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ABSTRACT
In this paper comparison techniques are used to obtain sufficient
condition for stability of an invariant set. Here sufficient conditions
involving the stability of scalar differential equations and converse
theorems for a reversible dynamical system proved and Two con-
verse theorems for existence of a vector Lyapunov function in re-
versible dynamical system are proved.

Concept of conditional invariancy is introduced. Sufficient condi-
tion for stability of conditional invariant are proved. Here intro-
duced notion of conditional stability of a compact set.
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1. INTRODUCTION
In this paper the author considers a general dynamical system
(henceforth abbreviated as g.d.s.) in a locally compact seperable
metric space E as a two-parameter family of transformations F
(t, t0,.) of E into A(E), the set of all subsets of E and obtains
the existence of a V -function defined over [0,∞)XA(E), if re-
versibility is assumed. For this purpose the concepts of strict and
asymptotic stability of an invariant set with respect to a g.d.s. are
introduced and sufficient conditions in terms of V -function are ob-
tained. It is to be noted that, eventhough such a definition of a
V -function is most natural in view of the fact that a g.d.s. is de-
fined in E into A(B), in the literature (1,5,7,9,10) it is defined on
[0,∞)XE. Then a V -function in its natural setting is got.

In section (2), preliminaries are dealt with. Defining a g.d.s., con-
cepts of reversibility of a g.d.s., stability of an invariant set A with
respect to a g.d.s. and strict and asymptotic stability of sets with
respect to a g.d.s. are introduced, in terms of Hausdorff metric on
A(E). Certain classes of monotonic functions introduced by W.
Hahn (6) are recalled for future use.

In section (3), comparison techniques are used to obtain sufficient
conditions for stability of an invariant set A with respect to a g.d.s.
in terms of V -functions defined on [0,∞)XA(E).

Section (4), contains sufficient conditions, involving the stability of
scalar differential equations and the existence of a V -function, for
the stability of set A with respect to a g.d.s.

Section (5), present converse theorems (on the existence of V -
functions) for a reversible dynamical system.

In section (6), concept of conditional invariancy (8) of a set B with
respect to a set A in a g.d.s. and definitions of stability of a condi-
tionally invariant set B with respect to a set A are introduced. Suf-
ficient conditions for stability of conditional invariant set B with
respect to a set A in a g.d.s. in terms of V -functions are proved
and converse of some theorems in some form or the other for a re-
versible system are attempted and their relations to some theorems
of section (5) are traced.

Section (7), introduces to the notion of conditional stability (7) of
a compact set A with respect to a g.d.s. and a general comparison
technique involving a vector Lyapunov function and the notion of
quasi-monotonicity (which is developed in this section) is used to
prove the sufficiency condition for conditional stability of set A for
set M .

Section (8) contains two converse theorems for the existence of a
vector Lyapunov function in a reversible dynamical system.

2. PRELIMINARIES
General Dynamical System (GDS)

Let I denote the half-line: 0 ≤ t < ∞ and R+ = [0,∞). Let
E be a locally compact seperable metric space. Consider a two-
parameter family of transformations F (t, t0, p) of E into A(E),
the set of all subsets of E satisfying the following properties -

(i) For each p0 ∈ E and t0 ∈ I , there is defined a set F (t, t0, p0) ∈
A(E) for all t ≥ t0.

(ii) F (t0, t0, p0) = {p0} and

(iii) For any p1 ∈ F (t1, t0, p0), there is defined a set F (t, t1, p1)
such that

∪F (t, t1, p1) = F (t, t0, p0), for all t ≥ t1 ≥ t0, p1 ∈
F (t1, t0, p0)

For a fixed p0 ∈ E,F (t, t0, p0) is called a motion, while the set
defined in (i) above is called the trajectory of the motion.

Definition 2.1. The family of transformations F (t, t0, .) described
thro’ the properties (i), (ii) and (iii) above, is called a General Dy-
namical System (GDS) in E.

The metric in A(E): Let d(p, q) denote the metric in E, p, q ∈ E.
Let d(A,B) where A,B ∈ A(B) denote the Hausdorff distance
between two sets A and B.
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Then d(A,B) is defined by

d(A,B) = max{d∗(A,B), d∗(B,A)}
where d∗(A,B) = sup{d(a,B), a ∈ A}
and d(a,B) = inf{d(a, b), b ∈ B}

It is to be noted that in general d∗(A,B) ̸= d∗(B,A).

For any set A ∈ A(E), the neighbourhoods S(A,∈) and S̄(A,∈)
are defined by

S(A,∈) = {XA(E) : d(X,A) <∈}
S̄(A,∈) = {XA(E) : d(X,A) ≤∈},

respectively.

In what follows, we shall assume that the flow F (t, t0,X0),X0 ∈
A(E) is Hausdorff continuous in the triplet (t, t0,X0) where for
any X0 ∈ A(E), we denote

F (t, t0,X0) =
⋃

p0∈X0

F (t, t0,X0)

In these notations the properties (ii) and (iii) of a g.d.s. in E take
the following form: (ii)* F (t0, t0,X0) = X0, t0 ∈ I

(iii)* F (t, t1, F (t1, t0,X0)) = F (t, t0,X0) for all t ≥ t1 ≥ t0.

Definition 2.2. A G.D.S. in E in which X = F (t, t0,X0) iff
X0 = F (t0, t,X), for X0,X ∈ A(E) and t, t0 ∈ I , is called
a reversible dynamical system (r.d.s.).

Consequently,

F (t0, t1, F (t1, t0,X0)) = F (t0, t0,X0) = X0.

Thus for a r.d.s.

F (t0, t, F (t, t0,X0)) = X0 for all t ≥ t0.

In what follows X is compact in E.

Definition 2.3. A set X ∈ A(E) is called (Positively) invariant
with respect to a g.d.s in E if

F (t, t0,X) ⊂ X for all t ≥ t0.

Notation: Let C(D,R) denote the class of all continuous functions
f : D → R.

Monotonic functions (due to W.Hahn (6))

Definition 2.4.

(i) a(r) is said to belong to the class K (whence we write a ∈
K) if a ∈ C(I,R+), a(0) = 0 and a is strictly monotonic
increasing in r with lim

r→∞
a(r) = ∞.

(ii) a(t, r) is said to belong to the class K∗(i.e.a ∈ K∗) if a ∈
C(IXR+, R+) and a ∈ K for each t ∈ I .

(iii) b(s) is said to belong to the class L (i.e. b ∈ L) if
b ∈ C(I,R+), b is strictly monotonic decreasing in s and
lim
s→∞

b(s) = 0.

(iv) b(t, s) is said to belong to the class L∗ (i.e. b ∈ L∗) if b ∈
C(I X R+, R+) and b ∈ L for each t ∈ I .

The following results on monotonic functions will be useful in the
sequel:

(i) If a = a(r) ∈ K, then a−1 exists and a−1 ∈ K.

(ii) If a1 = a1(t, r) ∈ K∗, a2 = a2(t, r) ∈ K∗, then a3 =
a1(t, a2(t, r)) ∈ K∗.

(iii) If a ∈ K∗ and b ∈ K, the b−1a ∈ K∗.

(iv) If a ∈ K and b ∈ L, then a−1b ∈ L.

(v) If a ∈ K and b ∈ L∗, then a−1b ∈ L∗.

(vi) If a, b ∈ K, then ab ∈ K.

In the following, F (t, to,Xo) is assumed to be H− continuous in
the triplet (t, to,Xo) and the set A is compact in E.

Stability Definitions – 2.5: With respect to a g.d.s, the set A is
said to be

S1 : Equi-stable, if there exists a ∈ K∗ such that

d(F (t, To,Xo), A) ≤ a(to, d(Xo, A)) (2.1)

S2 : Equi-strict stable, if there exists a1, a2 ∈ K∗ such that

a1(to, d(Xo, A)) ≤ d(F (t, to,Xo), A) ≤ a2(tod(Xo, A))
(2.2)

S3 : Uniform stable, if there exists a ∈ K such that

d(F (t, to,Xo), A) ≤ a(d(Xo, A)) (2.3)

S4 : Uniform strict stable, if there exists a1, a2 ∈ K such that

a1(d(Xo, A)) ≤ d(F (t, to,Xo), A) ≤ a2(d(Xo, A)) (2.4)

S5 : Equi-asymptotic stable, if there exists a ∈ K∗ and b ∈ L∗

such that

d(F (t, to,Xo), A) ≤ a(to, d(Xo, A))b(to, t− to) (2.5)

S6 : Equi-strict asymptotic stable, if
there exists a1, a2 ∈ K∗ and
b1, b2 ∈ L∗ such that

a1(to, d(Ko, A))b1(to, t− to) ≤ d(F (t, to,Xo), A)

≤ a2(to, d(Xo, A))b2(to, t− to)
(2.6)

S7 : Uniform asymptotic stable, if there exists a ∈ K and b ∈ L
such that

d(F (t, to,Xo), A) ≤ a(d(Xo, A))b(t− to) (2.7)

S8 : Uniform strict asymptotic stable, if there exists a1, a2 ∈ K
and b1, b2 ∈ L such that

a1(d(Xo, A))b1(t− to) ≤ d(F (t, to,Xo), A)

≤ a2(d(Xo, A))b2(t− to) (2.8)

Note:

(1) It is assumed that the inequalities (2.1) to (2.8) hold for all
t ≥ to, to ∈ I and Xo ⊂ S(A, r) for some r > 0.

(2) (i) S3 implies S1 and S4 implies S2.
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(ii) S5 implies S1 and S7 implies S3.

However, strict stability which corresponds to stability in some
tube-like domain (9, 31) denies asymptotic stability.

3. COMPARISON THEOREMS
Theorem 3.1. Let V (t,X) ∈ C(I X A(E), R+) be an auxiliary
function (called a LYAPUNOV FUNCTION) and X = X(t) =
F (t, to,Xo) ∈ A(E) and Xo ∈ A(E).

Let

D+V (t,X) = lim
h→0+

sup

[
1

h
{V (t+ h,X(t+ h))− V (t,X)}

]
(3.1)

exist. Let r(t, t0, r0) be the maximal solution of the scalar differ-
ential equation –

r′ = g(t, r)(′= d/dt)

r(t0) = r0

}
(3.2)

and

D+V (t,X) ≤ g(t, V (t,X)) (3.3)

for all t ≥ t0, t0 ∈ I and g ∈ C(I X R+, R+).

Then

V (t0,X0) ≤ r0

implies V (t,X) ≤ r(t, t0, r0)

}
(3.4)

for all t ≥ t0.

The theorem asserts that the Lyapunov function V can be majorised
by the maximal solution of the scalar differential equation (3.2).

Corollary 3.1. If, in (3.2), g ≡ 0, then we get

V (t,X) ≤ V (t0,X0) (3.5)

Theorem 3.2. With the notation as in theorem (3.1), let V exist
and let

D−V (t,X) = lim
h→0+

inf

[
1

h

{
V (t+ h,X(t+ h))− V (t,X)

}]
(3.6)

Let u(t, t0, u0) be the minimal solution of the scalar differential
equation–

u′ = h(t, u)(′= d/dt)

u(t0) = u0

}
(3.7)

and

D−V (t,X) ≥ h(t, V (t,X)) (3.8)

for all t ≥ t0, t0 ∈ I and h ∈ C(I X R+, R+).

