved Virtual Machines (VMs). In 

the present work a novel task scheduling scheme is 

introduced, which is based on the proper adaptation of a 

modern and quite effective evolutionary optimization method, 

the Gravitational Search Algorithm (GSA). The proposed 

scheme aims at optimizing the entire scheduling procedure, in 

terms of both the tasks execution time and the system (VMs) 

resource utilisation. Moreover, the fitness function was 

properly selected considering both the above factors in an 

appropriately weighted function in order to obtain better 

results for large inputs. Sufficient simulation experiments 

show the efficiency of the proposed scheme, as well as its 

excellence over related approaches of the bibliography, with 

similar objectives.   
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1. INTRODUCTION 
During the last decade, cloud computing has evolved into an 

extremely popular (used both publicly and commercially) 

computing paradigm. In this context, a cloud computing 

platform can provide efficiently plenty of services to users 

with VM infrastructure as the main component [1,2]. For the 

end users all underlying resources are transparent. Actually, 

each submitted job occupies an independent VM. The relevant 

computing and memory resources are properly set in a 

mutually isolated status [3]. In such environments, each 

physical machine can host many VMs, thus ensuring that all 

users‟ applications will run independently and efficiently. As 

a result, in cloud computing platforms, task scheduling is 

actually taking place among the available VMs. Moreover, 

preserving load balancing among the VMs is still a difficult 

problem in such infrastructures.  

In the above context, one of the most significant problems in 

modern cloud computing environments is task allocation. The 

main advantage of modern cloud platforms is the ability to be 

sufficiently elastic, i.e. being rapidly grown and teared down 

at any moment. This goal needs the support of novel task 

allocation algorithms to optimize key parameters like the total 

makespan, the responses times and the average utilisation of 

the resources. The function of scheduling in modern cloud 

computing is to allocate tasks on VMs in such a way that 

makespan and response times are minimized and resource 

utilisation is maximized. 

Obviously, finding the proper mappings between the jobs 

submitted by end users and the dynamic resources of the 

available VMs is an NP-hard optimization problem. For this 

problem, a variety of dynamic, static and mixed scheduling 

algorithms have been proposed [4-10]. Some of the well-

known early static scheduling schemes were based on ISH, 

MCP and ETF algorithms [8-10]. Most of these algorithms 

were built for the BNP class and were suitable for high 

efficiency network platforms in distributed environments. 

However, the relevant needs in cloud infrastructures are more 

advanced, whereas the costs of the provided services usually 

depend on the amount of usages. As a consequence, the 

typical early static algorithms can‟t play significant role.  

Provided that the needs for efficient job/task assignments in 

cloud platforms have rapidly evolved, it is crucial to 

strengthen the total efficiency of the underlying system 

infrastructure. Combining system efficiency and optimized 

tasks execution time is a hard problem for task scheduling in 

cloud platforms. Some of the more recent improved 

scheduling algorithms used for addressing the above problems 

were SJF, FCFS, MET, MCT, Min-Min, Max-Min, LBSM 

etc. [11-27]. Recently, the swarm intelligence algorithms (like 

PSO) have also been used effectively towards the above 

direction [28-30]. A more comprehensive analysis of the most 

important of the above schemes is given in the following 

section.  

In the present work, a new job/task scheduling scheme is 

introduced using the Gravitational Search Algorithm (GSA), 

i.e. a quite recent and effective evolutionary optimization 

method. The basic purpose of the given scheme is to optimize 

the whole scheduling procedure, in terms of both the total 

completion time of the scheduled tasks and the system 

resource utilisation. One of the key issues of the proposed 

method is the proper adaptation of the relevant fitness 

function, which is chosen considering both the above crucial 

factors (execution time, resource utilisation) in a properly 

weighted manner, in order to get better results for large inputs. 

The corresponding simulation experiments show the 

effectiveness of the proposed approach, and its excellence 

over other related approaches in the bibliography (like OLB 

[17], Min-Min [19], ESTA [27] and improved PSO [30]).   

The remainder of the paper has been organized in the 

following form: In the next section (Section 2), the most 

recent related work is presented. Section 3 gives the necessary 

knowledge with respect to the GSA method. In section 4, the 

proposed GSA-based task scheduling scheme is further 

presented and properly documented. Section 5 demonstrates 
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the experimental evaluation of the proposed scheme, whereas 

section 6 concludes the paper. 

