Stability of General Dynamical Systems

Mahadevaswamy B.S., PhD
Department of Mathematics
Maharani's Science College for Women, Mysuru, Karnataka, India-570005

Abstract

In this paper comparison techniques are used to obtain sufficient condition for stability of an invariant set. Here sufficient conditions involving the stability of scalar differential equations and converse theorems for a reversible dynamical system proved and Two converse theorems for existence of a vector Lyapunov function in reversible dynamical system are proved.

Concept of conditional invariancy is introduced. Sufficient condition for stability of conditional invariant are proved. Here introduced notion of conditional stability of a compact set.

Keywords

Lyapunov function, Equistrict stability, Equistrict asymtotic stable, Reversible Dynamical System

1. INTRODUCTION

In this paper the author considers a general dynamical system (henceforth abbreviated as g.d.s.) in a locally compact seperable metric space E as a two-parameter family of transformations F ($t, t_{0},$.) of E into $A(E)$, the set of all subsets of E and obtains the existence of a V-function defined over $[0, \infty) X A(E)$, if reversibility is assumed. For this purpose the concepts of strict and asymptotic stability of an invariant set with respect to a g.d.s. are introduced and sufficient conditions in terms of V-function are obtained. It is to be noted that, eventhough such a definition of a V-function is most natural in view of the fact that a g.d.s. is defined in E into $A(B)$, in the literature $(1,5,7,9,10)$ it is defined on $[0, \infty) X E$. Then a V-function in its natural setting is got.

In section (2), preliminaries are dealt with. Defining a g.d.s., concepts of reversibility of a g.d.s., stability of an invariant set A with respect to a g.d.s. and strict and asymptotic stability of sets with respect to a g.d.s. are introduced, in terms of Hausdorff metric on $A(E)$. Certain classes of monotonic functions introduced by W. Hahn (6) are recalled for future use.

In section (3), comparison techniques are used to obtain sufficient conditions for stability of an invariant set A with respect to a g.d.s. in terms of V-functions defined on $[0, \infty) X A(E)$.
Section (4), contains sufficient conditions, involving the stability of scalar differential equations and the existence of a V-function, for the stability of set A with respect to a g.d.s.
Section (5), present converse theorems (on the existence of V functions) for a reversible dynamical system.

In section (6), concept of conditional invariancy (8) of a set B with respect to a set A in a g.d.s. and definitions of stability of a conditionally invariant set B with respect to a set A are introduced. Sufficient conditions for stability of conditional invariant set B with respect to a set A in a g.d.s. in terms of V-functions are proved and converse of some theorems in some form or the other for a reversible system are attempted and their relations to some theorems of section (5) are traced.

Section (7), introduces to the notion of conditional stability (7) of a compact set A with respect to a g.d.s. and a general comparison technique involving a vector Lyapunov function and the notion of quasi-monotonicity (which is developed in this section) is used to prove the sufficiency condition for conditional stability of set A for set M.

Section (8) contains two converse theorems for the existence of a vector Lyapunov function in a reversible dynamical system.

2. PRELIMINARIES

General Dynamical System (GDS)

Let I denote the half-line: $0 \leq t<\infty$ and $R_{+}=[0, \infty)$. Let E be a locally compact seperable metric space. Consider a twoparameter family of transformations $F\left(t, t_{0}, p\right)$ of E into $A(E)$, the set of all subsets of E satisfying the following properties -
(i) For each $p_{0} \in E$ and $t_{0} \in I$, there is defined a set $F\left(t, t_{0}, p_{0}\right) \in$ $A(E)$ for all $t \geq t_{0}$.
(ii) $F\left(t_{0}, t_{0}, p_{0}\right)=\left\{p_{0}\right\}$ and
(iii) For any $p_{1} \in F\left(t_{1}, t_{0}, p_{0}\right)$, there is defined a set $F\left(t, t_{1}, p_{1}\right)$ such that
$\cup F\left(t, t_{1}, p_{1}\right)=F\left(t, t_{0}, p_{0}\right)$, for all $t \geq t_{1} \geq t_{0}, \quad p_{1} \in$ $F\left(t_{1}, t_{0}, p_{0}\right)$

For a fixed $p_{0} \in E, F\left(t, t_{0}, p_{0}\right)$ is called a motion, while the set defined in (i) above is called the trajectory of the motion.

Definition 2.1. The family of transformations $F\left(t, t_{0},.\right)$ described thro' the properties (i), (ii) and (iii) above, is called a General Dynamical System (GDS) in E.

The metric in $A(E)$: Let $d(p, q)$ denote the metric in $E, p, q \in E$. Let $d(A, B)$ where $A, B \in A(B)$ denote the Hausdorff distance between two sets A and B.

Then $d(A, B)$ is defined by

$$
\begin{array}{lrl}
& & d(A, B)
\end{array}=\max \left\{d^{*}(A, B), d^{*}(B, A)\right\},
$$

and

It is to be noted that in general $d^{*}(A, B) \neq d^{*}(B, A)$.
For any set $A \in A(E)$, the neighbourhoods $S(A, \in)$ and $\bar{S}(A, \in)$ are defined by

$$
\begin{aligned}
S(A, \in) & =\{X A(E): d(X, A)<\in\} \\
\bar{S}(A, \in) & =\{X A(E): d(X, A) \leq \in\}
\end{aligned}
$$

respectively.
In what follows, we shall assume that the flow $F\left(t, t_{0}, X_{0}\right), X_{0} \in$ $A(E)$ is Hausdorff continuous in the triplet $\left(t, t_{0}, X_{0}\right)$ where for any $X_{0} \in A(E)$, we denote

$$
F\left(t, t_{0}, X_{0}\right)=\bigcup_{p_{0} \in X_{0}} F\left(t, t_{0}, X_{0}\right)
$$

In these notations the properties (ii) and (iii) of a g.d.s. in E take the following form: (ii)* $F\left(t_{0}, t_{0}, X_{0}\right)=X_{0}, t_{0} \in I$
(iii)* $F\left(t, t_{1}, F\left(t_{1}, t_{0}, X_{0}\right)\right)=F\left(t, t_{0}, X_{0}\right)$ for all $t \geq t_{1} \geq t_{0}$.

Definition 2.2. A G.D.S. in E in which $X=F\left(t, t_{0}, X_{0}\right)$ iff $X_{0}=F\left(t_{0}, t, X\right)$, for $X_{0}, X \in A(E)$ and $t, t_{0} \in I$, is called a reversible dynamical system (r.d.s.).

Consequently,

$$
F\left(t_{0}, t_{1}, F\left(t_{1}, t_{0}, X_{0}\right)\right)=F\left(t_{0}, t_{0}, X_{0}\right)=X_{0}
$$

Thus for a r.d.s.

$$
F\left(t_{0}, t, F\left(t, t_{0}, X_{0}\right)\right)=X_{0} \text { for all } t \geq t_{0}
$$

In what follows X is compact in E.
Definition 2.3. A set $X \in A(E)$ is called (Positively) invariant with respect to a g.d.s in E if

$$
F\left(t, t_{0}, X\right) \subset X \text { for all } t \geq t_{0}
$$

Notation: Let $C(D, R)$ denote the class of all continuous functions $\overline{f: D \rightarrow R}$.

Monotonic functions (due to W.Hahn (6))

Definition 2.4.

(i) $a(r)$ is said to belong to the class K (whence we write $a \in$ K) if $a \in C\left(I, R_{+}\right), a(0)=0$ and a is strictly monotonic increasing in r with $\lim _{r \rightarrow \infty} a(r)=\infty$.
(ii) $a(t, r)$ is said to belong to the class K^{*} (i.e. $\left.a \in K^{*}\right)$ if $a \in$ $C\left(I X R_{+}, R_{+}\right)$and $a \in K$ for each $t \in I$.
(iii) $b(s)$ is said to belong to the class L (i.e. $b \in L$) if $b \in C\left(I, R_{+}\right), b$ is strictly monotonic decreasing in s and $\lim _{s \rightarrow \infty} b(s)=0$.
(iv) $b(t, s)$ is said to belong to the class L^{*} (i.e. $b \in L^{*}$) if $b \in$ $C\left(I X R_{+}, R_{+}\right)$and $b \in L$ for each $t \in I$.

The following results on monotonic functions will be useful in the sequel:
(i) If $a=a(r) \in K$, then a^{-1} exists and $a^{-1} \in K$.
(ii) If $a_{1}=a_{1}(t, r) \in K^{*}, a_{2}=a_{2}(t, r) \in K^{*}$, then $a_{3}=$ $a_{1}\left(t, a_{2}(t, r)\right) \in K^{*}$.
(iii) If $a \in K^{*}$ and $b \in K$, the $b^{-1} a \in K^{*}$.
(iv) If $a \in K$ and $b \in L$, then $a^{-1} b \in L$.
(v) If $a \in K$ and $b \in L^{*}$, then $a^{-1} b \in L^{*}$.
(vi) If $a, b \in K$, then $a b \in K$.