Then

V (t0,X0) ≥ u0

implies V (t,X) ≥ u(t, t0, u0)

}
(3.9)

for all t ≥ t0.

Corollary 3.2. If, in (3.7), h ≡ 0, then we get

V (t,X) ≥ V (t0,X0). (3.10)

Theorems on the stability of a set A with respect to a g.d.s.

Theorem 3.3. Let V (t,X) ∈ C(I X A(E), R+) exist such that

1. for all (t,X) ∈ IX A(E),

b(d(X,A)) ≤ V (t,X) ≤ a(t, d(X,A)) (3.11)

where a ∈ K∗ and b ∈ K, and

2. the inequality (3.3) hold with g ≡ 0.

Then the set A is equistable with respect to the g.d.s.

Proof. By (3.5) and due to (2)

V (t0,X0) ≥ V (t,X) = V (t, F (t, t0,X0)) ≥ b(F (t, t0,X0), A)

Hence by (3.11),

b(d(F (t, t0,X0), A)) ≤ V (t0,X0) ≤ a(t0, d(X0, A))

or d(F (t, t0,X0), A) ≤ b−1a(t0, d(X0, A))

= c(t0, d(X0, A))

where c = b−1a ∈ K∗, for all t ≥ t0.

Hence A is equistable with respect to the g.d.s. 2

Theorem 3.4. Let there exist functions

V1, V2 ∈ C(I X A(E), R+) for (t,X) ∈ I X A(E).

Further let V1 satisfy the hypotheses of theorem (3.3) while V2

satisfies–

(1)

b1(t, d(X,A)) ≤ V2(t,X) ≤ a1(d(S,A)) (3.12)

where a1 ∈ K and b1 ∈ K∗ and

(2) (3.8) hold with h ≡ 0 and V2 replacing V .

Then the set A is equi-strict stable with respect to a g.d.s.

Proof. As the conditions of theorems (3.1) and (3.2) hold with both
g and h identically vanishing, (3.5) and (3.10) with V replaced by
V1 and V2 respectively hold.

By (3.11),

V1(t0,X0) ≤ a(t0, d(X0, A))

and V1(t, F (t, t0,X0)) ≥ b(d(F (t, t0,X0), A))

so that

b(d(F (t, t0,X0), A)) ≤ V1(t, F (t, t0,X0))

≤ V1(t0,X0)

≤ a(t0, d(X0, A))

Thus

d(F (t, t0,X0), A) ≤ b−1a(t0, d(X0, A)) = c(t0, d(X0, A)) (i)

where c = b−1a ∈ K∗.

Again, by (3.12)

V2(t0,X0) ≥ b1(t0, d(X0, A))

and V2(t, F (t, t0,X0)) ≤ a1(d(F (t, t0,X0), A)).

But V2(t, F (t, t0,X0)) ≥ V2(t0,X0), because of hypothesis (2).
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Hence

a1(d(F (t, t0,X0), A)) ≥ V2(t, F (t, t0,X0))

≥ V2(t0,X0)

≥ b1(t0, d(X0, A))

or d(F (t, t0,X0), A) ≥ a−1
1 b1(t0, d(X0, A))

= c1(t0, d(X0, A)) (ii)

where c1 ∈ K∗. 2

Steps (i) and (ii) together imply equi–strict stability of A with re-
spect to g.d.s.

Theorem 3.5. Let the hypotheses of theorem (3.3) hold with

b(d(X,A)) ≤ V (t,X) ≤ a(d(X,A)) (3.13)

in place of (3.11), where a, b ∈ K. Then the set A is uniformly
stable with respect to the g.d.s.

Proof. The proof follows on the same lines as the proof of theorem
(3.3) except that a ∈ K. 2

Theorem 3.6. Let there exist functions V1, V2 ∈
C(IXA(E), R+) for all (t,X) ∈ IXA(E), and

bi(d(X,A)) ≤ Vi(t,X) ≤ ai(d(X,A)) (3.14)

ai, bi ∈ X , (i = 1, 2), Vi satisfying the conditions (3.3) with g ≡ 0
and (3.8) with ≡ 0 respectively.

Then A is uniformly strictly stable with respect to the g.d.s.

Proof. Similar to that for theorem (3.4). 2

4. SUFFICIENCY CONDITIONS FOR STABILITY
Results of asymptotic stability of sets can be obtained by using
comparison techniques. For this purpose, we state the following
definitions for the stability of solution and the properities of the
solution of the comparison equations (3.2) and (3.7) respectively.

Definition 4.1. The trivial solution of (3.2) is said to be

S∗
1: Equistable, if exists a function a ∈ K∗ such that

r(t, t0, r0) ≤ a(t0, r0) (4.1)

for all t ≥ t0, r(t, t0, r0) being any solution of (3.2) and the
inequality (4.1) holding for r0 ≤ p, p > 0.

S∗
3: Uniformly stable, if there exists a function a ∈ K such that

r(t, t0, r0) ≤ a(r0) (4.2)

for all t ≥ t0, r(t, t0, r0) being any solution of (3.2), the in-
equality (4.2) holding for r0 ≤ p, p > 0.

S∗
5: Equi-asymptotic stable, if there exist functions a ∈ K∗ and

b ∈ L∗ and a number p > 0 such that

r(t, t0, r0) ≤ a(t0, r0)b(t0, t− t0) (4.3)

for all t ≥ t0, r(t, t0, r0) being any solution of (3.2), the in-
equality (4.3) holding for r0 ≤ p.

S∗
7: Uniform asymptotic stable, if there exist functions a ∈ K

and b ∈ L and a number p > 0 such that

r(t, t0, r0) ≤ a(r0)b(t− t0) (4.4)

for all t ≥ t0, r(t, t0, r0) being any solution of (3.2), the in-
equality (4.4) holding for r0 ≤ p.

Note:

These definitions correspond to S1, S3, S5 and S7 of definitions
(2.5). To prove strict results we require the following properties of
the solution of the equation (3.7).

Properties 4.1.

S∗
2 : There exists a function a ∈ K∗ such that for any solution

u(t, t0, u0) of (3.7) with

u0 ≤ q, q > 0, u(t, t0, u0) ≥ a(t0, u0), for all t ≥ t0 (4.5)

S∗
4 : There exists a function a ∈ K such that for any solution

u(t, t0, u0) of (3.7) with

u0 ≤ q, q > 0, u(t, t0, u0) ≥ a(u0) for all t ≥ t0 (4.6)

S∗
6 : There exists a functions a ∈ K∗ and b ∈ L∗ such that for any

solution u(t, t0, u0) of (3.7) with

u0 ≤ q, q > 0, u(t, t0, u0) ≥ a(t0, u0), b(t0, t− t0) for all t ≥ t0
(4.7)

S∗
8 : There exists a functions a ∈ K and b ∈ L such that for any

solution u(t, t0, u0) of (3.7) with

u0 ≤ q, q > 0, u(t, t0, u0) ≥ a(u0)b(t− t0) for all t ≥ t0
(4.8)

Note: S∗
2, S∗

4, S∗
6 and S∗

8 do not reflect the properties corresponding
to S2, S4, S6 and S8 of definitions (2.5).

Theorem 4.1. Assume the existence of a function V ∈
C(IXA(E), R+) satisfying–

(1) the hypothesis (1) of theorem (3.3) and

(2) the inequality (3.3).

Then the equistability of the trivial solution of (3.2) implies the
equistability of the set A with respect to the g.d.s.

Proof. Given t0 ∈ I , since the trivial solution of (3.2) is equistable,
there exists a1 ∈ K∗ and a positive number p such that

r0 ≤ p (i)
implies r(t, t0, r0) ≤ a1(t0, r0) for all t ≥ t0 (ii)

a1 ∈ K∗, where r(t, t0, r0) is any solution of (3.2) through
(t0, r0).

Due to the properties of the function a in the inequality (3.11)

(viz., b(d(X,A)) ≤ V (t,X) ≤ a(t, d(X,A)), a ∈ K∗ and b ∈ K)

there exists a number p1 ≡ p1(t0, p) > 0 such
that d(X0, A) ≤ p1 and a(t0, d(X0, A)) ≤ p
(iii), hold simultaneously. Choosing V (t0,X0) ≤
a(t0, d(X0, A)) = r0 and letting d(X0, A) ≤ p1, step (iii)
above implies the verification of step (i) so that step (ii) holds.

The choice of r0 and the theorem (3.1) show that

V (t, F (t, t0,X0)) ≤ rmax(t, t0, r0)

≤ rmax(t, t0, a(t0, d(X0, A)))
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so that

b(d(F (t, t0,X0), A)) ≤ V (t, F (t, t0,X0))

≤ rmax(t, t0, a(t0, d(X0, A)))

≤ a1(t0, a(t0, d(X0, A)))

implying d(F (t, t0,X0), A) ≤ b−1a1(t0, a(t0, d(X0, A)))
putting a2 = b−1a1 ∈ K∗, d(F (t, t0,X0), A) ≤
a2(t0, a(t0, d(X0, A))) = a3(t0, d(X0, a)) where a3 ∈ K∗.

Hence A is equistable with respect to the g.d.s. 2

Theorem 4.2. Assuming the hypotheses of theorem (4.1) with
(3.13) replacing (3.11), the uniform stability of the trivial solution
of (3.2) implies the uniform stability of the set A with respect to the
g.d.s.

Proof. The trivial solution of (3.2) being uniformly stable, there
exists a1 ∈ K and a positive number p > 0 such that r0 ≤ p

(i) implies that r(t, t0, r0) ≤ a1(r0)

(ii) for all t ≥ t0, r(t, t0, r0) being any solution of (3.2) through
(t0, r0).

Due to the properties of function a in (3.13)

(viz., b(d(X,A)) ≤ V (t,X) ≤ a(d(X,A)), a, b ∈ K)

there exists a number p1 = p1(p) > 0 such that d(X0, A) ≤
p1 and a(d(X,A)) ≤ p (iii) hold simultaneously. Choosing
V (t0,X0) ≤ a(d(X0, A)) = r0 and letting d(X0.A) ≤ p1. (iii)
implies the verification of (i) so that (ii) holds.

The choice of r0 and the theorem (3.1) show that

V (t, F (t, t0,X0)) ≤ rmax(t, t0, r0)

≤ a1(a(d(X0, A))), so that
b(d(F (b, t0,X0), A)) ≤ V (t, F (t, t0,X0))

≤ a1(a(d(X0, A)))

= a2(d(X0, A)) where a2 = a1a ∈ K

implying d(F (t, t0,X0), A)b−1a2(d(X0, A)) = a3(d(X0, A))

where a3 = b−1a2K.

Hence A is uniformly stable with respect to the g.d.s. 2

Theorem 4.3. Assume that the conditions of theorem (4.1) are sat-
isfied. Also let there exist a function V2 ∈ C(IXA(E), R+) sat-
isfying the theorem (3.2) and the condition (3.12) of theorem (3.4).
Then S∗

1 (Equistability of the trivial solution of the equation (3.2))
together with S∗

2 imply the equistrict stability of the set A with re-
spect to the g.d.s.