2. RELATED WORK 
As referred previously, job/task scheduling schemes are 

mainly distinguished in static and dynamic. With respect to 

static scheduling, all the necessary info for tasks execution 

(such as task execution time, VM capacity, weight of task 

etc.) is known before execution, whereas in dynamic 

scheduling, the decision is taken during runtime, according to 

probably changed parameters during the execution [11]. Both 

the above task scheduling types can be used on homogeneous 

and heterogeneous systems.  

The task scheduling algorithms can also be distinguished into 

dependent and independent. In independent job/task 

scheduling no dependencies are assumed among the tasks [21-

25]. All the tasks may be executed separately, and there is no 

need to keep any precedence log among them. On the 

contrary, considering dependent job/task scheduling specific 

precedence log must be maintained and relevant constraints 

must be satisfied before allocating the tasks to VMs [26]. 

Trying to address the most known independent job/task 

scheduling schemes of the literature, one should definitely 

refer to classical approaches like OLB, MET [17-18], Min-

Min, Max-Min [19-20], LBSM [21]), MCT [22], Sufferage 

[23], LBMM [24], LJFR-SJFR [25], and RDLBS [26], as well 

as to more recent ones (based on modern combined 

techniques) like ESTA [27] and improved PSO [30]. 

In more details, OLB [17] allocates each task at random to 

subsequent nodes/VMs, provided they are available. The main 

objective of OLB is to achieve the maximum utilisation of the 

available VMs by keeping busy all the nodes involved in the 

system. However, it usually leads to poor makespan, since it 

allocates the tasks to particular nodes without taking in 

account their expected execution time. On the contrary, the 

main objective of MET algorithm [18] is to place the tasks 

with minimum expected execution time to the available VMs 

without considering the availability of the nodes. Since also 

the assignment of the tasks is mainly targeted to the faster 

nodes, the whole scheduling scheme offers higher 

performance. However, due to the above fact, the entire 

allocation leads also to significant imbalance of the total load, 

especially in the case of heterogeneous systems. Similarly, the 

main objective of MCT [22] is to allocate the task with the 

minimum expected completion time to the available VMs and 

along with it also allocate the tasks that don‟t have minimum 

completion time for the given resources. Since a portion of the 

tasks is to be assigned to resources without having minimum 

completion time, MCT combines the main features of both 

OLB and MET, and it naturally leads to better performance.  

Considering the Min-Min heuristic [19-20], first, all the 

necessary info related to each task is supposed to be known at 

first. The Min-Min procedure is executed in two stages as 

below: (a) First, the MCT for each task is found, next the 

minimum time to completion of all tasks present in the batch 

is calculated; (b) Finally, the task with the minimum time to 

completion is chosen and then it‟s allocated to the proper node 

and removed from the batch when it completes. The Min-Min 

procedure is one of the easier methods to efficiently assign 

tasks to the available resources. However, it also has a 

significant disadvantage; specifically, the largest in size tasks 

will probably be waiting for undesirably long time. Further, 

the LBMM [24] heuristic stands as the combination of Min-

Min and OLB scheduling schemes, thus leading to even better 

performance on makespan. 

On the other hand, the Max-Min algorithm [19-20] also works 

into two stages, with a small difference: (a) First, the MCT for 

each task is found, then the maximum time to completion of 

all tasks present in the batch is calculated; (b) Finally, the task 

with the maximum time to completion is chosen and then it‟s 

given to the proper node and removed from the batch. The 

Max-Min scheme is usually the basis for such algorithms in 

distributed environments. The Max-Min approach represents 

the method of mapping tasks on the faster VM/nodes, having 

the tasks with longer completion times to run first. So, it is 

naturally expected to behave better than the Min-Min 

approach. 

In Sufferage [23], the work is also separated in two stages. 

Firstly, the MCT is computed and then the second MCT is 

also computed for each task. Finally, the difference between 

the first and the second MCT values is also computed. This 

difference is the sufferage value; next, the task with the largest 

sufferage value is determined and then it‟s assigned to the 

appropriate resource with MCT. 