In the following, $F\left(t, t_{o}, X_{o}\right)$ is assumed to be H - continuous in the triplet $\left(t, t_{o}, X_{o}\right)$ and the set A is compact in E.

Stability Definitions - 2.5: With respect to a g.d.s, the set A is said to be
$\mathbf{S}_{1}: \underline{\text { Equi-stable, if there exists } a \in K^{*} \text { such that }}$

$$
\begin{equation*}
d\left(F\left(t, T_{o}, X_{o}\right), A\right) \leq a\left(t_{o}, d\left(X_{o}, A\right)\right) \tag{2.1}
\end{equation*}
$$

$\mathbf{S}_{\mathbf{2}}$: Equi-strict stable, if there exists $a_{1}, a_{2} \in K^{*}$ such that

$$
\begin{equation*}
a_{1}\left(t_{o}, d\left(X_{o}, A\right)\right) \leq d\left(F\left(t, t_{o}, X_{o}\right), A\right) \leq a_{2}\left(t_{o} d\left(X_{o}, A\right)\right) \tag{2.2}
\end{equation*}
$$

$\mathbf{S}_{\mathbf{3}}: \underline{\text { Uniform stable, if there exists } a \in K \text { such that }}$

$$
\begin{equation*}
d\left(F\left(t, t_{o}, X_{o}\right), A\right) \leq a\left(d\left(X_{o}, A\right)\right) \tag{2.3}
\end{equation*}
$$

$\mathbf{S}_{\mathbf{4}}: \underline{\text { Uniform strict stable, if there exists } a_{1}, a_{2} \in K \text { such that }}$

$$
a_{1}\left(d\left(X_{o}, A\right)\right) \leq d\left(F\left(t, t_{o}, X_{o}\right), A\right) \leq a_{2}\left(d\left(X_{o}, A\right)\right)
$$

 such that

$$
\begin{equation*}
d\left(F\left(t, t_{o}, X_{o}\right), A\right) \leq a\left(t_{o}, d\left(X_{o}, A\right)\right) b\left(t_{o}, t-t_{o}\right) \tag{2.5}
\end{equation*}
$$

S_{6} : Equi-strict asymptotic stable,
there exists $a_{1}, a_{2} \quad \in \quad K^{*}$ and
$b_{1}, b_{2} \in L^{*}$ such that

$$
\begin{align*}
a_{1}\left(t_{o}, d\left(K_{o}, A\right)\right) b_{1}\left(t_{o}, t-t_{o}\right) & \leq d\left(F\left(t, t_{o}, X_{o}\right), A\right) \\
& \leq a_{2}\left(t_{o}, d\left(X_{o}, A\right)\right) b_{2}\left(t_{o}, t-t_{o}\right) \tag{2.6}
\end{align*}
$$

$\mathbf{S}_{\mathbf{7}}:$ Uniform asymptotic stable, if there exists $a \in K$ and $b \in L$ such that

$$
\begin{equation*}
d\left(F\left(t, t_{o}, X_{o}\right), A\right) \leq a\left(d\left(X_{o}, A\right)\right) b\left(t-t_{o}\right) \tag{2.7}
\end{equation*}
$$

$\mathbf{S}_{\mathbf{8}}$: Uniform strict asymptotic stable, if there exists $a_{1}, a_{2} \in K$ and $b_{1}, b_{2} \in L$ such that

$$
\begin{align*}
a_{1}\left(d\left(X_{o}, A\right)\right) b_{1}\left(t-t_{o}\right) & \leq d\left(F\left(t, t_{o}, X_{o}\right), A\right) \\
& \leq a_{2}\left(d\left(X_{o}, A\right)\right) b_{2}\left(t-t_{o}\right) \tag{2.8}
\end{align*}
$$

Note:

(1) It is assumed that the inequalities (2.1) to (2.8) hold for all $t \geq t_{o}, t_{o} \in I$ and $X_{o} \subset S(A, r)$ for some $r>0$.
(2) (i) S_{3} implies S_{1} and S_{4} implies S_{2}.
(ii) S_{5} implies S_{1} and S_{7} implies S_{3}.

However, strict stability which corresponds to stability in some tube-like domain $(9,31)$ denies asymptotic stability.

3. COMPARISON THEOREMS

Theorem 3.1. Let $V(t, X) \in C\left(I X A(E), R_{+}\right)$be an auxiliary function (called a LYAPUNOV FUNCTION) and $X=X(t)=$ $F\left(t, t_{o}, X_{o}\right) \in A(E)$ and $X_{o} \in A(E)$.
Let
$D^{+} V(t, X)=\lim _{h \rightarrow 0^{+}} \sup \left[\frac{1}{h}\{V(t+h, X(t+h))-V(t, X)\}\right]$
exist. Let $r\left(t, t_{0}, r_{0}\right)$ be the maximal solution of the scalar differential equation -

$$
\left.\begin{array}{l}
r^{\prime}=g(t, r)\left({ }^{\prime}=d / d t\right) \tag{3.2}\\
r\left(t_{0}\right)=r_{0}
\end{array}\right\}
$$

and

$$
\begin{equation*}
D^{+} V(t, X) \leq g(t, V(t, X)) \tag{3.3}
\end{equation*}
$$

for all $t \geq t_{0}, t_{0} \in I$ and $g \in C\left(I X R_{+}, R_{+}\right)$.
Then

$$
\left.\begin{array}{rl}
& V\left(t_{0}, X_{0}\right) \tag{3.4}
\end{array} \leq r_{0}, ~=r\left(t, t_{0}, r_{0}\right)\right\}
$$

for all $t \geq t_{0}$.
The theorem asserts that the Lyapunov function V can be majorised by the maximal solution of the scalar differential equation (3.2).
Corollary 3.1. If, in (3.2), $g \equiv 0$, then we get

$$
\begin{equation*}
V(t, X) \leq V\left(t_{0}, X_{0}\right) \tag{3.5}
\end{equation*}
$$

Theorem 3.2. With the notation as in theorem (3.1), let V exist and let

$$
\begin{equation*}
D^{-} V(t, X)=\lim _{h \rightarrow 0^{+}} \inf \left[\frac{1}{h}\{V(t+h, X(t+h))-V(t, X)\}\right] \tag{3.6}
\end{equation*}
$$

Let $u\left(t, t_{0}, u_{0}\right)$ be the minimal solution of the scalar differential equation-

$$
\left.\begin{array}{l}
u^{\prime}=h(t, u)\left({ }^{\prime}=d / d t\right) \tag{3.7}\\
u\left(t_{0}\right)=u_{0}
\end{array}\right\}
$$

and

$$
\begin{equation*}
D^{-} V(t, X) \geq h(t, V(t, X)) \tag{3.8}
\end{equation*}
$$

for all $t \geq t_{0}, t_{0} \in I$ and $h \in C\left(I X R_{+}, R_{+}\right)$.
Then

$$
\left.\begin{array}{rl}
& V\left(t_{0}, X_{0}\right) \tag{3.9}\\
\text { implies } \quad V(t, X) & \geq u\left(t, t_{0}, u_{0}\right)
\end{array}\right\}
$$

for all $t \geq t_{0}$.
Corollary 3.2. If, in (3.7), $h \equiv 0$, then we get

$$
\begin{equation*}
V(t, X) \geq V\left(t_{0}, X_{0}\right) \tag{3.10}
\end{equation*}
$$

Theorems on the stability of a set A with respect to a g.d.s.

Theorem 3.3. Let $V(t, X) \in C\left(I X A(E), R_{+}\right)$exist such that 1. for all $(t, X) \in I X A(E)$,

$$
\begin{equation*}
b(d(X, A)) \leq V(t, X) \leq a(t, d(X, A)) \tag{3.11}
\end{equation*}
$$

where $a \in K^{*}$ and $b \in K$, and
2. the inequality (3.3) hold with $g \equiv 0$.

Then the set A is equistable with respect to the g.d.s.
Proof. By (3.5) and due to (2)

$$
V\left(t_{0}, X_{0}\right) \geq V(t, X)=V\left(t, F\left(t, t_{0}, X_{0}\right)\right) \geq b\left(F\left(t, t_{0}, X_{0}\right), A\right)
$$

Hence by (3.11),

$$
\begin{aligned}
& b\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) \leq V\left(t_{0}, X_{0}\right) \leq a\left(t_{0}, d\left(X_{0}, A\right)\right) \\
& \text { or } \\
& d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq b^{-1} a\left(t_{0}, d\left(X_{0}, A\right)\right) \\
& =c\left(t_{0}, d\left(X_{0}, A\right)\right) \\
& \text { where } \quad c=b^{-1} a \in K^{*}, \quad \text { for all } t \geq t_{0} .
\end{aligned}
$$

Hence A is equistable with respect to the g.d.s.