Proof. As the conditions of theorem (4.1) hold with S∗
1, for

d(X0, A) ≤ p1, p1 > 0 implies the conclusion of the theorem
(4.1) that d(F (t, t0,X0), A) ≤ a3(t0, d(X0, A)) (i) for all t ≥ t0,
where a3 ∈ K∗. 2

As S∗
2 holds, there exists a number q > 0 such that for u0 ≤

q, u(t, t0, u0) ≥ a4(t0, u0) (ii) where a4 ∈ K∗ and t ≥
t0, u(t, t0, u0) being any solution of the equation (3.7). From
(3.12) and the properties of the function b1 ∈ K∗, there ex-
ists a number q1 = q1(t0, q) > 0 such that d(X0, A) ≤ q1

and b1(t0, d(X0, A)) ≤ q hold simultaneously. Define q2 =
min(p1, q1).

Then (i) above holds for all X0 such that d(X0, A) ≤ q2. Choose
u0 so that V2(t0,X0) ≥ b1(t0, d(X0, A)) = u0. Then from the
theorem (3.2)

V2(t, F (t, t0,X0)) ≥ umin(t, t0, u0)

= umin(t, to, b1(t0, d(X0, A))) (iii)

It follows from (3.12), (iii) and (ii) above, that

a1(d(F (t, t0,X0), A)) ≥ V2(t, F (t, t0,X0))

≥ a4(t0, b1(t0, d(X0, A)))

= a5(t0, d(X0, A)) (iv)

Therefore

d(F (t, t0,X0), A) ≥ a−1, a5(t0, d(X0, A)) = a6(t0, d(X0, A))
(v)

for all t ≥ t0, where a6 ∈ K∗.

(i) and (iv) together imply the equistrict stability of A with respect
to the g.d.s.

Theorem 4.4. Let the assumptions of theorems (4.2) and (4.3) hold
with the condition (3.12) replaced by

b3(d(X,A)) ≤ V2(t,X) ≤ a3(d(X,A)) (4.9)

where a3 and b3 ∈ K. Then S∗
3 (uniform stability of the trivial

solution of the equation (3.2)) together with S∗
4 imply the uniform

strict stability of the set A with respect to the g.d.s.

Proof. As the conditions of theorem (4.2) are valied with S∗
3, for

d(X0, A) ≤ p1, p1 > 0, the conclusion of theorem (4.2) is imme-
diate:

viz., d(F (t, t0,X0), A) ≤ a3(d(X0, A)) (i)

for all t ≤ t0, where a3 ∈ K.

As S∗
4 holds, there exists a number q > 0 such that for

u0 ≤ q, u(t, t0.u0) ≥ a4(t0, u0) (ii)

where a4 ∈ K and t ≥ t0, u(t, t0, u0) being any solution of
the equation (3.7). From (4.9) and the properties of b3K, there
exists a number q1 = q1(q) > 0 such that d(X0, A) ≤ q1 and
b3(d(X0, A)) ≤ q hold simultaneously.

Define q2 = min(p1, q1). Then (i) above holds for all X0 such that
d(X0, A) ≤ q2.

Then from theorem (3.2)

V2(t, F (t, t0,X0)) ≥ umin(t, t0, u0) = umin(t, t0, b3(d(X0, A)))
(iii)

It follows from (4.9), (iii) and (ii) above that

a3(d(F (t, t0,X0), A)) ≥ V2(t, F (t, t0,X0))

= a4(u0) = a4(b3(d(X0, A)))

= a5(d(X0, A)) (iv)

Therefore

d(F (t, t0,X0), A) ≥ a−1
3 a5(d(X0, A)) = a6(d(X0, A)) (v)

5
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for all t ≥ t0, where a6 ∈ K.

(i) and (v) together imply the uniform strict stability of the set A
with respect to the g.d.s. 2

Theorem 4.5. Let the assumptions of theorem (4.1) hold. Then the
equiasymptotic stability of the trivial solution of the equation (3.2)
implies the equiasymptotic stability of the set A with respect to the
g.d.s.

Proof. Let to ∈ I be given. As the trivial solution of the equation
(3.2) is equiasymptotically stable, there exist functions a1 ∈ K∗

and b1 ∈ L∗ and a number p > 0 such that

r0 ≤ p (i)
implies that r(t, t0, r0) ≤ a1(t0, r0)b1(t0, t− t0) (ii)

for all t ≤ t0, where r(t, t0, r0) is a solution of the equation
(3.2). As in the proofs of earlier theorems we can determine a
number p1 = p1(t0, p) > 0 such that d(X0, A) ≤ p1 and
a(t0, d(X0, A)) ≤ p hold simultaneously.

Let X0 be such that d(X0, A) ≤ p1 and choose

V (t0,X0) ≤ a(t0, d(X0, A)) = r0.

The choice of r0 verifies (i); thus (ii) holds. From theorem (3.1).
(ii) and the inequality (3.11) it follows

b(d(F (t, t0,X0), A)) ≤ V (t, F (t, t0,X0))

≤ r(t, t0, a(t0, d(X0, A)))

≤ a1(t0, a(t0, d(X0, A)))b1(t0, t− t0)

≤ a2(t0, d(X0, A))b1(t0, t− t0)

Hence

d(F (t, t0,X0), A) ≤ b−1(a2(t0, d(X0, A))b1(t0, t− t0)) (iii)

Now b1 ∈ L∗; hence b1(t0, t− t0) ≤ b1(t0, 0).

Then from (iii) above,

d(F (t, t0,X0), A) ≤ b−1(a2(t0, d(X0, A))b1(t0, 0))

≤ b−1a3(t0, d(X0, A))

≤ a4(t0, d(X0, A)) where a4 k∗ (iv)

Also from (iii) above and the fact d(X0, A) ≤ p1

d(F (t, t0,X0), A) ≤ b−1(a2(t0, p1)b1(t0, t− t0))

≤ b−1(b2(t0, t− t0))

≤ b3(t0, t− t0) where b3 ∈ L∗. (v)

Combining (iv) and (v)

d(F (t, t0,X0), A) ≤ [a4(t0, d(X0, A)b3(t0, t− t0))]
1/2

or d(F (t, t0,X0), A) ≤ a5(t0, d(X0, A)b4(t0, t− t0)) (vi)

where a5 ∈ K∗ and b4 ∈ L∗. This means that A is equiasymptoti-
cally stable with respect to the g.d.s. 2

Theorem 4.6. Let the assumptions of theorem (4.3) hold. Them S∗
5

(i.e., equi-asymptotic stability of the trivial solution of the equation
(3.2)) together with S∗

6 imply equistrict asymptotic stability of the
set A with respect to the g.d.s.

Proof. The assumptions of theorem (4.3) include those of theo-
rem (4.1). Thus the theorem (4.5) holds. Hence for d(X0, A) ≤
p1, p1 > 0, the conclusion (vi) of the previous theorem holds.

Since S∗
6 is given, there exists a number p2 > 0 such that

u0 ≤ p2 imples u(t, t0, u0) ≥ c(t0, u0)d(t0, t− t0) (i)

for all t ≥ t0, where c ∈ K∗ and d ∈ L∗, u(t, t0, u0) being a
solution of the equation (3.7).

As before from the inequality (3.12) and the properties of b1, we
determine a number p3 = p3(p2, t0) > 0 such that d(X0, A) ≤ p3
and b1(t0, d(X0, A)) ≤ p2 hold simultaneously.

Let p4 = min(p1, p3).

Thus for d(X0, A) ≤ p4, the conclusion (vi) of the previous theo-
rem (4.5) and the step (i) (in this theorem) are both satisfied.

Now choose u0 such that

V2(t0,X0) ≥ b1(t0, d(X0, A)) = u0.

Them from the inequality (3.12), theorem (3.2), (i) above and (vi)
of the previous theorem (4.5), it follows that

a1(d(F (t, t0,X0), A)) ≥ V2(t, F (t, t0,X0))

≥ u(t, t0, b1(t0, d(X0, A)))

≥ c(t0, b1(t0, d(X0, A)))d(t0, t− t0)

implying

d(F (t, t0,X0), A) ≥ a−1
1 [c(t0, b1(t0, d(X0, A)d(t0, t− t0)))]

≥ c1(t0, d(X0, A)d1(t0, t− t1)) (ii)

where c1 ∈ K∗ and d1 ∈ L∗.

The conclusion (vi) of the previous theorem (which has already
been seen to hold) and (ii) above, imply that the set A is equistrict
asymptotic stable with respect to the g.d.s. 2

Theorem 4.7. Let the assumptions of theorem (4.2) hold. Then the
uniform asymptotic stability of the trivial solution of the equation
(3.2) implies the uniform asymptotic stability of the set A with re-
spect to the g.d.s.

Proof. The trivial solution of the equation (3.2) is uniform asymp-
totic stable. Therefore, there exists a number p > 0 such that

r0 ≤ p (i)
implies r(t, t0, r0) ≤ a1(r0)b1(t− t0) (ii)

where a1 ∈ K and b1 ∈ L, for all t ≥ t0, r(t, t0, r0) being a
solution of the equation (3.2).

As in the proofs of earlier theorems (See theorem (4.5)) we can
determine p1 = p1(p) > 0 such that d(X0, A) ≤ p1 and
a(d(X0, A)) ≤ p, a ∈ K hold simultaneously.

Let X0 be such that d(X0, A)p1 and choose r0 such that
V (t0,X0) ≤ a(d(X0, A)) = r0. The choice of r0 verifies (i) from
which (ii) is implied. From theorem (3.1), (ii) above and the in-
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equality (3.15) it follows that

b(d(F (t, t0, X0), A)) ≤ V (t, F (t, t0, X0))

≤ r(t, t0, r0)

≤ r(t, t0, a(d(X0, A)))

≤ a1(ad(X0, A))b1(t− t0)

≤ a2(d(X0, A)b1(t− t0)),

where a2 = a1a ∈ K.

Therefore,

d(F (t, t0,X0), A) ≤ b−1(a2(d(X0, A))b1(t− t0)) (iii)

≤ b−1(a2(d(X0, A)b1(0)))

since b1(t− t0) ≤ b1(0), so that

d(F (t, t0,X0), A) ≤ a3(d(X0, A)), a3 ∈ K (iv)

Also from (iii) above, and d(X0, A) ≤ p1, a2 ∈ K,

d(F (t, t0,X0), A) ≤ b−1(a2(p1)b1(t− t0)) = b−1(b2(t− t0))

≤ b3(t− t0) where b3 = b−1b2 ∈ L. (v)

(iv) and (v) together imply

d(F (t, t0,X0), A) ≤ [a3(d(X0, A))b3(t− t0)]
1/2

≤ a4(d(X0, A))b4(t− t0) (vi)

where a4 ∈ K and b4 ∈ L. 2

Thus the set A is uniform asymptotic stable with respect to the
g.d.s.

Theorem 4.8. Let the assumptions of theorem (4.4) hold. Then S∗
7

(the uniform asymptotic stability of the trivial solution of the equa-
tion (3.2)) together with S∗

8 implies the uniform strict asymptotic
stability of the set A with respect to the g.d.s.