Considering the LJFR-SJFR algorithm [25], first, a group of 

not-mapped tasks is initiated and also the relevant MCTs are 

determined. Next, the task with global MCT is chosen from 

the set of MCTs, and it‟s considered as SJFR. Also, the task 

with the global maximum completion time value of the tasks 

is determined, and it‟s considered as LJFR. Finally, shorter 

and longer tasks are assigned to the nodes. 

Moreover, in LBSM [21] the authors present an efficient 

strategy for load balancing, and then the whole algorithm 

executes on specific inter-connection network. Initially, the 

assignment of the task is performed at random. After the 

initial task allocation, migration of specific tasks may take 

place from over-loaded nodes to under-loaded ones, to 

preserve load balancing. The above two strategies are almost 

similar, with the migration strategy being their only 

difference. LBSM performs better in terms of load balancing 

and computing components utilisation.  

In [27], a new scheme (ESTA) is introduced to schedule tasks 

with no dependences in VMs with heterogeneous resources. 

The main objective of ESTA is to push the utilisation of all 

the VMs to the maximum (acting as an IaaS cloud computing 

provider), and also push the makespan to the minimum (as 

well as the average response time of the tasks). The incoming 

tasks are divided by the ESTA scheduler into largest size and 

smallest size tasks. The VM manager provides the set of VMs 

allocated to physical machines. ESTA is experimentally 

evaluated and compared to Min-Min and other competitive 

approaches of the bibliography to show its important 

performance gains.  

Finally, in [30] an improved heuristic approach based on the 

PSO algorithm is presented to solve the problem of load 

balancing in VMs. By establishing relevant knowledge 

between the tasks and the VMs effectively, the main objective 

is the calculation of an optimal scheduling pattern, that not 

only minimizes the makespan, but also maximizes the VMs 

utilisation. Also, a new inertia weight technique is adopted 

through the classification of the fitness values. The 

corresponding simulations indicate the fast convergence speed 

of the algorithm, as well as its high efficiency and its great 

practical effect. Generally, the use of advanced heuristic 

algorithms with carefully selected fitness functions seems to 
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be quite promising and effective even when the problem 

continues to expand, preserving scalability. 

3. THE GRAVITATIONAL SEARCH 

ALGORITHM 
GSA is a relatively new optimization algorithm based on the 

law of gravity and mass interactions. In the corresponding 

algorithm, the searcher agents are a collection of masses 

which interact with each other based on the Newtonian gravity 

and the laws of motion. A detailed description of the GSA 

approach is given in [3]. Let‟s suppose that initially there is 

set of agents, SA. Each one of these agents is expected to 

eventually offer a portion of the final solution. Let‟s also 

denote the location of agent Li, 1 ≤ i ≤ SA in dimension k as xi
k 

and the velocity of agent Li as vi
k, 1≤k ≤ K. It is also assumed 

that each agent has the same dimension. Each one of the 

agents is then evaluated to verify the eligibility of the result 

using a specific fitness function. Moreover, if the ith location 

of an agent Li is being represented as Xi = (xi
1, xi

2,…, xi
K), then 

the following formula represents the force applied on the ith 

agent by the jth agent. 

𝐹𝑖𝑗
𝑘(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖 (𝑡) × 𝑀𝛼𝑗 (𝑡)

𝑅𝑖𝑗 (𝑡)
(𝑥𝑗
𝑘(𝑡) − 𝑥𝑖

𝑘(𝑡)) 

In the above expression, Mpi denotes the passive mass of the 

ith agent, Maj denotes the relevant active mass of the jth agent, 

whereas α is a constant. Also, G(t) is defined to be equal to 

G0(t0/tmax)
ϕ, in which G0 stands also as a constant. Rij(t) 

denotes the Euclidean distance from ith agent by jth agent. So, 

the total force applied by the set of agents over agent i in 

dimension d is defined as given below. 

𝐹𝑖
𝑘(𝑡) =  𝑟𝑎𝑛𝑑𝑗 × 𝐹𝑖𝑗

𝑘(𝑡)

𝑆𝐴

𝑗=1,𝑗≠𝑖

 

The gravitational and the inertial mass are calculated by 

evaluating the fitness function. The greater the mass of an 

agent the greater the efficiency of the solution it represents. 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
+ 𝜀 

Here, ε represents a limited constant, fiti(t) is the fitness of the 

ith agent, and worst (t) / best (t) are as follows. 