Theorem 3.4. Let there exist functions

$$
V_{1}, V_{2} \in C\left(I X A(E), R_{+}\right) \text {for }(t, X) \in I X A(E)
$$

Further let V_{1} satisfy the hypotheses of theorem (3.3) while V_{2} satisfies-
(1)

$$
\begin{equation*}
b_{1}(t, d(X, A)) \leq V_{2}(t, X) \leq a_{1}(d(S, A)) \tag{3.12}
\end{equation*}
$$

where $a_{1} \in K$ and $b_{1} \in K^{*}$ and
(2) (3.8) hold with $h \equiv 0$ and V_{2} replacing V.

Then the set A is equi-strict stable with respect to a g.d.s.
Proof. As the conditions of theorems (3.1) and (3.2) hold with both g and h identically vanishing, (3.5) and (3.10) with V replaced by V_{1} and V_{2} respectively hold.

By (3.11),

$$
\begin{aligned}
V_{1}\left(t_{0}, X_{0}\right) & \leq a\left(t_{0}, d\left(X_{0}, A\right)\right) \\
\text { and } \quad V_{1}\left(t, F\left(t, t_{0}, X_{0}\right)\right) & \geq b\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
b\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \leq V_{1}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \leq V_{1}\left(t_{0}, X_{0}\right) \\
& \leq a\left(t_{0}, d\left(X_{0}, A\right)\right)
\end{aligned}
$$

Thus

$$
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq b^{-1} a\left(t_{0}, d\left(X_{0}, A\right)\right)=c\left(t_{0}, d\left(X_{0}, A\right)\right)
$$ where $c=b^{-1} a \in K^{*}$.

Again, by (3.12)

$$
\begin{aligned}
V_{2}\left(t_{0}, X_{0}\right) & \geq b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right) \\
\text { and } \quad V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) & \leq a_{1}\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) .
\end{aligned}
$$

But $V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \geq V_{2}\left(t_{0}, X_{0}\right)$, because of hypothesis (2).

Hence

$$
\begin{align*}
a_{1}\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \geq V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \geq V_{2}\left(t_{0}, X_{0}\right) \\
& \geq b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right) \\
\text { or } \quad d\left(F\left(t, t_{0}, X_{0}\right), A\right) & \geq a_{1}^{-1} b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right) \\
& =c_{1}\left(t_{0}, d\left(X_{0}, A\right)\right) \tag{ii}
\end{align*}
$$

where $c_{1} \in K^{*}$.
Steps (i) and (ii) together imply equi-strict stability of A with respect to g.d.s.

Theorem 3.5. Let the hypotheses of theorem (3.3) hold with

$$
\begin{equation*}
b(d(X, A)) \leq V(t, X) \leq a(d(X, A)) \tag{3.13}
\end{equation*}
$$

in place of (3.11), where $a, b \in K$. Then the set A is uniformly stable with respect to the g.d.s.

Proof. The proof follows on the same lines as the proof of theorem (3.3) except that $a \in K$.

Theorem 3.6. Let there exist functions $V_{1}, V_{2} \in$ $C\left(I X A(E), R_{+}\right)$for all $(t, X) \in I X A(E)$, and

$$
\begin{equation*}
b_{i}(d(X, A)) \leq V_{i}(t, X) \leq a_{i}(d(X, A)) \tag{3.14}
\end{equation*}
$$

$a_{i}, b_{i} \in X,(i=1,2), V_{i}$ satisfying the conditions (3.3) with $g \equiv 0$ and (3.8) with $\equiv 0$ respectively.

Then A is uniformly strictly stable with respect to the g.d.s.
Proof. Similar to that for theorem (3.4).

4. SUFFICIENCY CONDITIONS FOR STABILITY

Results of asymptotic stability of sets can be obtained by using comparison techniques. For this purpose, we state the following definitions for the stability of solution and the properities of the solution of the comparison equations (3.2) and (3.7) respectively.

Definition 4.1. The trivial solution of (3.2) is said to be
S_{1}^{*} : Equistable, if exists a function $a \in K^{*}$ such that

$$
\begin{equation*}
r\left(t, t_{0}, r_{0}\right) \leq a\left(t_{0}, r_{0}\right) \tag{4.1}
\end{equation*}
$$

for all $t \geq t_{0}, r\left(t, t_{0}, r_{0}\right)$ being any solution of (3.2) and the inequality (4.1) holding for $r_{0} \leq p, p>0$.
S_{3}^{*} : Uniformly stable, if there exists a function $a \in K$ such that

$$
\begin{equation*}
r\left(t, t_{0}, r_{0}\right) \leq a\left(r_{0}\right) \tag{4.2}
\end{equation*}
$$

for all $t \geq t_{0}, r\left(t, t_{0}, r_{0}\right)$ being any solution of (3.2), the inequality (4.2) holding for $r_{0} \leq p, p>0$.
S_{5}^{*} : Equi-asymptotic stable, if there exist functions $a \in K^{*}$ and $b \in L^{*}$ and a number $p>0$ such that

$$
\begin{equation*}
r\left(t, t_{0}, r_{0}\right) \leq a\left(t_{0}, r_{0}\right) b\left(t_{0}, t-t_{0}\right) \tag{4.3}
\end{equation*}
$$

for all $t \geq t_{0}, r\left(t, t_{0}, r_{0}\right)$ being any solution of (3.2), the inequality (4.3) holding for $r_{0} \leq p$.
$S_{7}^{*}:$ Uniform asymptotic stable, if there exist functions $a \in K$ and $b \in L$ and a number $p>0$ such that

$$
\begin{equation*}
r\left(t, t_{0}, r_{0}\right) \leq a\left(r_{0}\right) b\left(t-t_{0}\right) \tag{4.4}
\end{equation*}
$$

for all $t \geq t_{0}, r\left(t, t_{0}, r_{0}\right)$ being any solution of (3.2), the inequality (4.4) holding for $r_{0} \leq p$.

Note

These definitions correspond to S_{1}, S_{3}, S_{5} and S_{7} of definitions (2.5). To prove strict results we require the following properties of the solution of the equation (3.7).

Properties 4.1.

$\mathbf{S}_{\mathbf{2}}^{*}$: There exists a function $a \in K^{*}$ such that for any solution $u\left(t, t_{0}, u_{0}\right)$ of (3.7) with

$$
\begin{equation*}
u_{0} \leq q, q>0, u\left(t, t_{0}, u_{0}\right) \geq a\left(t_{0}, u_{0}\right), \text { for all } t \geq t_{0} \tag{4.5}
\end{equation*}
$$

\boldsymbol{S}_{4}^{*} : There exists a function $a \in K$ such that for any solution $u\left(t, t_{0}, u_{0}\right)$ of (3.7) with

$$
\begin{equation*}
u_{0} \leq q, q>0, u\left(t, t_{0}, u_{0}\right) \geq a\left(u_{0}\right) \text { for all } t \geq t_{0} \tag{4.6}
\end{equation*}
$$

$\mathbf{S}_{\mathbf{6}}^{*}$: There exists a functions $a \in K^{*}$ and $b \in L^{*}$ such that for any solution $u\left(t, t_{0}, u_{0}\right)$ of (3.7) with

$$
\begin{equation*}
u_{0} \leq q, q>0, u\left(t, t_{0}, u_{0}\right) \geq a\left(t_{0}, u_{0}\right), b\left(t_{0}, t-t_{0}\right) \text { for all } t \geq t_{0} \tag{4.7}
\end{equation*}
$$

$\boldsymbol{S}_{\mathbf{8}}^{*}$: There exists a functions $a \in K$ and $b \in L$ such that for any solution $u\left(t, t_{0}, u_{0}\right)$ of (3.7) with

$$
\begin{equation*}
u_{0} \leq q, q>0, u\left(t, t_{0}, u_{0}\right) \geq a\left(u_{0}\right) b\left(t-t_{0}\right) \text { for all } t \geq t_{0} \tag{4.8}
\end{equation*}
$$

Note: $S_{2}^{*}, S_{4}^{*}, S_{6}^{*}$ and S_{8}^{*} do not reflect the properties corresponding to S_{2}, S_{4}, S_{6} and S_{8} of definitions (2.5).

Theorem 4.1. Assume the existence of a function $V \in$ $C\left(I X A(E), R_{+}\right)$satisfying-
(1) the hypothesis (1) of theorem (3.3) and
(2) the inequality (3.3).

Then the equistability of the trivial solution of (3.2) implies the equistability of the set A with respect to the g.d.s.
Proof. Given $t_{0} \in I$, since the trivial solution of (3.2) is equistable, there exists $a_{1} \in K^{*}$ and a positive number p such that

$$
\begin{equation*}
r_{0} \leq p \tag{i}
\end{equation*}
$$

implies $\quad r\left(t, t_{0}, r_{0}\right) \leq a_{1}\left(t_{0}, r_{0}\right)$ for all $t \geq t_{0}$
$a_{1} \in K^{*}$, where $r\left(t, t_{0}, r_{0}\right)$ is any solution of (3.2) through $\left(t_{0}, r_{0}\right)$.