Proof. The assumptions of the theorem (4.4) include those of theo-
rems (4.2) and (4.3) with the inequality (4.9) (viz., b3(d(X,A)) ≤
V2(t,X) ≤ a3(d(X,A))) replacing (3.12). Theorem (4.7) holds.

Hence, for d(X0, A) ≤ p1, the conclusion (vi) of the previous the-
orem (4.7) holds.

Because of S∗
8, for any solution u(t, t0, u0) of the equation (3.7),

there exists p2 > 0 such that u0 ≤ p2 implies

u(t, t0, u0) ≥ a(u0)b(t− t0), for all t ≥ t0, (i)

where a ∈ K and b ∈ L.

From (4.9) and the properties of b3, we define p3 = p3(p2) > 0
such that d(X0, A) ≤ p3 and b3(d(X0, A)) ≤ p2 hold simultane-
ously.

Let p4 = min(p1, p3). Thus d(X0, A) ≤ p4, (4.9) and (i) above
are satisfied.

Now choose u0 such that V2(t0,X0) ≥ b3(d(X0, A)) = u0. Then
from theorem (3.2), (i) above and the inequality (4.9).

a3(d(F (t, t0,X0), A)) ≥ V2(t, F (t, t0,X0))

≥ u(t, t0, b3(d(X0, A)))

≥ a(b3(d(X0, A))b(t− t0))

≥ a1(d(X0, A)b(t− t0)), a1 ∈ K.

Therefore

d(F (t, t0,X0), A) ≥ a−1
3 (a1(d(X0, A)b(t− t0))) (ii)

The conclusion (vi) of the previous theorem (4.7) together with (ii)
above implies the uniform strict asymptotic stability of the set A
with respect to the g.d.s. 2

5. CONVERSE THEOREMS(ON THE EXISTENCE
OF LYAPUNOV FUNCTIONS IN A REVERSIBLE
DYNAMICAL SYSTEM)

From the definition (2.2) it follows that a g.d.s. in which X =
F (t, t0,X0) iff X0 = F (t0, t,X) is called a Reversible Dynami-
cal System in E, which we henceforth denote by r.d.s.

In theorems that follow, the converse theorems in which the exis-
tence of V−function is sought are proved in r.d.s.

Theorem 5.1. If a set A is equistrict stable with respect to a r.d.s. in
E, then there exists a V−function satisfying all the assumptions of
theorem (3.4) (i.e., the V−function satisfies (1) and (2) of theorem
(3.3) as well as the inequality (3.12) in which V2 is replaced by V ).

Proof. Let us define V (t,X) = d(F (t0, t,X), A), t0 ∈ I . V ∈
C(IXA(E), R+) follows from the continuity of the flow F . By
the reversibility condition we have X = F (t, t0, F (t0, t,X)).

Equivalently X = F (t, t0,X0) iff X0 = F (t0, t,X).

By the equistrict stability of the set A with respect to the r.d.s., there
exist a1, a2 ∈ K∗, satisfying

a1(t0, d(X0,A)) ≤ d(F (t, t0,X0),A) ≤ a2(t0, d(X0,A))

i.e., a1(t0, d(F (t0, t,X),A)) ≤ d(F (t, t0,F (t0, t,X)),A)

≤ a2(t0, d(F (t0, t,X),A)) (i)

With what we have defined as V ,

a1(t0, V (t,X)) ≤ d(X,A) ≤ a2(t0, V (t,X))

Equivalently,

a1(t0, d(X0, A)) ≤ d(X,A) ≤ a2(t0, d(X0, A))

implying d(X0, A) ≤ a−1
1 (t0, d(X,A))

and d(X0, A) ≤ a−1
2 (t0, d(X,A))

or a−1
2 (t0, d(X,A)) ≤ d(X0, A) ≤ a−1

1 (t0, d(X,A)).

The inequality (3.12) is thus verified, since a−1
1 , a−1

2 ∈ K∗.

Now for h > 0,

V (t+h, F (t+h, t0,X0)) = d(F (t0, t+h, F (t+h, to,X0)), A)

= d(X0, A)

so that

V (t+ h, F (t+ h, t0,X0))− V (t, F (t, t0,X0)) = 0

Thus

D+V (t,X) = 0

and D−V (T,X) = 0

}
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which verifies the inequalities (3.3) and (3.8) with the functions of
g and h identically vanishing. 2

Theorem 5.2. If the set A is uniform strict stable for the r.d.s. in
E, then there exists a V−function satisfying the assumptions of
theorem (3.6).

Proof. Define V (t,X) = d(F (O,T,X), A). Equivalently,
V (t,X) = d(X0, A). Clearly V ∈ d(IXA(E), R+).

a1(d(X0, A)) ≤ d(F (t, O,X0), A) ≤ a2(d(X0, A))

or a1(V (t,X)) ≤ d(X,A) ≤ a2(V (t,X)),

since X = F (t, O,X0).

This implies

a−1
2 (d(X,A)) ≤ V (t,X) ≤ a−1

1 (d(X,A)),

where a−1
1 , a−1

2 ∈ K.

Thus (3.14) of theorem (3.6) is verified.

Now for h > 0,

V (t+ h, F (t+ h,O,X0)) = d(F (O, t+ h,X), A)

= d(F (O, t+ h, F (t+ h,O,X0)), A)

= d(X0, A).

Also V (t, F (t, O,X0)) = d(X0, A).

Hence D+V (t,X) = 0 = D−V (t,X), which satisfy (3.3) and
(3.8), with the functions g and h identically vanishing. i.e., V
satisfies (3.5) and (3.10) simultaneously. 2

Theorem 5.3. Assume that –

(1) the set A is uniformly strict stable, so that for some p > 0,
d(X0, A) ≤ p implies

a1(d(X0, A)) ≤ d(F (t, O,X0), A) ≤ a2(d(X0, A)) (5.1)

where a1, a2 ∈ K.

(2) Let g ∈ C(IXR+, R+), g(t, O) = 0 and that the trivial so-
lution of r′ = g(t, r) is uniformly strictly stable, so that for
u0 ≤ p, p > 0

b1(u0) ≤ u(t, O, u0) ≤ b2(u0) (5.2)

where b1, b2 ∈ K and u(t, O, u0) is any solution of

r′ = g(t, γ) with u(O) = u0 (5.3)

Then there exists a function V = V (t,X) such that

(i) V = V (t,X) ∈ C(I X S(A, δ), R+)

(ii) b(d(X,A)) ≤ V (t,X) ≤ a(d(X,A)) for (t,X) ∈
I X S(A, δ) and a, b ∈ K.

(iii) D+V (t,X) = D−V (t,X) = g(t, V (t,X)), for all t ≥ t0,
for which X S(A, δ).

Proof. Due to the reversibility of the system

X0 = F (O, t,X) iff X = F (t, O,X0).

Choose any function µ ∈ C(S(A, δ), R+) such that

c1(d(X,A)) ≤ µ(X) ≤ c2(d(X,A)) (5.4)

where c1, c2 ∈ K.

Define

V (t,X) = u(t, O, µ(F (O, t,X))) (5.5)

where u(t, 0, u0) is a solution of the eq.(5.4)

Due to the continuity of µ1, (i) follows.

Also for (t,X) ∈ I X S(A, δ), we have

V (t,X) = u(t, O, µ(F (O, t,X)))

≤ b2(µ(F (O, t,X)))

≤ b2c2(d(F (O, t,X), A)) = b2c2d(X0, A)

and d(X0, A) ≤ a−1
1 d(F (t, O,X0), A) = a−1

1 (d(X,A))

Hence

V (t,X) ≤ b2c2a
−1
1 (d(X,A)) = a(d(X,A)),

where a = b2c2a
−1
1 ∈ K.

Again,

V (t,X) = u(t,O, µ(F (O, t,X)))

≥ b1µ(F (O, t,X))

≥ b1c1d(F (O, t,X), A)

≥ b1c1a
−1
2 d(X,A) = b(d(X,A)) where b = b1c1a

−1
2 ∈ K.

Thus, b(d(X,A)) ≤ V (t,X) ≤ a(d(X,A)), which proves (ii).

Finally, so long as F (t, t0,X0) ∈ S(A, δ), we have

V (t, F (t, t0,X0)) = u(t, O, µ(F (O, t, F (t, t0,X0))))

Hence

V (t+ h,F (t+ h, t0,X0)) = u(t+ h,O,µ(F (O,t+ h,F (t+ h, t0,X0))))

= u(t+ h,O,µ(F (O,t,F (t, t0,X0))))

Consequently,

D+V (t,F (t, t0,X0)) = D−V (t,F (t, t0,X0))

= lim
h→0

[ 1

h

{
u(t+h,O,µ(F (O,t,F (t, t0,X0)))

−u(t,O,µ(F (O,t,F (t, t0,X0))))
}]

= u′(t,O,µ(O,t,F (t, t0,X0)))

= g(t,V (t,F (t, t0,X0)))

due to the differentiability of u. Thus (iii) is proved. This estab-
lishes the throrem showing the existence of a V−function in place
of V1, V2 of theorem (4.4). 2

Theorem 5.4. Suppose that

(1) The set A is strict uniform asymptotic stable with respect to the
r.d.s. on E. i.e., for all t ∈ I and X0 ∈ S(A, δ),

a1(d(X0, A))b1(t) ≤ d(F (t,O,X0), A) ≤ a2(d(X0, A))b2(t)

(5.6)
where ai ∈ K and bi ∈ L, i = (1, 2).

(2) g ∈ C(I X R+, R+), g(t, O) = 0 ensures the existence,
uniqueness and continuous dependance of solutions of r′ =
g(t, r) on initial conditions and the trivial solution of the equa-
tion is strict uniform asymptotic stable. i.e., there exists func-
tions a3, a4 ∈ K and b3, b4 ∈ L such that

a3(u0)b3(t) ≤ u(t, O, u0) ≤ a4(u0)b4(t) (5.7)

8
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for all t ∈ I , u(t, O, u0) being a solution of r′ = g(t, r)
through (O,u0).

(3) a3 is differentiable and a′
3(r) ≤ λ > 0 for all r ∈ R+.

(4) b3(t) = λ1b2(t), λ1 > 0 for all t ∈ I .

Then there exists a V−function satisfying–

(i) V = V (t,X) ∈ c(I X S(A, δ1), R+), δ1 = a1( )b1(O)

(ii) for (t,X) ∈ I X S(A, δ1)

b(d(X,A)) ≤ V (t,X) ≤ a(t, d(X,A)), for all t ∈ I
(5.8)

where a ∈ K∗ and b ∈ L are defined on [O, δ1]

(iii) D+V (t,X) = D−V (t,X) = g(t, V (t,X)) for all t ≥ t0
for which X = F (t, t0,X0) ∈ S(A, δ1).

Proof. Let X ∈ S(A, δ1) and X0 = F (O, t,X) so that X =
F (t, O,X0), by the reversibility condition.

By (5.6), X0 ∈ S(A, δ) implies X ∈ S(A, δ1).