𝑏𝑒𝑠𝑡(𝑡) = 𝑚𝑖𝑛
𝑗 ∈{1...𝑆𝐴 }

𝑓𝑖𝑡𝑗 (𝑡)    𝑤𝑜𝑟𝑠𝑡(𝑡) = 𝑚𝑎𝑥
𝑗∈{1...𝑆𝐴 }

𝑓𝑖𝑡𝑗 (𝑡) 

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

 𝑚𝑗 (𝑡)
𝑆𝐴
𝑗=1

 

In the above, it‟s also assumed that Mpi, Mai, Mi and Mii are all 

equal to each other. According to the 2nd law of Newton, the 

following formula holds. 

𝑎𝑖
𝑘(𝑡) =

𝐹𝑖
𝑘(𝑡)

𝑀𝑖𝑖(𝑡)
 

More concretely, the inertial mass of the ith agent is given by 

Mii, and it‟s acceleration is given by ai
k(t).  

4. THE PROPOSED SCHEDULING 

SCHEME 
As it was also discussed, in cloud platforms the user-

submitted jobs to the available VMs can be distinguished in 

two basic types:  independent and interrelated. Moreover, the 

interrelated jobs can usually be spread into multiple small 

independent tasks that may run separately (without 

communicating with each other), so it is sufficient to address 

how the proper balance of the VMs workload is preserved 

with independent tasks only. The main objectives of the 

proposed here solution are to achieve the maximum resource 

utilisation of the VMs along with the minimum execution time 

of the tasks. It has also been assume (as in [30]) that the VM 

is the basic resource unit and the demands of each task for 

resources is the same for all VMs. This assumption is 

somewhat against the best behavior of some of the 

competitive approaches (like ESTA and Min-Min), however 

it's a good starting point for comparison.  

More concretely, it‟s assumed that there are m VMs inter-

connected adequately. The set V of the available VMs can be 

represented as (v1,v2,…vm), where vi denotes the max amount 

of resources of VM i, with i=1…m. Also, there is a set T of 

tasks which can be represented as (t1,t2,…tn), where tj denotes 

the task j, with j=1…n. Each task tj is further represented by a 

pair of values (timeReq, resourceReq), in which timeReq 

denotes the required execution time of tj, and resourceReq 

denotes the resource requirements of tj. 

The design of the proposed task scheduling scheme has been 

partially based on the way the GSA algorithm is utilised in 

[31], and it is suitably adapted over the total set of tasks to be 

scheduled. The fact that the set of the tasks is of controlled 

size makes possible the centralized use of fast evolutionary 

techniques that are highly accurate. Further, the proposed 

adapted GSA-based algorithm is executed to associate subsets 

of tasks to specific VMs for their eventual execution. Since 

also the maximization of the resource utilisation of the 

available VMs is of high priority, the fitness function was 

suitably modified / optimized to achieve proper balancing and 

get better results for large and very large inputs.  

Specifically, the main set of agents (SA) is first initialized; it 

must be noted here that the agents themselves stand as 

potential solutions. Moreover, as mentioned above, in the 

present context of scheduling the agents represent the 

associations of tasks to relevant VMs. So, assuming that Li is 

agent i, each item xi
k(t) assigns the corresponding task to a 

VM and 1 ≤ i ≤ SA, where 1 ≤ k ≤ K (K equals to n). Thus, the 

following expression could represent agent i [31], and the 

adapted GSA algorithm could then execute as follows (see next 

page, Algorithm 1).. 

𝐿𝑖 = [𝑥𝑖
1(𝑡), 𝑥𝑖

2(𝑡), 𝑥𝑖
3(𝑡), . . . , 𝑥𝑖

𝐾(𝑡)] 

4.1 Determining the Fitness Function 

The fitness function (f) has to be suitably determined taking in 

account two main factors: 

(a) The total execution time of all the tasks in the available 

VMs (let‟s name it Texec_max), which equals to the maximum 

time required among all the VMs to execute its own tasks. So, 

if it‟s assumed that each VM i (i=1...m) has been assigned a 

set of Ni tasks (denoted as tij, where j=1...Ni), Texec_max can be 

expressed as follows: 

𝑇𝑒𝑥𝑒𝑐 _𝑚𝑎𝑥  = 𝑚𝑎𝑥𝑖=1
𝑚 ⁡( 𝑡𝑖𝑗 . 𝑡𝑖𝑚𝑒𝑅𝑒𝑞

𝑁𝑖
𝑗=1 ) 