Due to the properties of the function a in the inequality (3.11)
$\left(\right.$ viz., $b(d(X, A)) \leq V(t, X) \leq a(t, d(X, A)), a \in K^{*}$ and $\left.b \in K\right)$ there exists a number $p_{1} \equiv p_{1}\left(t_{0}, p\right)>0 \quad$ such that $d\left(X_{0}, A\right) \leq p_{1}$ and $a\left(t_{0}, d\left(X_{0}, A\right)\right) \leq p$ (iii), hold simultaneously. Choosing $V\left(t_{0}, X_{0}\right) \leq$ $a\left(t_{0}, d\left(X_{0}, A\right)\right)=r_{0}$ and letting $d\left(X_{0}, A\right) \leq p_{1}$, step (iii) above implies the verification of step (i) so that step (ii) holds.

The choice of r_{0} and the theorem (3.1) show that

$$
\begin{aligned}
V\left(t, F\left(t, t_{0}, X_{0}\right)\right) & \leq r_{\max }\left(t, t_{0}, r_{0}\right) \\
& \leq r_{\max }\left(t, t_{0}, a\left(t_{0}, d\left(X_{0}, A\right)\right)\right)
\end{aligned}
$$

so that

$$
\begin{aligned}
b\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \leq V\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \leq r_{\max }\left(t, t_{0}, a\left(t_{0}, d\left(X_{0}, A\right)\right)\right) \\
& \leq a_{1}\left(t_{0}, a\left(t_{0}, d\left(X_{0}, A\right)\right)\right)
\end{aligned}
$$

implying $d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq b^{-1} a_{1}\left(t_{0}, a\left(t_{0}, d\left(X_{0}, A\right)\right)\right)$ putting $a_{2}=b^{-1} a_{1} \in K^{*}, d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq$ $a_{2}\left(t_{0}, a\left(t_{0}, d\left(X_{0}, A\right)\right)\right)=a_{3}\left(t_{0}, d\left(X_{0}, a\right)\right)$ where $a_{3} \in K^{*}$.
Hence A is equistable with respect to the g.d.s.

Theorem 4.2. Assuming the hypotheses of theorem (4.1) with (3.13) replacing (3.11), the uniform stability of the trivial solution of (3.2) implies the uniform stability of the set A with respect to the g.d.s.

Proof. The trivial solution of (3.2) being uniformly stable, there exists $a_{1} \in K$ and a positive number $p>0$ such that $r_{0} \leq p$
(i) implies that $r\left(t, t_{0}, r_{0}\right) \leq a_{1}\left(r_{0}\right)$
(ii) for all $t \geq t_{0}, r\left(t, t_{0}, r_{0}\right)$ being any solution of (3.2) through $\left(t_{0}, r_{0}\right)$.
Due to the properties of function a in (3.13)

$$
(\operatorname{viz} ., b(d(X, A)) \leq V(t, X) \leq a(d(X, A)), a, b \in K)
$$

there exists a number $p_{1}=p_{1}(p)>0$ such that $d\left(X_{0}, A\right) \leq$ p_{1} and $a(d(X, A)) \leq p$ (iii) hold simultaneously. Choosing $V\left(t_{0}, X_{0}\right) \leq a\left(d\left(X_{0}, A\right)\right)=r_{0}$ and letting $d\left(X_{0} . A\right) \leq p_{1}$. (iii) implies the verification of (i) so that (ii) holds.

The choice of r_{0} and the theorem (3.1) show that

$$
\begin{aligned}
V\left(t, F\left(t, t_{0}, X_{0}\right)\right) & \leq r_{\max }\left(t, t_{0}, r_{0}\right) \\
& \leq a_{1}\left(a\left(d\left(X_{0}, A\right)\right)\right), \text { so that } \\
b\left(d\left(F\left(b, t_{0}, X_{0}\right), A\right)\right) & \leq V\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \leq a_{1}\left(a\left(d\left(X_{0}, A\right)\right)\right) \\
& =a_{2}\left(d\left(X_{0}, A\right)\right) \text { where } a_{2}=a_{1} a \in K
\end{aligned}
$$

implying $\quad d\left(F\left(t, t_{0}, X_{0}\right), A\right) b^{-1} a_{2}\left(d\left(X_{0}, A\right)\right)=a_{3}\left(d\left(X_{0}, A\right)\right)$ where

$$
a_{3}=b^{-1} a_{2} K .
$$

Hence A is uniformly stable with respect to the g.d.s.

Theorem 4.3. Assume that the conditions of theorem (4.1) are satisfied. Also let there exist a function $V_{2} \in C\left(I X A(E), R_{+}\right)$satisfying the theorem (3.2) and the condition (3.12) of theorem (3.4). Then S_{1}^{*} (Equistability of the trivial solution of the equation (3.2)) together with S_{2}^{*} imply the equistrict stability of the set A with respect to the g.d.s.
Proof. As the conditions of theorem (4.1) hold with S_{1}^{*}, for $d\left(X_{0}, A\right) \leq p_{1}, p_{1}>0$ implies the conclusion of the theorem (4.1) that $d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a_{3}\left(t_{0}, d\left(X_{0}, A\right)\right)$ (i) for all $t \geq t_{0}$, where $a_{3} \in K^{*}$.

As S_{2}^{*} holds, there exists a number $q>0$ such that for $u_{0} \leq$ $q, u\left(t, t_{0}, u_{0}\right) \geq a_{4}\left(t_{0}, u_{0}\right)$ (ii) where $a_{4} \in K^{*}$ and $t \geq$ $t_{0}, u\left(t, t_{0}, u_{0}\right)$ being any solution of the equation (3.7). From (3.12) and the properties of the function $b_{1} \in K^{*}$, there exists a number $q_{1}=q_{1}\left(t_{0}, q\right)>0$ such that $d\left(X_{0}, A\right) \leq q_{1}$
and $b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right) \leq q$ hold simultaneously. Define $q_{2}=$ $\min \left(p_{1}, q_{1}\right)$.

Then (i) above holds for all X_{0} such that $d\left(X_{0}, A\right) \leq q_{2}$. Choose u_{0} so that $V_{2}\left(t_{0}, X_{0}\right) \geq b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right)=u_{0}$. Then from the theorem (3.2)

$$
\begin{align*}
V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) & \geq u_{\min }\left(t, t_{0}, u_{0}\right) \\
& =u_{\min }\left(t, t_{o}, b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right)\right) \tag{iii}
\end{align*}
$$

It follows from (3.12), (iii) and (ii) above, that

$$
\begin{align*}
a_{1}\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \geq V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \geq a_{4}\left(t_{0}, b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right)\right) \\
& =a_{5}\left(t_{0}, d\left(X_{0}, A\right)\right) \tag{iv}
\end{align*}
$$

Therefore

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \geq a^{-1}, a_{5}\left(t_{0}, d\left(X_{0}, A\right)\right)=a_{6}\left(t_{0}, d\left(X_{0}, A\right)\right) \tag{v}
\end{equation*}
$$

for all $t \geq t_{0}$, where $a_{6} \in K^{*}$.
(i) and (iv) together imply the equistrict stability of A with respect to the g.d.s.

Theorem 4.4. Let the assumptions of theorems (4.2) and (4.3) hold with the condition (3.12) replaced by

$$
\begin{equation*}
b_{3}(d(X, A)) \leq V_{2}(t, X) \leq a_{3}(d(X, A)) \tag{4.9}
\end{equation*}
$$

where a_{3} and $b_{3} \in K$. Then S_{3}^{*} (uniform stability of the trivial solution of the equation (3.2)) together with S_{4}^{*} imply the uniform strict stability of the set A with respect to the g.d.s.
Proof. As the conditions of theorem (4.2) are valied with S_{3}^{*}, for $d\left(X_{0}, A\right) \leq p_{1}, p_{1}>0$, the conclusion of theorem (4.2) is immediate:

$$
\begin{equation*}
\text { viz., } d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a_{3}\left(d\left(X_{0}, A\right)\right) \tag{i}
\end{equation*}
$$

for all $t \leq t_{0}$, where $a_{3} \in K$.
As S_{4}^{*} holds, there exists a number $q>0$ such that for

$$
\begin{equation*}
u_{0} \leq q, u\left(t, t_{0} \cdot u_{0}\right) \geq a_{4}\left(t_{0}, u_{0}\right) \tag{ii}
\end{equation*}
$$

where $a_{4} \in K$ and $t \geq t_{0}, u\left(t, t_{0}, u_{0}\right)$ being any solution of the equation (3.7). From (4.9) and the properties of $b_{3} K$, there exists a number $q_{1}=q_{1}(q)>0$ such that $d\left(X_{0}, A\right) \leq q_{1}$ and $b_{3}\left(d\left(X_{0}, A\right)\right) \leq q$ hold simultaneously.
Define $q_{2}=\min \left(p_{1}, q_{1}\right)$. Then (i) above holds for all X_{0} such that $d\left(X_{0}, A\right) \leq q_{2}$.
Then from theorem (3.2)

$$
\begin{equation*}
V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \geq u_{\min }\left(t, t_{0}, u_{0}\right)=u_{\min }\left(t, t_{0}, b_{3}\left(d\left(X_{0}, A\right)\right)\right) \tag{iii}
\end{equation*}
$$

It follows from (4.9), (iii) and (ii) above that

$$
\begin{align*}
a_{3}\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \geq V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& =a_{4}\left(u_{0}\right)=a_{4}\left(b_{3}\left(d\left(X_{0}, A\right)\right)\right) \\
& =a_{5}\left(d\left(X_{0}, A\right)\right) \tag{iv}
\end{align*}
$$

Therefore

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \geq a_{3}^{-1} a_{5}\left(d\left(X_{0}, A\right)\right)=a_{6}\left(d\left(X_{0}, A\right)\right) \tag{v}
\end{equation*}
$$

for all $t \geq t_{0}$, where $a_{6} \in K$
(i) and (v) together imply the uniform strict stability of the set A with respect to the g.d.s.