Choose any function µ ∈ c(S(A, δ1), R+) such that

a2(d(X,A)) ≤ µ(X) ≤ a5(d(X,A)) (i)

where a2 is defined in (5.6) and a5 ∈ k

Define the Lyapunov function by

V (t,X) = u(t, O, µ(F (O, t,X))) (ii)

As in theorem (5.3) V satisfies (i) and (iii) of the conclusions of the
theorem and to complete the proof of the theorem the verification
of (ii) alone is required.

F (O, t,X) = X0. Hence from (5.6)

a1(d(X0, A))b1(t) ≤ d(X,A) ≤ a2(d(X0, A))b2(t),

so that

a−1
2

(
d(X,A)

b2(t)

)
≤ d(X0, A) ≤ a−1

1

(
d(X,A)

b1(t)

)
(iii)

Using (5.7), step (i) and step (iii) together with the assumptions (3)
and (4) we have, since V (t,X) = u(t, O(F (O, t,X))), by (ii)

V (t,X) ≥ a3(µ(F (O, t,X)))b3(t)

≥ a3(a2(d(F (O, t,X),A)))b3(t)

≥ a3(a2(d(X0,A)))b3(t)

≥ a3

(
a2a

−1
2

(
d(X,A)

b2(t)

))
b3(t)

= a3

(
d(X,A)

b2(t)

)
b3(t) = λ1a3(d(X,A)) = b(d(X,A))

Thus V (t,X) ≥ b(d(X,A)) when b ∈ K.

Similarly

V (t,X) = u(t, O, µ(F (O, t,X)))

≤ a4(µ(F (O,T,X)))b4(t)

≤ a4

(
a5a

−1
1

(
d(X,A)

b1(t)

))
b4(t)

≤ a(t, d(X,A)) where a ∈ K∗.

Thus the conclusion (ii) is verified. 2

Remarks:

(1) While proving the sufficiency criteria in theorems (3.4), (3.6)
and (4.4), two V−functions were used, because of the nature
of inequalities (3.4) and (3.9). However, in theorems of this
section (i.e., theorems (5.1) through (5.4)), a stronger result, in
the form of a single Lyapunov function satisfying both condi-
tions satisfied by individual functions of theorems (3.4), (3.6)
and (4.4) is proved.

(2) Theorems (5.1), (5.2) and (5.3) are converse theorems for a
r.d.s. on E wherein, the existance of a single Lyapunov func-
tion is established. But, theorem (5.4) is not a converse of theo-
rem (4.6) or theorem (4.8), for, assuming uniform strict asymp-
totic stability for the set A, we have got a Lyapunov function
that yields only equi-strict-asymptotic stability. Thus a weaker
result is obtained.

6. CONDITIONAL INVARIANCY OF SET B WITH
RESPECT TO SET A FOR A G.D.S. IN E

Definition 6.1. A set B is said to be conditionally invariant with
respect to the set A for a g.d.s. in E, if F (t, t0, A) ⊂ B for all
t ≥ t0.

Note: 1. If B is conditionally invariant with respect to A for a g.d.s.
in E and B ⊂ C, then C is also conditionally invariant with respect
to A. i.e., any super set to B is also conditionally invariant with
respect to A. This is evident since F (t, t0, A) ⊂ B and B ⊂ C
implies F (t, t0, A) ⊂ C.

Note: 2. An invariant set A for a g.d.s. in E is self invariant. (i.e.,
F (t, t0, A) ⊂ A for all t ≥ t0). If A is self invariant, then A is
conditionally invariant with respect to any subset of A.

In the following, B is conditionally invariant with respect to A for
the g.d.s. in E.

Definition 6.2. With respect to A, for the g.d.s. in E, B is said to
be

(1) Equistable, if

d(F (t, t0,X0), B) ≤ a(t0, d(X0, A)) (6.1)

for all t ≥ t0, where a ∈ K∗.

(2) Equistrict stable, if

a1(t0, d(X0, B)) ≤ d(F (t, t0,X0), B) ≤ a2(t0, d(X0, A))
(6.2)

where a1, a2 ∈ K∗, for all t ≥ t0.

(3) Uniform stable, if

d(F (t, t0,X0), B) ≤ a(d(X0, A)) (6.3)

where a ∈ K, for all t ≥ t0.

(4) Uniform strict stable, if

a1(d(X0, B)) ≤ d(F (t, t0,X0), B) ≤ a2(d(X0, A)), (6.4)

where a1, a2 ∈ K, for all t ≥ t0.

(5) Equiasymptotic stable, if

d(F (t, t0,X0), B) ≤ a(t0, d(X0, A))b(t0, t− t0), (6.5)

where a ∈ K∗ and b ∈ L∗, for all t ≥ t0.

9



International Journal of Computer Applications (0975 - 8887)
Volume 184 - No.44, January 2023

(6) Uniform asymptotic stable, if

d(F (t, t0,X0), B) ≤ a(d(X0, B))b(t− t0), (6.6)

where a ∈ K and b ∈ L, for all t ≥ t0.

(7) Equistrict asymptotic stable, if

a1(t0, d(X0, B))b1(t0, t− t0) ≤ d(F (t, t0, x0), B)

≤ a2(t0, d(X0, A))b2(t0, t− t0)
(6.7)

where a1, a2 ∈ K∗ and b1, b2 ∈ L∗, for all t ≥ t0.

(8) Uniform strict asymptotic stable, if

a1(d(X0, B))b1(t− t0) ≤ d(F (t, t0,X0), B)

≤ a2(d(X0, A)b2(t− t0)), (6.8)

where a1, a2 ∈ K and b1, b2 ∈ L, for all t ≥ t0.

Remark:

In the above definitions, we use d∗, where d∗(A,B) =
sup{d(a,B), a ∈ A}, d(a,B) = inf{d(a, b), b ∈ B}
instead of the Hausdorff distance d defined as d(A,B) =
max{d∗(A,B), d∗(B,A)}. In order to see the reason for this, let
us suppose, that the Hausdorff distance d is used in the definition
of, say, equistability of B with respect to A.

Then X0 = A implies d(F (t, t0, A), B) = 0, since a ∈ K∗ and
d(X0, A) = 0. In particular at t = t0, this means d(A,B) =
0 implying A = B. Thus the equistability condition (6.1) with
Hausdorff distance d implies equality of sets A and B.

Moreover the definition for conditional invariancy is in terms of
‘subset of’ relation. However, in the Hausdorff distance, there is no
way of inferring subset relation between the two sets. On the other
hand d∗(A,B) = 0 implies A ⊂ B.

We shall henceforth abbreviate Conditionally Invariant Set B‘ by
‘C.I. set B’

Theorem 6.1. Let the assumptions of theorem (3.3) be satisfied
except that (3.11) is replaced by

b(d∗(X,B)) ≤ V (t,X) ≤ a(t, d∗(X,A)), for all t ≥ t0 (6.9)

where a ∈ K∗, b ∈ K and d∗ is the distance as explained in the
remark above. Then the C.I. set B is equistable with respect to A
for the g.d.s. in E.

Proof. Due to the condition (2) of theorem (3.3)
V (t, F (t, t0,X0)) ≤ V (t0,X0). From (6.9)

b(d∗(F (t, t0,X0), B)) ≤ V (t, F (t, t0,X0))

≤ V (t0,X0) ≤ a(t0, d
∗(X0, A))

implying

d∗(F (t, t0,X0), B) ≤ b−1a(t0, d
∗(X0, B))

= c(t0, d
∗(X0, B)) where c = b−1a ∈ K∗.

Hence the equistability of the C.I. set B with respect to A for the
g.d.s. in E. 2

Theorem 6.2. Let the assumptions of theorem (3.4) hold except
that the conditions (3.11) and (3.12) are replaced by

b1(d
∗(X,B)) ≤ V1(t,X ≤ a1(t, d

∗(X,A))) (6.10)
and b2(t, d

∗(X,B)) ≤ V2(t,X) ≤ a2(d
∗(X,B)) (6.11)

for all t ≥ t0, where b1, a2 ∈ K and a1, b2 ∈ K∗, d∗ being as
explained under the remark. Then the C.I.set B is equistrict stable
with respect to A for the g.d.s. in E.

Proof. As in theorems (3.3) and (3.4)

b1(d
∗(F (t, t0,X0), B)) ≤ V1(t, F (t, t0,X0))

≤ V1(t0,X0)

≤ a1(t0, d
∗(X0, A))

so that

d∗(F (t, t0,X0), B) ≤ b−1
1 a1(t0, d

∗(X0, A)) (i)

Again

b2(t0, d
∗(X0, B)) ≤ V2(t0,X0)

≤ V2(t, F (t, t0,X0))

≤ a2(d
∗(F (t, t0,X0), B))

so that

a−1
2 b2(t0, d

∗(X0, B)) ≤ d∗(F (t, t0, x0), B) (ii)

putting a−1
2 b2 = c2 and b−1

1 a1 = c1 where c1, c2 ∈ K∗, we get
from (i) and (ii) above

c2(t0, d
∗(X0, B)) ≤ d∗(F (t, t0,X0), B) ≤ c1(t0, d

∗(X0, A))

which means the equistrict stability of the C.I.set B with respect to
A for the g.d.s. in E. 2

Theorem 6.3. Let the assumptions of theorem (6.1) be satisfied
except that (6.9) is replaced by

b(d∗(X,B)) ≤ V (t,X) ≤ a(d∗(X,A)) (6.12)

for all t ≥ t0, where a, b ∈ K. Then the C.I.set B is uniform stable
with respect to A, for the g.d.s. in E.

Proof. By the assumptions, as in theorem (6.1)

b(d∗(F (t, t0,X0), B)) ≤ V (t, F (t, t0,X0))

≤ V (t0,X0)

≤ a(d∗(X0, A))

implying

d∗(F (t, t0,X0), B) ≤ b−1a(d∗(X0, A)) = c(d∗(X0, A))

where c ∈ K. Hence the uniform stability of the C.I.set B with
respect to A for the g.d.s. in E. 2

Theorem 6.4. Let the assumptions of theorem (6.2) be satisfied
with the conditions (6.10) and (6.11) replaced by

b1(d
∗(X,B)) ≤ V1(t,X) ≤ a1(d

∗(X,A)) (6.13)
and b2(d

∗(X,B)) ≤ V2(t,X) ≤ a2(d
∗(X,B)) (6.14)

for all t ≥ t0, where a1, b1 ∈ K, (i = 1, 2). Then the C.I.set B is
uniform strict stable with respect to A for the g.d.s. in E.
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Proof. As in the proof of the theorem (6.2),

V1(t, F (t, t0,X0)) ≤ V1(t0,X0) (i)
and V2(t, F (t, t0,X0)) ≤ V2(t0,X0) (ii)

for all t ≥ t0. Consequently, by (6.15) and (i) above

b1(d
∗(F (t, t0,X0), B)) ≤ V1(t, F (t, t0,X0))

≤ V1(t0,X0) ≤ a1(d
∗(X0, A))

implying d∗(F (t, t0,X0), B) ≤ b−1
1 a1(d

∗(X0, A)) (iii)

Likewise, by (6.16) and (ii) above

a2(d
∗(F (t, t0,X0), B)) ≥ V2(t, F (t, t0,X0))

≥ V2(t0,X0)

≥ b2(d
∗(X0, B))

implying d∗(F (t, t0,X0), B) ≥ a−1
2 b2(d

∗(x0, B)) (iv)

Putting b−1
1 a1 = c1 ∈ K and a−1

2 b2 = c2 ∈ K in (iii) and (iv)
above respectively

c2(d
∗(X0, B)) ≤ d∗(F (t, t0,X0), B) ≤ c1(d

∗(X0, A)).