(b) The total resource utilisation of the VMs during the 

execution of all the tasks (let‟s name it Rutil_sum), which equals 

to the sum of the resource utilisations of all the VMs, having 

each of them executing its own tasks. So, if it‟s assumed here 
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again that each VM i (i=1...m) has been assigned a set of Ni 

tasks (denoted as tij, where j=1...Ni), Rutil_sum can be expressed 

as follows: 

𝑅𝑢𝑡𝑖𝑙 _𝑠𝑢𝑚  =  (
 𝑡𝑖𝑗 .𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝑞
𝑁𝑖
𝑗=1

𝑣𝑖

𝑚
𝑖=1 ) 

Algorithm 1. GSA-based Task Scheduling  

Input:  

Set of Tasks to be scheduled: T = {t1, t2, t3, … , tn} 

Set of VMs for tasks execution: V = {v1, v2, v3, … , vm}  

Set of initial agents, having size equal to SA 

Dimension of each agent = # of Tasks = n 

Output: 

The optimized tasks assignments to specific VMs  

 

GSA_scheduling_procedure: 

Agent Li is initialized, i, 1<=i<= SA  

The assignment function is defined (for every tk to a vj) 

do   /* suppose at the beginning t=0 */ 

   for i=1 to SA 

      The fitness value Li is calculated 

      The values best and worst are updated for all Li 

      ai
k(t) and Mi(t) are computed for each agent Li 

      The position and the velocity of Li are updated 

   endfor 

while the termination criteria are not satisfied 

 

 

Fitness Function 

Objective 1:  

Minimize 𝑇𝑒𝑥𝑒𝑐 _𝑚𝑎𝑥   = 

 

𝑚𝑎𝑥𝑖=1
𝑚 ⁡( 𝑡𝑖𝑗 . 𝑡𝑖𝑚𝑒𝑅𝑒𝑞

𝑁𝑖

𝑗=1

) 

Objective 2:  

Maximize 𝑅𝑢𝑡𝑖𝑙 _𝑠𝑢𝑚   = 

 

 (
 𝑡𝑖𝑗 . 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑅𝑒𝑞
𝑁𝑖
𝑗=1

𝑣𝑖

𝑚

𝑖=1
) 

 

 

Total Objective:  

Minimize f  =  

 

 
𝛾 × 𝑇𝑒𝑥𝑒𝑐 _𝑚𝑎𝑥 + 𝜀1

𝛿 × 𝑅𝑢𝑡𝑖𝑙 _𝑠𝑢𝑚 + 𝜀2
 

 

As it was also discussed in the previous sections, in a modern 

cloud computing environment (datacenter) the minimization 

of the total execution time of the tasks is not the only priority. 

The maximization of the utilisation of the VMs involved is 

also an equivalently important performance factor. In many 

cases the tasks are accompanied with specific time limits that 

have to be satisfied; these limits represent also the highest 

expected task execution time by the cloud VM infrastructure 

(i.e. faster execution times make no sense). In such 

environments, the maximization of the VMs utilisation may 

reliably lead to significant savings of VM resources 

(preserving in any case the execution time of the tasks in the 

desirable levels), which then could mean that more tasks/jobs 

may be admitted and executed in time by the same/entire VM 

infrastructure. Furthermore, through the specific fitness 

function an optimized approach is proposed, aiming at the 

maximum possible balance on the actual behavior of the two 

main factors discussed above. Note that γ,δ and ε1,ε2 are 

suitably selected constants (dependent and independent to the 

total tasks execution time / resource utilization, respectively). 

Moreover, the function value is normalized appropriately 

within [0,1] to optimize the result. The fitness function 

proposed here, does not only properly distribute the weight of 

both the basic factors referred above (resource utilization and 

execution time) in the overall calculation. It also gives the 

developer the capability to fix/repair (using γ,δ) adequately 

the non-unpredictable (as well as non-canonical) differences 

caused by the potentially different measure units. It also offers 

the convenience to incorporate (using ε1,ε2) in the 

optimization procedure other important factors / parameters 

too. Other types of fitness functions [31] could also be applied 

and evaluated, which is of high priority in future research.  