Theorem 4.5. Let the assumptions of theorem (4.1) hold. Then the equiasymptotic stability of the trivial solution of the equation (3.2) implies the equiasymptotic stability of the set A with respect to the g.d.s.

Proof. Let $t_{o} \in I$ be given. As the trivial solution of the equation (3.2) is equiasymptotically stable, there exist functions $a_{1} \in K^{*}$ and $b_{1} \in L^{*}$ and a number $p>0$ such that

$$
\begin{equation*}
r_{0} \leq p \tag{i}
\end{equation*}
$$

implies that $\quad r\left(t, t_{0}, r_{0}\right) \leq a_{1}\left(t_{0}, r_{0}\right) b_{1}\left(t_{0}, t-t_{0}\right)$
for all $t \leq t_{0}$, where $r\left(t, t_{0}, r_{0}\right)$ is a solution of the equation (3.2). As in the proofs of earlier theorems we can determine a number $p_{1}=p_{1}\left(t_{0}, p\right)>0$ such that $d\left(X_{0}, A\right) \leq p_{1}$ and $a\left(t_{0}, d\left(X_{0}, A\right)\right) \leq p$ hold simultaneously.
Let X_{0} be such that $d\left(X_{0}, A\right) \leq p_{1}$ and choose

$$
V\left(t_{0}, X_{0}\right) \leq a\left(t_{0}, d\left(X_{0}, A\right)\right)=r_{0}
$$

The choice of r_{0} verifies (i); thus (ii) holds. From theorem (3.1). (ii) and the inequality (3.11) it follows

$$
\begin{aligned}
b\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \leq V\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \leq r\left(t, t_{0}, a\left(t_{0}, d\left(X_{0}, A\right)\right)\right) \\
& \leq a_{1}\left(t_{0}, a\left(t_{0}, d\left(X_{0}, A\right)\right)\right) b_{1}\left(t_{0}, t-t_{0}\right) \\
& \leq a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right) b_{1}\left(t_{0}, t-t_{0}\right)
\end{aligned}
$$

Hence

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq b^{-1}\left(a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right) b_{1}\left(t_{0}, t-t_{0}\right)\right) \tag{iii}
\end{equation*}
$$

Now $b_{1} \in L^{*}$; hence $b_{1}\left(t_{0}, t-t_{0}\right) \leq b_{1}\left(t_{0}, 0\right)$.
Then from (iii) above,

$$
\begin{align*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) & \leq b^{-1}\left(a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right) b_{1}\left(t_{0}, 0\right)\right) \\
& \leq b^{-1} a_{3}\left(t_{0}, d\left(X_{0}, A\right)\right) \\
& \leq a_{4}\left(t_{0}, d\left(X_{0}, A\right)\right) \text { where } a_{4} k^{*} \tag{iv}
\end{align*}
$$

Also from (iii) above and the fact $d\left(X_{0}, A\right) \leq p_{1}$

$$
\begin{align*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) & \leq b^{-1}\left(a_{2}\left(t_{0}, p_{1}\right) b_{1}\left(t_{0}, t-t_{0}\right)\right) \\
& \leq b^{-1}\left(b_{2}\left(t_{0}, t-t_{0}\right)\right) \\
& \leq b_{3}\left(t_{0}, t-t_{0}\right) \text { where } b_{3} \in L^{*} \tag{v}
\end{align*}
$$

Combining (iv) and (v)

$$
\begin{align*}
& \quad d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq\left[a_{4}\left(t_{0}, d\left(X_{0}, A\right) b_{3}\left(t_{0}, t-t_{0}\right)\right)\right]^{1 / 2} \\
& \text { or } \quad d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a_{5}\left(t_{0}, d\left(X_{0}, A\right) b_{4}\left(t_{0}, t-t_{0}\right)\right) \tag{vi}
\end{align*}
$$

where $a_{5} \in K^{*}$ and $b_{4} \in L^{*}$. This means that A is equiasymptotically stable with respect to the g.d.s.

Theorem 4.6. Let the assumptions of theorem (4.3) hold. Them S_{5}^{*} (i.e., equi-asymptotic stability of the trivial solution of the equation (3.2)) together with S_{6}^{*} imply equistrict asymptotic stability of the set A with respect to the g.d.s.

Proof. The assumptions of theorem (4.3) include those of theorem (4.1). Thus the theorem (4.5) holds. Hence for $d\left(X_{0}, A\right) \leq$ $p_{1}, p_{1}>0$, the conclusion (vi) of the previous theorem holds.

Since S_{6}^{*} is given, there exists a number $p_{2}>0$ such that

$$
\begin{equation*}
u_{0} \leq p_{2} \text { imples } u\left(t, t_{0}, u_{0}\right) \geq c\left(t_{0}, u_{0}\right) d\left(t_{0}, t-t_{0}\right) \tag{i}
\end{equation*}
$$

for all $t \geq t_{0}$, where $c \in K^{*}$ and $d \in L^{*}, u\left(t, t_{0}, u_{0}\right)$ being a solution of the equation (3.7).

As before from the inequality (3.12) and the properties of b_{1}, we determine a number $p_{3}=p_{3}\left(p_{2}, t_{0}\right)>0$ such that $d\left(X_{0}, A\right) \leq p_{3}$ and $b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right) \leq p_{2}$ hold simultaneously.

Let $p_{4}=\min \left(p_{1}, p_{3}\right)$.
Thus for $d\left(X_{0}, A\right) \leq p_{4}$, the conclusion (vi) of the previous theorem (4.5) and the step (i) (in this theorem) are both satisfied.

Now choose u_{0} such that

$$
V_{2}\left(t_{0}, X_{0}\right) \geq b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right)=u_{0}
$$

Them from the inequality (3.12), theorem (3.2), (i) above and (vi) of the previous theorem (4.5), it follows that

$$
\begin{aligned}
a_{1}\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \geq V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \geq u\left(t, t_{0}, b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right)\right) \\
& \geq c\left(t_{0}, b_{1}\left(t_{0}, d\left(X_{0}, A\right)\right)\right) d\left(t_{0}, t-t_{0}\right)
\end{aligned}
$$

implying

$$
\begin{align*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) & \geq a_{1}^{-1}\left[c\left(t_{0}, b_{1}\left(t_{0}, d\left(X_{0}, A\right) d\left(t_{0}, t-t_{0}\right)\right)\right)\right] \\
& \geq c_{1}\left(t_{0}, d\left(X_{0}, A\right) d_{1}\left(t_{0}, t-t_{1}\right)\right) \tag{ii}
\end{align*}
$$

where $c_{1} \in K^{*}$ and $d_{1} \in L^{*}$.
The conclusion (vi) of the previous theorem (which has already been seen to hold) and (ii) above, imply that the set A is equistrict asymptotic stable with respect to the g.d.s.

Theorem 4.7. Let the assumptions of theorem (4.2) hold. Then the uniform asymptotic stability of the trivial solution of the equation (3.2) implies the uniform asymptotic stability of the set A with respect to the g.d.s.

Proof. The trivial solution of the equation (3.2) is uniform asymptotic stable. Therefore, there exists a number $p>0$ such that

$$
\begin{equation*}
r_{0} \leq p \tag{i}
\end{equation*}
$$

implies

$$
\begin{equation*}
r\left(t, t_{0}, r_{0}\right) \leq a_{1}\left(r_{0}\right) b_{1}\left(t-t_{0}\right) \tag{ii}
\end{equation*}
$$

where $a_{1} \in K$ and $b_{1} \in L$, for all $t \geq t_{0}, r\left(t, t_{0}, r_{0}\right)$ being a solution of the equation (3.2).

As in the proofs of earlier theorems (See theorem (4.5)) we can determine $p_{1}=p_{1}(p)>0$ such that $d\left(X_{0}, A\right) \leq p_{1}$ and $a\left(d\left(X_{0}, A\right)\right) \leq p, a \in K$ hold simultaneously.