Thus, the C.I. set B is uniform strict stable with respect to A for
the g.d.s. in E. 2

Theorem 6.5. Let the assumptions (1) and (2) of theorem (4.1)
hold except that the inequalilty of (1) is replaced by (6.9) of theorem
(6.1).

Then (i) equistability of the trivial solution of the equation (3.2)
implies the equistability of the C.I. set B with respect to A and (ii)
equi-asymptotic stability of the trivial solution of the equation (3.2)
implies the equi-asymptotic stability of the C.I. set B with respect
to A, for the g.d.s. in E.

Proof.

(i) The proof is the same as in theorem (4.1) except that
d∗ replaces d. Moreover the conditional invariancy of the
set B with respect to A implies d∗(F (t, t0,X0), B) ≤
d∗(F (t, t0,X0), A). This consideration leads to the required
conclusion.

(ii) The proof of this part is the same as in theorem (4.5) where
d∗ replaces d.

Note: d∗ ≤ d. 2

Theorem 6.6. Assume the conditions (1) and (2) of theorem (4.1)
with the inequality of (1) replaced by (6.12). Then (i) uniform sta-
bility of the trivial solution of the equation (3.2) implies the uniform
stability of the C.I. set B with respect to A and (ii) uniform asymp-
totic stability of the trivial solution of the equation (6.2) implies the
uniform asymptotic stability of the C.I. set B with respect to A for
the g.d.s. in E.

Proof.

(i) The proof of uniform stability of the C.I. set B with respect to
A is parallel to that given in theorem (4.2) with d∗ in place of
d. Further the conditional invariance of the set B with respect
to A implies d∗(F (t, T0,X0), B) ≤ d∗(F (t, t0,X0), A).
These considerations lead to the required conclusion.

(ii) The proof of uniform asymptotic stability of the C.I. set B
with respect to A runs parallel to that of theorem (4.7) with
d∗ in place of d.

2

Theorem 6.7. Let the assumptions of theorem (4.3) hold except
that (3.11) and (3.12) are replaced by (6.10) and (6.11) of theorem
(6.2) respectively. Then (i) S∗

1 and S∗
2 imply equistrict stability and

(ii) S∗
5 and S∗

6 imply equistrict asymptotic stability of the C.I. set B
with respect to A for the g.d.s. in E.

Proof. In view of the assumptions of theorem (4.3), the condition
(6.10) and S∗

1, which means the equistability of the C.I. set B with
respect to A is implied by the theorem (6.5) – (i).

Again, since S∗
5 means equiasymptotic stability of the trivial solu-

tion of the equation (3.2), equiasymptotic stability of the C.I. set B
with respect to A is implied by the theorem (6.5) – (ii)

We now prove the ‘STRICT’ results –

(1) By the equistability of the C.I. set B with respect to A we have

d∗(F (t, t0,X0), B) ≤ c1(t0, d
∗(X0, A)) (i)

for all t ≥ t0, where c ∈ K∗.

By S∗
2 there exists p > 0, such that u0 ≤ p, u(t, t0, u0) ≥

c3(t0, u0), c3 ∈ K∗ and t ≥ t0 for any solution u(t, t0, u0) of
the equation (3.7).

By the property of b2 in (6.11)

viz: b2(t, d∗(X,B)) ≤ V2(t,X) ≤ a2(d
∗(x,B))

there exists p1 = p1(t0, p) > 0 such that d∗(X0, B) ≤ p1 and
b2(t, d

∗(X0, B)) ≤ p hold simultaneously.

Let q = min(p1, p). Then (6.11) holds for all X0

such that d(X0, B) ≤ q. Choose u0 so that V2(t0,X0)
b2(t0, d

∗(X0, B)) = u0. As all the conditions of theorem (3.2)
are satisfied

V2(t, F (t, t0,X0)) ≥ u(t, t0,X0) = u(t, t0, b2(t0, d
∗(X0, B)))

≥ c3(t0, b2(t0, d
∗(X0, B)))

≥ c4(t0, d
∗(X0, B))

But

a2(d
∗(F (t, t0,X0), B)) ≥ V2(t, F (t, t0,X0)),

so that a2(d
∗(F (t, t0,X0), B)) ≥ c4(t0, d

∗(X0, B))

or d∗(F (t, t0,X0), B) ≥ a−1
2 c4(t0, d

∗(X0, B))

i.e., d∗(F (t, t0,X0), B) ≥ c2(t0, d
∗(X0, B))

(ii)

where c2 = a−1
2 c4 ∈ K∗, for all t ≥ t0.

The steps (i) and (ii) above imply equistrict stability of the C.I.
set B, with respect to A for the g.d.s. in E.

(2) Because of equiasymptotic stability of the C.I. set B with re-
spect to A we have

d∗(F (t, t0,X0), B) ≤ c1(t0, d
∗(X0, A))d1(t0, t− t0) (iii)

for all t ≥ t0, c1 ∈ K∗, d1 ∈ L∗.
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By S∗
6 there exists a number p > 0 with u0 ≤ p such that, for

any solution u(t, t0, u0) of the equation (3.7) u(t, t0, u0) ≥
c3((t0, u0))d3(t0, t − t0), for all t ≥ t0, where c3 ∈ K∗ and
d3 ∈ L∗.

By the property of b2 in (6.11), there exists p1 = p1(t0, p) >
0, such that d∗(X0, B) ≤ p1 and b2(t, d

∗(X0, B)) ≤ p
hold simultaneously. Let q = min(p, p1). Then (6.11) holds
for all X0 such that d∗(X0, B) ≤ q. Choose u0 such that
V2(t0,X0) ≥ b2(t0, d

∗(X0, B)) = u0. As all the conditions
of theorem (3.2) are satisfied,

V2(t, F (t, t0, u0)) ≥ u(t, t0, u0) = u(t, t0, b2(t0, d
∗(X0,B)))

≥ c3(t0, b2(t0, d
∗(X0,B)))d3(t0, t− t0)

But

a2(d
∗(F (t, t0,X0),B)) ≥ V2(t, F (t, t0,X0))

≥ c3(t0, b2(t0, d
∗(X0,B)))d3(t0, t− t0)

≥ c4(t0, d
∗(X0,B))d3(t0, t− t0)

implying

d∗(F (t, t0,X0),B) ≥ a−1
2 [c4(t0, d

∗(X0,B))d3(t0, t− t0)]

i.e., d∗(F (t, t0,X0),B) ≥ c2(t0, d
∗(X0,B))d2(t0, t− t0) (iv)

for all t ≥ t0, where c2 ∈ K∗ and d2 ∈ L∗.

The steps (iii) and (iv) above imply equistrict asymptotic stability
of the C.I. set B with respect to A for the g.d.s. in E. 2

Theorem 6.8. Assume that the conditions of theorem (4.3) hold,
with conditions (3.11) and (3.12) replaced by (6.13) and (6.14) re-
spectively.

Then (i) s∗3 and S∗
4 imply uniform strict stability of the C.I. set B

with respect to A and (ii) S∗
7 and S∗

8 imply uniform strict asymp-
totic stability of the C.I. set B with respect to A, for the g.d.s. in
E.

Proof. All the conditions of theorem (6.6) – (1) and (2) are satisfied,
since S∗

3 and S∗
7 mean the uniform and uniform asymptotic stability

of the trivial solution of the equation (3.2).

Accordingly, the C.I. set B is uniform stable/uniform asymptotic
stable with respect to A.

Considering S∗
4 : u(t, t0, u0) ≥ c3(u0), for all t ≥ t0 with u0 ≤ p,

p > 0 and S∗
8 : u(t, t0, u0) c3(u0)d3(t0, t − t0) with u0 ≤ p,

p > 0, the ‘strict’ results of the stability of the C.I. set B with
respect to A for the g.d.s. in E can be proved on the same lines as
in theorem (6.7). 2

Note:

Theorems (6.5) – (1) and (2)
(6.6) – (1) and (2)
(6.7) – (1) and (2)

and (6.8) – (1) and (2)

correspond, in order, to theorems (4.1) – (4.5); (4.2) – (4.7); (4.3) –
(4.6) and (4.4) – (4.8).

Converse theorems on the existence of Lyapunov functions for the
stability properties of the C.I. set B with respect to A for a r.d.s.
can be proved on similar lines of theorems in section 5.

We state and prove a theorem corresponding to theorem (5.2).

Theorem 6.9. If the set B is uniform strict stable with respect to
A for a r.d.s. in E, there exist a pair of Lyapunov functions Vi(i =
1, 2) satisfying the hypotheses of theorem (6.4).

Proof. Define the functions V1 and V2 as follows –

V1(t,X) = inf
O≤T≤t

d∗(F (T, t,X), A)

and V2(t,X) = sup
O≤T≤t

d∗(F (T, t,X), B).

Since the C.I. set B is uniform strict stable with respect to A,

a2(d
∗(X0,B)) ≤ d∗(F (t, t0,X0),B) ≤ a1(d

∗(X0,A)), t ≥ t0, ai(i = 1,2) ∈ K.

Then for T ≤ t, by the reversibility condition, X =
F (t, T,X(T )), we have

a2(d
∗(X(T ), B)) ≤ d∗(X,B) ≤ a1(d

∗(X(T ), A)) (i)

where X(T ) = F (T, t,X). Hence for each T such that

O ≤ T ≤ t, d∗(X(T ), A) ≥ a−1
1 (d∗(X,B))

(ii)

so that V1(t,X) = inf
O≤T≤t

d∗(X(T ), A) ≥ a−1
1 (d∗(X,B))

(iii)

Also trivially

V1(t,X) ≤ d∗(X,A) (iv)

(iii) and (iv) together give

a−1
1 (d∗(X,B)) ≤ V1(t,X) ≤ d∗(X,A), O ≤ T ≤ t.

This verifies (6.13) of theorem (6.4).

V2(t,X) ≥ d∗(X,B) (v)

Also from (i)

d∗(X(T ), B) ≤ a−1
2 (d∗(X,B))

so that V2(t,X) = sup
O≤T≤t

d∗(X(T ), B) ≤ a−1
2 (d∗(X,B))

(vi)

(v) and (vi) together give

d∗(X,B) ≤ V2(t,X) ≤ a−1
2 (d∗(X,B))

which verifies (6.14) of theorem (6.4).

V (t,X) and V2(t,X) satisfy the inequality (3.3) with g ≡ 0 and
the inequality (3.8) with h ≡ 0.