5. PERFORMANCE EVALUATION 
In the following, a set of extended simulation experiments is 

presented in details, performed to estimate the efficiency of 

the proposed GSA-based task scheduling algorithm in 

comparison to OLB [17], Min-Min [19], ESTA [27] and 

improved PSO [30]. The first two of the above algorithms 

(OLB, Min-Min) are typical representatives of early static task 

scheduling algorithms, whereas the rest (ESTA, PSO) are two 

of the more recent highly effective task scheduling algorithms 

based on modern techniques. The Cloudsim 4.0 simulator [31] 

has been used, deploying small to large scale random test 

inputs. Each VM has 1GHz CPU, 16-64GB memory and 1000 

Mbits/s bandwidth. To check the performance of the GSA-

based algorithm, experiments involving from 16 up to 1024 

VMs and from 1000 up to 50000 tasks were performed. 

5.1. Results for varying number of tasks 
In the first set of experiments, the influence of varying values 

in the number of tasks to fixed number of VMs is examined 

on total performance. More concretely, it‟s assumed there are 

16 VMs, and a varying number of tasks is deployed; 

specifically ranging from 1000 up to 50000 tasks. The main 

observations are as follows. 

As the number of tasks increases, makespan on the VMs also 

increases, as shown in Fig. 1. Moreover, as seen in Fig. 1, the 

proposed GSA-based scheduling approach performs better on 

makespan among all the considered competitors. Specifically, 

the average performance gain of GSA over ESTA, PSO, Min-

Min and OLB, is 5.1, 9.4, 6.8 and 31.3%, respectively. When 

there are more varying tasks at the same number of VMs, 

ESTA is very close to Min-Min, quite better than PSO and 

clearly better than OLB strategy; which has the worst 

performance on makespan, as it was expected due to the fact 

that it assigns the tasks to VMs without taking in account their 

expected execution time.  

Furthermore, in Fig. 2 the results of average utilisation of the 

system are shown for each case. Here again, the first 

observation is that, as it was normally expected, the average 

utilisation progressively increases (up to 97.3% for 50000 

tasks if the GSA algorithm is considered) as the number of 
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tasks increases. Moreover, the performance of the proposed 

GSA-based scheduling algorithm remains the best among all 

the considered heuristic strategies. More concretely, the 

average utilisation improvement of GSA over ESTA, PSO, 

Min-Min and OLB, is 4.7, 7.2, 10.7 and 43.5%, respectively. 

Also, when there are more varying tasks at same number of 

VMs, ESTA is very close to PSO, quite better than Min-Min 

and substantially better than OLB strategy.  

Note here that the improved PSO approach behaves better 

than Min-Min, since the maximization of the system resource 

utilisation is inherently one of its main objectives. On the 

contrary, the Min-Min algorithm behaves better on makespan; 

which has the main priority in its design objectives. 

 

Fig 1. Makespan for varying # of tasks 

 

Fig 2. Average utilisation for varying # of tasks 

5.2. Results for varying number of VMs 
In the second set of experiments, the influence of different 

values of the number of VMs to fixed number of tasks, is 

examined on total performance. More concretely, it‟s assumed 

there is a fixed number of 50000 tasks, whereas the number of 

VMs (in which the tasks will be deployed) varies from 16 to 

1024. The main observations are as follows. 

As the number of VMs increases, both the makespan and the 

average utilisation values decrease, as shown in Fig. 3-4. 

Moreover, as indicated in Fig. 3, the proposed GSA-based 

scheduling approach performs better on makespan among all 

the considered heuristic strategies. Specifically, the average 

performance gain of GSA over ESTA, PSO, Min-Min and 

OLB, is 3.5, 7.7, 5.1 and 27.3%, respectively. Additionally, 

when there are more VMs at the same number of tasks, ESTA 

is very close to Min-Min, quite better than PSO and clearly 

better than OLB strategy; which has the worst performance on 

makespan for the same reasons as it was explained above (in 

the context of the first experiment).  