Let X_{0} be such that $d\left(X_{0}, A\right) p_{1}$ and choose r_{0} such that $V\left(t_{0}, X_{0}\right) \leq a\left(d\left(X_{0}, A\right)\right)=r_{0}$. The choice of r_{0} verifies (i) from which (ii) is implied. From theorem (3.1), (ii) above and the in-
equality (3.15) it follows that

$$
\begin{aligned}
b\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) \leq & \leq\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
\leq & r\left(t, t_{0}, r_{0}\right) \\
\leq & r\left(t, t_{0}, a\left(d\left(X_{0}, A\right)\right)\right) \\
\leq & a_{1}\left(a d\left(X_{0}, A\right)\right) b_{1}\left(t-t_{0}\right) \\
\leq & a_{2}\left(d\left(X_{0}, A\right) b_{1}\left(t-t_{0}\right)\right) \\
& \quad \text { where } a_{2}=a_{1} a \in K .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) & \leq b^{-1}\left(a_{2}\left(d\left(X_{0}, A\right)\right) b_{1}\left(t-t_{0}\right)\right) \tag{iii}\\
& \leq b^{-1}\left(a_{2}\left(d\left(X_{0}, A\right) b_{1}(0)\right)\right)
\end{align*}
$$

since $b_{1}\left(t-t_{0}\right) \leq b_{1}(0)$, so that

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a_{3}\left(d\left(X_{0}, A\right)\right), a_{3} \in K \tag{iv}
\end{equation*}
$$

Also from (iii) above, and $d\left(X_{0}, A\right) \leq p_{1}, a_{2} \in K$,

$$
\begin{align*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) & \leq b^{-1}\left(a_{2}\left(p_{1}\right) b_{1}\left(t-t_{0}\right)\right)=b^{-1}\left(b_{2}\left(t-t_{0}\right)\right) \\
& \leq b_{3}\left(t-t_{0}\right) \text { where } b_{3}=b^{-1} b_{2} \in L \tag{v}
\end{align*}
$$

(iv) and (v) together imply

$$
\begin{align*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) & \leq\left[a_{3}\left(d\left(X_{0}, A\right)\right) b_{3}\left(t-t_{0}\right)\right]^{1 / 2} \\
& \leq a_{4}\left(d\left(X_{0}, A\right)\right) b_{4}\left(t-t_{0}\right) \tag{vi}
\end{align*}
$$

where $a_{4} \in K$ and $b_{4} \in L$.
Thus the set A is uniform asymptotic stable with respect to the g.d.s.

Theorem 4.8. Let the assumptions of theorem (4.4) hold. Then S_{7}^{*} (the uniform asymptotic stability of the trivial solution of the equation (3.2)) together with S_{8}^{*} implies the uniform strict asymptotic stability of the set A with respect to the g.d.s.

Proof. The assumptions of the theorem (4.4) include those of theorems (4.2) and (4.3) with the inequality (4.9) (viz., $b_{3}(d(X, A)) \leq$ $V_{2}(t, X) \leq a_{3}(d(X, A))$) replacing (3.12). Theorem (4.7) holds.
Hence, for $d\left(X_{0}, A\right) \leq p_{1}$, the conclusion (vi) of the previous theorem (4.7) holds.
Because of S_{8}^{*}, for any solution $u\left(t, t_{0}, u_{0}\right)$ of the equation (3.7), there exists $p_{2}>0$ such that $u_{0} \leq p_{2}$ implies

$$
\begin{equation*}
u\left(t, t_{0}, u_{0}\right) \geq a\left(u_{0}\right) b\left(t-t_{0}\right), \text { for all } t \geq t_{0} \tag{i}
\end{equation*}
$$

where $a \in K$ and $b \in L$.
From (4.9) and the properties of b_{3}, we define $p_{3}=p_{3}\left(p_{2}\right)>0$ such that $d\left(X_{0}, A\right) \leq p_{3}$ and $b_{3}\left(d\left(X_{0}, A\right)\right) \leq p_{2}$ hold simultaneously.

Let $p_{4}=\min \left(p_{1}, p_{3}\right)$. Thus $d\left(X_{0}, A\right) \leq p_{4}$, (4.9) and (i) above are satisfied.

Now choose u_{0} such that $V_{2}\left(t_{0}, X_{0}\right) \geq b_{3}\left(d\left(X_{0}, A\right)\right)=u_{0}$. Then from theorem (3.2), (i) above and the inequality (4.9).

$$
\begin{aligned}
a_{3}\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \geq V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \geq u\left(t, t_{0}, b_{3}\left(d\left(X_{0}, A\right)\right)\right) \\
& \geq a\left(b_{3}\left(d\left(X_{0}, A\right)\right) b\left(t-t_{0}\right)\right) \\
& \geq a_{1}\left(d\left(X_{0}, A\right) b\left(t-t_{0}\right)\right), a_{1} \in K .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \geq a_{3}^{-1}\left(a_{1}\left(d\left(X_{0}, A\right) b\left(t-t_{0}\right)\right)\right) \tag{ii}
\end{equation*}
$$

The conclusion (vi) of the previous theorem (4.7) together with (ii) above implies the uniform strict asymptotic stability of the set A with respect to the g.d.s.

5. CONVERSE THEOREMS(ON THE EXISTENCE OF LYAPUNOV FUNCTIONS IN A REVERSIBLE DYNAMICAL SYSTEM)

From the definition (2.2) it follows that a g.d.s. in which $X=$ $F\left(t, t_{0}, X_{0}\right)$ iff $X_{0}=F\left(t_{0}, t, X\right)$ is called a Reversible Dynamical System in E, which we henceforth denote by r.d.s.
In theorems that follow, the converse theorems in which the existence of V-function is sought are proved in r.d.s.
Theorem 5.1. If a set A is equistrict stable with respect to a r.d.s. in E, then there exists a V-function satisfying all the assumptions of theorem (3.4) (i.e., the V-function satisfies (1) and (2) of theorem (3.3) as well as the inequality (3.12) in which V_{2} is replaced by V).

Proof. Let us define $V(t, X)=d\left(F\left(t_{0}, t, X\right), A\right), t_{0} \in I . V \in$ $C\left(I X A(E), R_{+}\right)$follows from the continuity of the flow F. By the reversibility condition we have $X=F\left(t, t_{0}, F\left(t_{0}, t, X\right)\right)$.
Equivalently $X=F\left(t, t_{0}, X_{0}\right)$ iff $X_{0}=F\left(t_{0}, t, X\right)$.
By the equistrict stability of the set A with respect to the r.d.s., there exist $a_{1}, a_{2} \in K^{*}$, satisfying

$$
a_{1}\left(t_{0}, d\left(X_{0}, A\right)\right) \leq d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right)
$$

i.e., $\quad a_{1}\left(t_{0}, d\left(F\left(t_{0}, t, X\right), A\right)\right) \leq d\left(F\left(t, t_{0}, F\left(t_{0}, t, X\right)\right), A\right)$

$$
\leq a_{2}\left(t_{0}, d\left(F\left(t_{0}, t, X\right), A\right)\right)
$$

With what we have defined as V,

$$
a_{1}\left(t_{0}, V(t, X)\right) \leq d(X, A) \leq a_{2}\left(t_{0}, V(t, X)\right)
$$

Equivalently,

$$
a_{1}\left(t_{0}, d\left(X_{0}, A\right)\right) \leq d(X, A) \leq a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right)
$$

implying $\quad d\left(X_{0}, A\right) \leq a_{1}^{-1}\left(t_{0}, d(X, A)\right)$
and $\quad d\left(X_{0}, A\right) \leq a_{2}^{-1}\left(t_{0}, d(X, A)\right)$
or $\quad a_{2}^{-1}\left(t_{0}, d(X, A)\right) \leq d\left(X_{0}, A\right) \leq a_{1}^{-1}\left(t_{0}, d(X, A)\right)$.
The inequality (3.12) is thus verified, since $a_{1}^{-1}, a_{2}^{-1} \in K^{*}$.
Now for $h>0$,

$$
\begin{aligned}
V\left(t+h, F\left(t+h, t_{0}, X_{0}\right)\right) & =d\left(F\left(t_{0}, t+h, F\left(t+h, t_{o}, X_{0}\right)\right), A\right) \\
& =d\left(X_{0}, A\right)
\end{aligned}
$$

so that

$$
V\left(t+h, F\left(t+h, t_{0}, X_{0}\right)\right)-V\left(t, F\left(t, t_{0}, X_{0}\right)\right)=0
$$

Thus

$$
\left.\begin{array}{rl}
& D^{+} V(t, X)
\end{array}=0\right\}
$$

which verifies the inequalities (3.3) and (3.8) with the functions of g and h identically vanishing.

Theorem 5.2. If the set A is uniform strict stable for the r.d.s. in E, then there exists a V-function satisfying the assumptions of theorem (3.6).