To see this,

V1(t, F (t, t0,X0)) = inf
O≤T≤t

d∗(F (T, t,X), A)

= inf
O≤T≤t

d∗(X(T ), A)

Also for h > 0,

V1(t+ h, F (t+ h, t0,X0)) = inf
O≤T≤t+h

(d∗(X(T ), A))

clearly, V1(t+ h, F (t+ h, t0,X0)) ≤ V1(t, F (t, t0,X0))

so that D+V1(t,X) ≤ 0
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which is (3.3) with g ≡ 0.

V2(t+ h, F (t+ h, t0,X0)) = sup
Om≤T≤t+h

d∗(X(T ), B)

sup
O≤T≤t

d∗(X(T ), B) = V2(t, F (t, t0,X0))

Thus D−V2(t,X) ≥ 0 which is (3.8) with h ≡ 0.

Thus V1 and V2 satisfy all the conditions of the theorem (6.4). 2

Remarks:

(1) The function V1 shows that this is a Lyapunov function of the-
orem (6.3).

(2) One can easily see that theorem (6.9) with B = A and d∗ re-
placed by d, is a converse for theorem (4.4) giving two different
functions V1 and V2 unlike theorem (5.2).

7. CONDITIONAL (OR RELATIVE) STABILITY
OF A COMPACT SET A WITH RESPECT TO A
G.D.S. IN E

Let the set A ∈ A(E) be compact in E and M be a subset of
E such that A ⊂ M ⊂ E. We state the definitions of conditional
stability of the set A with respect to a g.d.s. in E. Lyapunov (vector)
function defined on I X A(E) is used to determine the sufficient
conditions for conditional stability of A with respect to a g.d.s. in
E. This concept (i.e., conditional stability of . . .) is identical with
the concept of relative stability (5).

Definition 7.1. The set A is daid to be

(1) Conditionally equistable for the set M with respect to a g.d.s.
in E if there exists a function a ∈ K∗ such that

d(F (t, t0,X0), A) ≤ a(t0, d(X0, A)) (7.1)

(2) Conditionally uniformly stable for the set M with respect to a
g.d.s. in E if there exists a function a ∈ K such that

d(F (t, t0,X0), A) ≤ a(d(X0, A)) (7.2)

(3) Conditionally equiasymptotically stable for the set M with re-
spect to a g.d.s. in E if there exist functions a ∈ K∗ and b ∈ L∗

such that

d(F (t, t0,X0), A) ≤ a(t0, d(X0, A))b(t0, t− t0) (7.3)

(4) Conditionally uniformly asymptotically stable for the set M
with respect to a g.d.s. in E if there exist functions a ∈ K
and b ∈ L such that

d(F (t, t0,X0), A) ≤ a(d(X0, A))b(t− t0) (7.4)

WHENEVER (IN THE DEFINITIONS (1) TO (4) ABOVE)

X0 ⊂ M ∩ S̄(A,P ), for some p > 0 and for all t ≥ t0.

Note:

(1) If M = E, the above definitions reduce to S1, S3, S5 and S7

(of section 2).

(2) These definitions are similar to the ones given in (7). They are
expressed here in terms of monotonic functions belonging to
the classes: K,K∗, L and L∗.

(3) If M is a neighbourhood of A, then also note (1) above holds.

To obtain sufficient conditions for the conditional stability proper-
ties of the set A, we use the comparison techniques based on Vector
Lyapunov function.

Let W = W (t, r) be a continuous vector function with compo-
nents w1, w2, w3, . . . , wn in r = (r1, r2, . . . , rn) so that we write
W ∈ C(I X Rn, Rn).

W is said to possess quasi-monotone property in r for each fixed
t ∈ I , if for each i = 1, 2, . . . , n, the i−th component w1(t, r) is
monotonic non-decreasing in rj , j ̸= i for each j.

If W has the quasi-monotone property in r, then the differential
system:

r′ = W (t, r), (′= d/dt) (7.5)

has the maximal (in the sense of component-wise majorisation) so-
lution existing to the right of t0.

W is assumed to be smooth enough that the maximal solution exists
for all t ∈

[
t0,∞

]
.

Let V be a n−vector and V ∈ C(I X A(E), Rn
+), where RN

+ the
set of n−tuples with all components non-negative. Interpreting the
vector inequality as being satisfied component-wise,

let V +(t,X(t)) = lim
h→0+

[
1

h

{
V (t+ h,X(t+ h))− V (t,X(t))

}]
(7.6)

for (t,X(t)) ∈ I X A(E).

Theorem 7.1. Let there exist a vector function V defined above so
that V + defined above in (7.6) satisfy the vector inequality:

V +(t,X(t)) ≤ W (t, V (t,X(t))), t ≥ t0 (7.7)

where W is a smooth function having the quasi-monotone property.

Let r(t, t0, r0) be the maximal solution of the differential system
(7.5), existing to the right of t0. Then

V (t0,X((t0)) ≤ r(t0, t0, r0) = r0 (i)

implies V (t,X(t)) ≤ r(t, t0, r0) (ii)
(7.8)

We will henceforth (unless otherwise stated) use V and W in two-
dimensions only. Thys V = (V1, V2), W = (W1,W2) and the
quasi-monotone property of W is now equivalent to W1 being non-
decreasing in r2 and W2 being non-decreasing in r1.

Let (r1, r2)R2
+.

Define |V | = V1 + V2 and |r| = r1 + r2.

These make sense since V1, V2, r1, r2 are all non-negative, by def-
inition.

Let

r0 = (r1, 0) (7.9)

Then

|r0| = r1

Let r(t, t0, r0) be the maximal solution of (7.5) with r0 defined in
(7.9). Corresponding to the definitions (7.1) (1) to (4) we state the
following properties –

13
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Properties 7.1.

(1) – s: There exists a ∈ K∗, for a given p > 0 such that |r0| ≤ p
implies

|r(t, t0, r0)| ≤ a(t0, |r0|)t ≥ t0 (7.10)

(2) – s: There exists a function a ∈ K for a given p > 0 such that
|r0| ≤ p implies

|r(t, t0, r0)| ≤ a(|r0|), t ≥ t0 (7.11)

(3) – s: There exist functions a ∈ K∗ and b ∈ L∗ for a given p > 0
such that |r0| ≤ p implies

|r(t, t0, r0)| ≤ a(t, |r0|)b(t0, t− t0), t ≥ t0 (7.12)

(4) – s: There exist functions a ∈ K and b ∈ L for a given p > 0
such that |r0| ≤ p implies

|r(t, t0, r0)| ≤ a(|r0|)b(t− t0), t ≥ t0 (7.13)

Theorem 7.2. Let

M =
{
X ∈ A(E) : V2(t,X) = 0

}
(7.14)

and V (where (V1, V2)) satisfy –

b(d(X,A)) ≤ V (t,X) ≤ a(t, d(X,A)) (7.15)

for all (t,X) ∈ I X A(E). Further, let the conditions of theorem
(7.1) be satisfied.

Then (i) property (7.1): (1) – s implies the conditional equistability
of A, and

(ii) property (7.1): (3) – s implies the conditional equiasymptotic
stability of A, for the set M with respect to the g.d.s. in E (where
M is given by (7.14)).

Proof.

(i) By the property of a in (7.15), there exists p1 = p1(t0, p) >
0 such that d(X0, A) ≤ p1 and a(t0, d(X0, A)) ≤ p hold
simultaneously.

Choose r0 = (r1, 0) with r1 = V1(t0,X0).

Let X0 ∈ M . Then V2(t0, x0) = 0 by (7.14). If X0 ∈
S̄(A, p1), then d(X0, A) ≤ p1 and the choice of p1 and r0
show that

r0 ≤ a(t0, d(X0, A)) ≤ p, a ∈ K∗ (i)

Thus (7.8)–(i) of theorem (7.1) is satisfied so that

V (t, F (t, t0,X0)) ≤ r(t, t0, r0), t ∈ t0 (ii)

for X0 ∈ M ∩ S̄(A, p1).

This inequality, component-wise would mean

V1(t, F (t, t0,X0)) ≤ r1(t, t0, r0) (iii)
and V2(t, F (t, t0,X0)) ≤ r2(t, t0, r0) (iv)

From these two and the definition of the norm, we have

|V (t, F (t, t0,X0))| ≤ |r(t, t0, r0)| (v)

Now

b(d(F (t, t0,X0), A)) ≤ |V (t, F (t, t0,X0))|
≤ |r(t, t0,X0)|
≤ a1(t0, |r0|)
≤ a1(t0, a(t0, d(X0, A)))

= a2(t0, d(X0, A))

so that d(F (t, t0,X0),A) ≤ b−1−a2(t0, d(X0,A)) = a3(t0, d(X0,A))

where a3 ∈ K∗, t ≥ t0.

Therefore A is conditionally equistable for the set M with
respect to a g.d.s. in E.

(ii) Proceeding on the same lines, as above, because of property
(7.1):(3)–s, we get

b(d(F (t, t0,X0), A)) ≤ |V (t, F (t, t0,X0))|
≤ |r(t, t0,X0)|
≤ a1(t0, |r0|b1(t0, t− t0))

≤ a1(t0, a(t0, d(X0, A)))b1(t0, t− t0)

= a2(t0, d(X0, A))b1(t0, t− t0)

implying

d(F (t, t0,X0), A) ≤ b−1(a2(t0, d(X0, A))b1(t0, t− t0))

≤ a3(t0, d(X0, A)b3(t0, t− t0))

(Here p1 = p1(t0, p) is such that d(X0, A) ≤ p1 and
a(t0, d(X0, A)) ≤ p hold simultaneously).

Thus A is conditionally equiasymptotic stable for M with respect
to the g.d.s. in E. 2

Theorem 7.3. Let M be the set defined in (7.14) and V satisfy –

b(d(X,A)) ≤ V (t,X) ≤ a(d(X,A)), t ≥ t0 (7.16)

for all (t,X) ∈ I X A(E) where b ∈ K and a ∈ K.

Let the conditions of theorem (7.1) be satisfied.

(i) Property (7.1): (2)–s implies the conditional uniform stability
of A, for the set M with respect to the g.d.s. in E and

(ii) Property (7.1): (4)–s implies the conditional uniform asymp-
totic stability of A, for the set M with respect to the g.d.s. in
E.

Proof. The properties of a in (7.16) imply that there exists p1 > 0,
p1 = p1(p) such that d(X0, A) ≤ p1, and a(d(X0, A)) ≤ p hold
simultaneously. Choose r0 = (r1, 0) with r1 = V (t0,X0). Let X0

M so that V2(t0,X0) = 0.

If X0 ∈ S̄(A, p1) then d(X0, A) ≤ p1 and the choice of p1 and r0
show that

r0 ≤ a(d(X0, A)) ≤ p (i)

Thus (7.8) – (i) of theorem (7.1) is satisfied so that

V (t, F (t, t0,X0)) ≤ r(t, t0, r0), t ≥ t0 (ii)

for X0 ∈ M ∩ S̄(A, p1).