Furthermore, in Fig. 4 the results of average utilisation of the 

system are shown for each case. Here again, the first 

observation is that, as it was normally expected, the average 

utilisation progressively decreases (down to approximately 

90% for 1024 VMs if the GSA algorithm is considered) as the 

number of VMs increases. Moreover, the performance of the 

proposed GSA-based scheduling algorithm remains the best 

among all the considered heuristic strategies. More concretely, 

the average utilisation improvement of GSA over ESTA, 

PSO, Min-Min and OLB, is 6.7, 9.2, 14.5 and 68.7%, 

respectively. Having also more varying VMs at the same 

number of tasks, ESTA is very close to PSO, quite better than 

Min-Min and substantially better than OLB strategy. Note 

here also (as it was observed for varying number of tasks too 

in the first experiment) that the improved PSO approach 

behaves better than Min-Min, since the maximization of the 

system resource utilisation is inherently one of its main 

objectives. 

 

Fig 3. Makespan for varying # of VMs 

 

 Fig 4. Average utilisation for varying # of VMs 

5.3 Comparing to Improved PSO 
As mentioned in the previous section, the comparison of the 

proposed GSA-based approach with the improved PSO 

approach [30] is the most fair and representative one, since the 

two algorithms not only have the same objectives, but also 

adopt exactly the same assumptions.  

Moreover, they both come from the same base area of the 

evolutionary optimization algorithms, i.e. they may be 

regarded as two competitive approaches from the same 

„family‟. In the above context, beyond the results shown in 

Fig. 1-4, the corresponding makespan and utilisation curves 

for only the GSA-based and improved PSO approaches are 

presented also in Fig. 5-8, for direct comparison.  
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As it can be easily observed in Fig. 5, the makespan achieved 

by the GSA-based approach is clearly better than the 

makespan of improved PSO scheme, especially for large 

number of tasks (i.e. in cases of 20000 and 50000 tasks). For 

smaller numbers of tasks the improved PSO algorithm 

behaves quite efficiently and achieves makespan values that 

are very close to the ones of the GSA-based algorithm.  

Moreover, in Fig. 6 the corresponding utilisation curves are 

presented. As shown in Fig. 6, as the number of tasks 

increases, the average resource utilization increases too for 

both approaches.  Furthermore, the relevant increase for the 

GSA-based approach is sharper and finally leads to a much 

better utilization value (0.97) for 50000 tasks. Here also again, 

the improved PSO algorithm behaves more efficiently for 

smaller numbers of tasks, leading to utilisation values quite 

close to the ones of the GSA-based algorithm. 

Additionally, in Fig. 7 the makespan curves are presented for 

varying number of VMs. As it can be easily observed here 

also, the makespan achieved by the GSA-based approach is 

clearly better than the makespan of the improved PSO 

scheme, especially for smaller number of VMs (i.e. in cases of 

16 and 64 VMs). Actually, the percentage difference between 

the two approaches is approximately the same for all the 

varying numbers of VMs; and just the absolute values 

difference is more visible in the case of smaller number of 

VMs.  

The above conclusion may also be drawn by observing Fig. 8, 

where the corresponding average utilisation curves are given. 

More concretely, as it can be seen in Fig. 8 the average 

resource utilization achieved by the GSA-based approach is 

clearly better than the one of the improved PSO approach, for 

all the numbers of available VMs. However, the improved 

PSO algorithm behaves quite efficiently too, and achieves 

very satisfactory utilisation values even for large number of 

VMs (0.85 for 1024 VMs vs. 0.91 achieved by GSA).  

 

Fig 5. Makespan curves for varying # of tasks 

 

Fig 6. Utilisation curves for varying # of tasks 

 

Fig 7. Makespan curves for varying # of VMs 

 

Fig 8. Utilisation curves for varying # of VMs 

6. CONCLUSION  
An efficient task scheduling scheme based on the 

Gravitational Search Algorithm (GSA) is presented and 

evaluated throughout the paper. The proposed method is a 

novel approach that exploits the effectiveness of a modern and 

quite efficient evolutionary optimization technique, to 

optimize the basic task scheduling procedure in cloud 

computing environments. It considers both the total tasks 

execution time and the system resource utilisation as the 

critical factors for optimization, and adapts adequately the 

relevant fitness function in order to obtain sufficiently 

accurate solutions even for large inputs. The experimental 

evaluation of the proposed scheme shows its high efficiency 

in terms of makespan and resource utilisation, as well as its 

superiority over other competitive approaches of the literature 

(like OLB, Min-Min, ESTA and improved PSO). The suitable 

adaptation and evaluation of alternative types of fitness 

functions is of high priority in future research. 
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