Proof. Define $V(t, X)=d(F(O, T, X), A)$. Equivalently, $V(t, X)=d\left(X_{0}, A\right)$. Clearly $V \in d\left(I X A(E), R_{+}\right)$.

$$
\begin{aligned}
a_{1}\left(d\left(X_{0}, A\right)\right) & \leq d\left(F\left(t, O, X_{0}\right), A\right) \leq a_{2}\left(d\left(X_{0}, A\right)\right) \\
a_{1}(V(t, X)) & \leq d(X, A) \leq a_{2}(V(t, X)) \\
& \text { since } X=F\left(t, O, X_{0}\right)
\end{aligned}
$$

or

This implies

$$
a_{2}^{-1}(d(X, A)) \leq V(t, X) \leq a_{1}^{-1}(d(X, A))
$$

where $a_{1}^{-1}, a_{2}^{-1} \in K$.
Thus (3.14) of theorem (3.6) is verified.
Now for $h>0$,

$$
\begin{aligned}
V\left(t+h, F\left(t+h, O, X_{0}\right)\right) & =d(F(O, t+h, X), A) \\
& =d\left(F\left(O, t+h, F\left(t+h, O, X_{0}\right)\right), A\right) \\
& =d\left(X_{0}, A\right)
\end{aligned}
$$

Also $V\left(t, F\left(t, O, X_{0}\right)\right)=d\left(X_{0}, A\right)$.
Hence $D^{+} V(t, X)=0=D^{-} V(t, X)$, which satisfy (3.3) and (3.8), with the functions g and h identically vanishing. i.e., V satisfies (3.5) and (3.10) simultaneously.

Theorem 5.3. Assume that -

(1) the set A is uniformly strict stable, so that for some $p>0$, $d\left(X_{0}, A\right) \leq p$ implies

$$
\begin{equation*}
a_{1}\left(d\left(X_{0}, A\right)\right) \leq d\left(F\left(t, O, X_{0}\right), A\right) \leq a_{2}\left(d\left(X_{0}, A\right)\right) \tag{5.1}
\end{equation*}
$$

where $a_{1}, a_{2} \in K$.
(2) Let $g \in C\left(I X R_{+}, R_{+}\right), g(t, O)=0$ and that the trivial solution of $r^{\prime}=g(t, r)$ is uniformly strictly stable, so that for $u_{0} \leq p, p>0$

$$
\begin{equation*}
b_{1}\left(u_{0}\right) \leq u\left(t, O, u_{0}\right) \leq b_{2}\left(u_{0}\right) \tag{5.2}
\end{equation*}
$$

where $b_{1}, b_{2} \in K$ and $u\left(t, O, u_{0}\right)$ is any solution of

$$
\begin{equation*}
r^{\prime}=g(t, \gamma) \text { with } u(O)=u_{0} \tag{5.3}
\end{equation*}
$$

Then there exists a function $V=V(t, X)$ such that
(i) $V=V(t, X) \in C\left(I X S(A, \delta), R_{+}\right)$
(ii) $b(d(X, A)) \leq V(t, X) \leq a(d(X, A))$ for $(t, X) \in$ $I X S(A, \delta)$ and $a, b \in K$.
(iii) $D^{+} V(t, X)=D^{-} V(t, X)=g(t, V(t, X))$, for all $t \geq t_{0}$, for which $X S(A, \delta)$.

Proof. Due to the reversibility of the system

$$
X_{0}=F(O, t, X) \text { iff } X=F\left(t, O, X_{0}\right)
$$

Choose any function $\mu \in C\left(S(A, \delta), R_{+}\right)$such that

$$
\begin{equation*}
c_{1}(d(X, A)) \leq \mu(X) \leq c_{2}(d(X, A)) \tag{5.4}
\end{equation*}
$$

where $c_{1}, c_{2} \in K$.
Define

$$
\begin{equation*}
V(t, X)=u(t, O, \mu(F(O, t, X))) \tag{5.5}
\end{equation*}
$$

where $u\left(t, 0, u_{0}\right)$ is a solution of the eq.(5.4)
Due to the continuity of μ_{1}, (i) follows.
Also for $(t, X) \in I X S(A, \delta)$, we have

$$
\begin{aligned}
V(t, X) & =u(t, O, \mu(F(O, t, X))) \\
& \leq b_{2}(\mu(F(O, t, X))) \\
& \leq b_{2} c_{2}(d(F(O, t, X), A))=b_{2} c_{2} d\left(X_{0}, A\right) \\
\text { and } \quad d\left(X_{0}, A\right) & \leq a_{1}^{-1} d\left(F\left(t, O, X_{0}\right), A\right)=a_{1}^{-1}(d(X, A))
\end{aligned}
$$

Hence

$$
V(t, X) \leq b_{2} c_{2} a_{1}^{-1}(d(X, A))=a(d(X, A))
$$

where $a=b_{2} c_{2} a_{1}^{-1} \in K$.
Again,

$$
\begin{aligned}
V(t, X) & =u(t, O, \mu(F(O, t, X))) \\
& \geq b_{1} \mu(F(O, t, X)) \\
& \geq b_{1} c_{1} d(F(O, t, X), A) \\
& \geq b_{1} c_{1} a_{2}^{-1} d(X, A)=b(d(X, A)) \text { where } b=b_{1} c_{1} a_{2}^{-1} \in K
\end{aligned}
$$

Thus, $b(d(X, A)) \leq V(t, X) \leq a(d(X, A))$, which proves (ii).
Finally, so long as $F\left(t, t_{0}, X_{0}\right) \in S(A, \delta)$, we have

$$
V\left(t, F\left(t, t_{0}, X_{0}\right)\right)=u\left(t, O, \mu\left(F\left(O, t, F\left(t, t_{0}, X_{0}\right)\right)\right)\right)
$$

Hence

$$
\begin{aligned}
V\left(t+h, F\left(t+h, t_{0}, X_{0}\right)\right) & =u\left(t+h, O, \mu\left(F\left(O, t+h, F\left(t+h, t_{0}, X_{0}\right)\right)\right)\right) \\
& =u\left(t+h, O, \mu\left(F\left(O, t, F\left(t, t_{0}, X_{0}\right)\right)\right)\right)
\end{aligned}
$$

Consequently,

```
D+V(t,F(t,\mp@subsup{t}{0}{},\mp@subsup{X}{0}{}))=\mp@subsup{D}{}{-}V(t,F(t,\mp@subsup{t}{0}{},\mp@subsup{X}{0}{}))
    = lim
                                    -u(t,O,\mu(F(O,t,F(t,\mp@subsup{t}{0}{},\mp@subsup{X}{0}{}))))}]
    = u'}(t,O,\mu(O,t,F(t,\mp@subsup{t}{0}{},\mp@subsup{X}{0}{}))
    =g(t,V(t,F(t,\mp@subsup{t}{0}{},\mp@subsup{X}{0}{})))
```

due to the differentiability of u. Thus (iii) is proved. This establishes the throrem showing the existence of a V-function in place of V_{1}, V_{2} of theorem (4.4).

Theorem 5.4. Suppose that

(1) The set A is strict uniform asymptotic stable with respect to the r.d.s. on E. i.e., for all $t \in I$ and $X_{0} \in S(A, \delta)$,

$$
\begin{equation*}
a_{1}\left(d\left(X_{0}, A\right)\right) b_{1}(t) \leq d\left(F\left(t, O, X_{0}\right), A\right) \leq a_{2}\left(d\left(X_{0}, A\right)\right) b_{2}(t) \tag{5.6}
\end{equation*}
$$

where $a_{i} \in K$ and $b_{i} \in L, i=(1,2)$.
(2) $g \in C\left(I X R_{+}, R_{+}\right), g(t, O)=0$ ensures the existence, uniqueness and continuous dependance of solutions of $r^{\prime}=$ $g(t, r)$ on initial conditions and the trivial solution of the equation is strict uniform asymptotic stable. i.e., there exists functions $a_{3}, a_{4} \in K$ and $b_{3}, b_{4} \in L$ such that

$$
\begin{equation*}
a_{3}\left(u_{0}\right) b_{3}(t) \leq u\left(t, O, u_{0}\right) \leq a_{4}\left(u_{0}\right) b_{4}(t) \tag{5.7}
\end{equation*}
$$

for all $t \in I, u\left(t, O, u_{0}\right)$ being a solution of $r^{\prime}=g(t, r)$ through $\left(O, u_{0}\right)$.
(3) a_{3} is differentiable and $a_{3}^{\prime}(r) \leq \lambda>0$ for all $r \in R_{+}$.
(4) $b_{3}(t)=\lambda_{1} b_{2}(t), \lambda_{1}>0$ for all $t \in I$.

Then there exists a V-function satisfying-
(i) $V=V(t, X) \in c\left(I X S\left(A, \delta_{1}\right), R_{+}\right), \delta_{1}=a_{1}() b_{1}(O)$
(ii) for $(t, X) \in I X S\left(A, \delta_{1}\right)$

$$
\begin{equation*}
b(d(X, A)) \leq V(t, X) \leq a(t, d(X, A)), \text { for all } t \in I \tag{5.8}
\end{equation*}
$$

where $a \in K^{*}$ and $b \in L$ are defined on $\left[O, \delta_{1}\right]$
(iii) $D^{+} V(t, X)=D^{-} V(t, X)=g(t, V(t, X))$ for all $t \geq t_{0}$ for which $X=F\left(t, t_{0}, X_{0}\right) \in S\left(A, \delta_{1}\right)$.