14
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Component-wise, this implies

V1(t, F (t, t0,X0)) ≤ r1(t, t0, r0) (iii)
and V2(t, F (t, t0,X0)) ≤ r2(t, t0, r0) (iv)
which means |V (t, F (t, t0,X0))| ≤ |r(t, t0, r0)| (v)

Therefore

b(d(F (t, t0,X0), A)) ≤ |V (t, F (t, t0,X0))|
≤ |r(t, t0, r0)|
≤ a1(|r0|)
≤ a1(a(d(X0, A))) = a2(d(X0, A))

where a2 = a1a ∈ K implying,

d(F (t, t0,X0), A) ≤ b−1a2(d(X0, A)) = a3(d(X0, A))

where a3 = b−1a2 ∈ K.

Hence the conditional uniform stability of A for M with respect to
the g.d.s. in E.

(ii) The proof of this part is just the same as above, but for the
following deviation –

b(d(F (t, t0,X0), A)) ≤ a1(a(d(X0, A)))b1(t− t0)

so that d(F (t, t0,X0), A) ≤ b−1(a1(a(d(X0, A))b1(t− t0)))

≤ a3(d(X0, A))b3(t− t0)

Here p1 = p1(p) > 0. Such that d(X0, A) ≤ p1 and
a(d(X0, A)) ≤ p hold simultaneously. Further a3 ∈ K and
b3 ∈ L.

Hence the conditional uniform asymptotic stability of A for M
with respect to the g.d.s. in E. 2

8. CONVERSE THEOREMS FOR THE
EXISTENCE OF VECTOR LYAPUNOV
FUNCTIONS FOR CONDITIONAL STABILITY.

Let g = g(t, u), u = (u1, u2) so that g = g(t, u1, u2) be defined
and continuous on I X R2

+ into R2 and satisfy the quasimonotone
decreasing condition in u. g is assumed to be smooth enough to
ensure the existence, uniqueness and continuous dependence of the
solution on the initial conditions of the equation.

u′ = g(t, u), for all t ∈
[
0,∞

]
, t0 ∈ I. (8.1)

Let

g(t, u) = (g1(t, u), g2(t, u))

= (g1(t, u1, u2), g2(t, u1, u2)).

Define g∗(t, u) = (g1(t, u1, u2), g2(t, 0, u2)).

As u1, u2 ≥ 0, by the quasi-monotone property, it follows that

g∗(t, u) ≤ g(t, u) (8.2)

Suppose u∗(t, 0, u0) and u(t, 0, u0) are solutions of

u′ = g∗(t, u) (8.3)

and (8.1) respectively through the same point (0, u0), u0 ∈ R2
+.

Then we have

u∗(t, 0, u0) ≤ u(t, 0, u0), t ∈ I (8.4)

Suppose p1 = (u10, 0) ∈ R2
+ and p2 = (u10, u20) ∈ R2

+.

Then let the solutions of (8.3) through (0, p1) and (0, p2), be de-
noted u∗

1(t, 0, p1) and u∗
2(t, 0, p2) respectively.

Writing these equation component-wise -

u∗
1(t, 0, p1) = (u∗

11(t, 0, p1), u
∗
12(t, 0,p1))

and u∗
2(t, 0, p2) = (t∗12(t, 0, p2), u

∗
22(t, 0, p2)).

Then we have

u∗
1(t, 0, p1) u

∗
2(t, 0, p2)

i.e., u∗
11(t, 0, p1) u

∗
21(t, 0, p2)

u∗
12(t, 0, p1) u

∗
22(t, 0, p2)

 (8.5)

Theorem 8.1.

(1) Let the g.d.s. be r.d.s. and the flow F (t, t0,X0), X0 ∈ A(E),
be Hausdorff continuous in the triplet of its arguments.

(2) Let there exist functions a, b ∈ K such that

b(d(X0, A)) ≤ d(F (t, t0,X0), A) ≤ a(d(X0, A)) (8.6)

for X0 ∈ M

(3) Let g ∈ C(I X R2
+, R

2), g(t, 0) = 0 and g has the proper-
ties mentioned earlier (viz., existence, uniqueness and continu-
ous depenbdence of solutions (on the initial conditions) of the
equation (8.1))

(4) The solution u(t, 0, u0) of (8.1) satisfy

u(t, 0, u0) ≤ r2(|u0|) (8.7)

where u0 = u20 as u10 = 0, when u0 = (u10, u20).

(5) The component u∗
2(t, 0, u0) of the solution u∗(t, 0, u0) of (8.3)

has the property:

u2(t, 0, u0) ≥ r1(|u0|) = r1(u20) (8.8)

where u0 satisfies the definition given in (4) above.

Then there exists function V = V t,X) with the following proper-
ties:

(i) V ∈ C(I X A(E), r2+)

(ii) V +(t,X) ≤ g(t, V (t,X)) for the flows X of r.d.s.

(iii) If X ∈ M , then V1(t,X) = 0

(iv) b1(bd(X,A)) ≤ |V (t,X)| ≤ a1(d(X,A))

where a1, b1 ∈ K and (t,X) ∈ I X A(E).

Proof. The g.d.s. is r.d.s. Therefore X = F (t, 0,X0) implies
X0 = F (0, t,X)

Choosing a function µ ∈ C(A(E), R2
+) such that

α1(d(X,A)) ≤ µ(X) ≤ α2(d(X,A)) (i)
and µ1(X) = 0 if X ∈ M (ii)

µ(X) = (µ1(X), µ2(X)).
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Let u∗
1(t, 0, (µ1(X), 0)) and u∗

2(t, 0(µ1(X), µ2(X))) be the solu-
tions of the equation (8.2).

Define

V1(t,X) = u∗
11(t, 0, (µ1(F (0, t,X), 0)))

= u∗
11(t, 0, (µ1(X0), 0))

and V2(t,X) = u∗
22(t, 0, (µ1(0, t,X))), µ2(F (0, t,X))

= u∗
22(t, 0, (µ1(X0), µ2(X0)))

where u∗
11 and u∗

22 are first and second components of u∗
1 and u∗

2

respectively. The continuity of V1 and V2 follow from the conti-
nuity of u∗

11 and u∗
22 with respect to the initial conditions together

with the continuity properties of µ and F with respect to their ar-
guments.

Let X(t) = F (t, t0,X(t0)), so that X(t + h) = F (t +
h, t0,X(t0)).

Also F (0, t + h,X(t + h)) = F (0, t, x(t)) = X0, by the re-
versibility property. Hence

V +
1 (t,X(t)) = lim

h→0+

1

h

[
u∗
11(t+ h,0, (µ1(X0),0))− u∗

11(t,0, (µ1(X0),0))
]

= u
′∗
11(t,0, (µ1(X0),0))

= g∗1(t,u11(t,0, (µ1(X0),0)),u
∗
12(t,0, (µ1(X0),0)))

Similarly,

v+2 (t,X(t)) = g∗2(t, 0, u22∗(t, 0, (µ1(X0), µ2(X0)))).

With the definitions of V1 and V2

V ∗
1 (t,X(t)) = g∗1(t, V1(t,X(t)), u∗

12(t, 0, (µ1(X0), 0)))
(iii)

and V +
2 (t,X(t)) = g∗2(t, 0, V2(t,X(t))) (iv)

Now from the inequalities (8.5)

u12(t,0, (µ1(X0),0)) ≤ u∗
12(t,0, (µ1(X0), µ2(X0)))

≤ V2(t,X(t)) (v)

also trivially, 0 ≤ V1(t,X(t)) (vi)

Hence by the quasimonotonicity of g1 and g2 we have

V +
1 (t,X(t)) ≤ g∗1(t, v1(t,X(t)), V2(t,X(t)))

≤ g1(t, V1(t,X(t)), V2(t,X(t))) (vii)

and

V +
2 (t,X(t)) ≤ g∗2(t, 0, V2(t,X(t)))

≤ g2(t, 0, V2(t,X(t)))

≤ g2(t, V1(t,X(t)), V2(t,X(t))) (viii)

(v) and (vi) verify property (ii).

Property (iii) follows from the proepety (8.7) and the fact that
V1(t,X) = 0 if µ1(X) = 0.

Now

|V (t,X)| = V1(t,X) + V2(t,X)

= u∗
11(t,0, (µ1(X0),0)) + u∗

22(t,0, (µ1(X0),µ2(X0)))

≤ u21(t,0, (u1(X0),µ2(X0))) + u22(t,0, (µ1(X0),µ2(X0)))

r2(|µ(X0)|), by hupothesis (4) and µ(X0)

= 0 implies X0 ∈ M.

= r2(α2(d(X0,A))) = r2(α2b
−1(d(X,A)))

= a1(d(X,A)), a1 ∈ K (ix)

V (t,X) = V1(t,X) + V2(t,X)

≥ V2(t,X)

= u22(t,0), (µ1(X0), µ2(X0))

≥ r1(µ(X0)) by hypothesis (5) and µ(X0) = 0 implies X0 ∈ M.

≥ r1(α1(d(X0,A)))

≥ r1(α1a
−1(d(X,A))) = b1(d(X,A)) where b1 ∈ K. (x)

(ix) and (x) together verify the property (iv). Hence the theorem. 2

Note:

(1) It is to be noted that the theorem just proved is not strictly a
converse for either of the theorems (7.1) and (7.2). We find that
the hypothesis (2) on the estimates for d(F (t, 0,X0), A) imply
strict conditional stability for the set A with respect to the set
M . Similarly the condition (4) corresponds to property (7.1)
- (2) -s for (8.1), but we also require condition (5), which is
compatible with the property (7.1)-(2)-s. Similar remarks hold
for the theorem (8.2) stated below.

(2) Using the notion of mini-max solutions for a system, we can
obtain theorems that will give strict conditional stability for the
set A.

(3) Theorem (8.1) can be considered as the extension of theorem
4.5.1 of (32) on conditional stability of ordinary differential
system to reversible dynamical system. The results are special
cases fo theorems (4.5.2), (4.5.3) and (4.5.4) from the refer-
ence.

we can also prove the following extension of theorem (4.5.2)
to reversible dynamical system and a simply state the theorem
without proof.

Theorem 8.2. Let the assumptions (1) and (3) of theorem (8.1)
hold. Assume further that

(a) there exist functions b1, b2 ∈ K, c1, c2 ∈ L such that, for
X0 ∈ M

b1(d(X0,A))c1(t) ≤ d(F (t,0,X0),A) ≤ b2(d(X0,A))c2(t) for t ≥ 0

(b) the solution u(t, 0, u0) of (8.1) satisfy the condition

u(t, 0, u0) ≤ r2(|u0|)s2(t), t ≥ 0, r2 ∈ K, s2 ∈ L

where u0 = (u10, u20) and u10 = 0.

(c) the component u∗
22(t, 0, u0) of the solution of equation (8.3)

satisfy the condition

u∗
22(t, 0, u0) ≥ r1(u0)s1(t),

with u0 satisfying conditions in (b), and r1 ∈ K and s1 ∈ L

(d) r1(r) is differentiable and r′1(r) ≥ λ > 0
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(e) s1 and c2 are such that s1(t) ≥ λ1c2(t), t ≥ t0, λ1 > 0

Then there exists a function V (t,X) with properties (i) (ii) and (iii)
of theorem (8.1) and

b(d(X,A)) ≤ V (t,X) ≤ a(t, d(X,A))

where b ∈ K, and a ∈ K∗. This theorem shows the existence of a
Lyapunov function for asymptotic conditional stability.
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