Proof. Let $X \in S\left(A, \delta_{1}\right)$ and $X_{0}=F(O, t, X)$ so that $X=$ $F\left(t, O, X_{0}\right)$, by the reversibility condition.
By (5.6), $X_{0} \in S(A, \delta)$ implies $X \in S\left(A, \delta_{1}\right)$.
Choose any function $\mu \in c\left(S\left(A, \delta_{1}\right), R_{+}\right)$such that

$$
\begin{equation*}
a_{2}(d(X, A)) \leq \mu(X) \leq a_{5}(d(X, A)) \tag{i}
\end{equation*}
$$

where a_{2} is defined in (5.6) and $a_{5} \in k$
Define the Lyapunov function by

$$
\begin{equation*}
V(t, X)=u(t, O, \mu(F(O, t, X))) \tag{ii}
\end{equation*}
$$

As in theorem (5.3) V satisfies (i) and (iii) of the conclusions of the theorem and to complete the proof of the theorem the verification of (ii) alone is required.
$F(O, t, X)=X_{0}$. Hence from (5.6)

$$
a_{1}\left(d\left(X_{0}, A\right)\right) b_{1}(t) \leq d(X, A) \leq a_{2}\left(d\left(X_{0}, A\right)\right) b_{2}(t)
$$

so that

$$
\begin{equation*}
a_{2}^{-1}\left(\frac{d(X, A)}{b_{2}(t)}\right) \leq d\left(X_{0}, A\right) \leq a_{1}^{-1}\left(\frac{d(X, A)}{b_{1}(t)}\right) \tag{iii}
\end{equation*}
$$

Using (5.7), step (i) and step (iii) together with the assumptions (3) and (4) we have, since $V(t, X)=u(t, O(F(O, t, X)))$, by (ii)

$$
\begin{aligned}
& V(t, X) \geq a_{3}(\mu(F(O, t, X))) b_{3}(t) \\
& \geq a_{3}\left(a_{2}(d(F(O, t, X), A))\right) b_{3}(t) \\
& \geq a_{3}\left(a_{2}\left(d\left(X_{0}, A\right)\right)\right) b_{3}(t) \\
& \geq \geq a_{3}\left(a_{2} a_{2}^{-1}\left(\frac{d(X, A)}{b_{2}(t)}\right)\right) b_{3}(t) \\
& \quad=a_{3}\left(\frac{d(X, A)}{b_{2}(t)}\right) b_{3}(t)=\lambda_{1} a_{3}(d(X, A))=b(d(X, A))
\end{aligned}
$$

Thus $V(t, X) \geq b(d(X, A))$ when $b \in K$.
Similarly

$$
\begin{aligned}
V(t, X) & =u(t, O, \mu(F(O, t, X))) \\
& \leq a_{4}(\mu(F(O, T, X))) b_{4}(t) \\
& \leq a_{4}\left(a_{5} a_{1}^{-1}\left(\frac{d(X, A)}{b_{1}(t)}\right)\right) b_{4}(t) \\
& \leq a(t, d(X, A)) \text { where } a \in K^{*}
\end{aligned}
$$

Thus the conclusion (ii) is verified.

Remarks:

(1) While proving the sufficiency criteria in theorems (3.4), (3.6) and (4.4), two V-functions were used, because of the nature of inequalities (3.4) and (3.9). However, in theorems of this section (i.e., theorems (5.1) through (5.4)), a stronger result, in the form of a single Lyapunov function satisfying both conditions satisfied by individual functions of theorems (3.4), (3.6) and (4.4) is proved.
(2) Theorems (5.1), (5.2) and (5.3) are converse theorems for a r.d.s. on E wherein, the existance of a single Lyapunov function is established. But, theorem (5.4) is not a converse of theorem (4.6) or theorem (4.8), for, assuming uniform strict asymptotic stability for the set A, we have got a Lyapunov function that yields only equi-strict-asymptotic stability. Thus a weaker result is obtained.

6. CONDITIONAL INVARIANCY OF SET B WITH RESPECT TO SET A FOR A G.D.S. IN E

Definition 6.1. A set B is said to be conditionally invariant with respect to the set A for a g.d.s. in E, if $F\left(t, t_{0}, A\right) \subset B$ for all $t \geq t_{0}$.

Note: 1. If B is conditionally invariant with respect to A for a g.d.s. in E and $B \subset C$, then C is also conditionally invariant with respect to A. i.e., any super set to B is also conditionally invariant with respect to A. This is evident since $F\left(t, t_{0}, A\right) \subset B$ and $B \subset C$ implies $F\left(t, t_{0}, A\right) \subset C$.

Note: 2. An invariant set A for a g.d.s. in E is self invariant. (i.e., $F\left(t, t_{0}, A\right) \subset A$ for all $t \geq t_{0}$). If A is self invariant, then A is conditionally invariant with respect to any subset of A.
In the following, B is conditionally invariant with respect to A for the g.d.s. in E.

Definition 6.2. With respect to A, for the g.d.s. in E, B is said to be
(1) Equistable, if

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq a\left(t_{0}, d\left(X_{0}, A\right)\right) \tag{6.1}
\end{equation*}
$$

for all $t \geq t_{0}$, where $a \in K^{*}$.
(2) Equistrict stable, if
$a_{1}\left(t_{0}, d\left(X_{0}, B\right)\right) \leq d\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right)$
where $a_{1}, a_{2} \in K^{*}$, for all $t \geq t_{0}$.
(3) Uniform stable, if

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq a\left(d\left(X_{0}, A\right)\right) \tag{6.3}
\end{equation*}
$$

where $a \in K$, for all $t \geq t_{0}$.
(4) Uniform strict stable, if
$a_{1}\left(d\left(X_{0}, B\right)\right) \leq d\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq a_{2}\left(d\left(X_{0}, A\right)\right)$,
where $a_{1}, a_{2} \in K$, for all $t \geq t_{0}$.
(5) Equiasymptotic stable, if

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq a\left(t_{0}, d\left(X_{0}, A\right)\right) b\left(t_{0}, t-t_{0}\right) \tag{6.5}
\end{equation*}
$$

where $a \in K^{*}$ and $b \in L^{*}$, for all $t \geq t_{0}$.
(6) Uniform asymptotic stable, if

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq a\left(d\left(X_{0}, B\right)\right) b\left(t-t_{0}\right) \tag{6.6}
\end{equation*}
$$

where $a \in K$ and $b \in L$, for all $t \geq t_{0}$.
(7) Equistrict asymptotic stable, if

$$
\begin{align*}
a_{1}\left(t_{0}, d\left(X_{0}, B\right)\right) b_{1}\left(t_{0}, t-t_{0}\right) & \leq d\left(F\left(t, t_{0}, x_{0}\right), B\right) \\
& \leq a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right) b_{2}\left(t_{0}, t-t_{0}\right) \tag{6.7}
\end{align*}
$$

where $a_{1}, a_{2} \in K^{*}$ and $b_{1}, b_{2} \in L^{*}$, for all $t \geq t_{0}$.
(8) Uniform strict asymptotic stable, if

$$
\begin{align*}
a_{1}\left(d\left(X_{0}, B\right)\right) b_{1}\left(t-t_{0}\right) & \leq d\left(F\left(t, t_{0}, X_{0}\right), B\right) \\
& \leq a_{2}\left(d\left(X_{0}, A\right) b_{2}\left(t-t_{0}\right)\right) \tag{6.8}
\end{align*}
$$

where $a_{1}, a_{2} \in K$ and $b_{1}, b_{2} \in L$, for all $t \geq t_{0}$.

Remark:

In the above definitions, we use d^{*}, where $d^{*}(A, B)=$ $\sup \{d(a, B), a \in A\}, d(a, B)=\inf \{d(a, b), b \in B\}$ instead of the Hausdorff distance d defined as $d(A, B)=$ $\max \left\{d^{*}(A, B), d^{*}(B, A)\right\}$. In order to see the reason for this, let us suppose, that the Hausdorff distance d is used in the definition of, say, equistability of B with respect to A.

Then $X_{0}=A$ implies $d\left(F\left(t, t_{0}, A\right), B\right)=0$, since $a \in K^{*}$ and $d\left(X_{0}, A\right)=0$. In particular at $t=t_{0}$, this means $d(A, B)=$ 0 implying $A=B$. Thus the equistability condition (6.1) with Hausdorff distance d implies equality of sets A and B.

Moreover the definition for conditional invariancy is in terms of 'subset of' relation. However, in the Hausdorff distance, there is no way of inferring subset relation between the two sets. On the other hand $d^{*}(A, B)=0$ implies $A \subset B$.

We shall henceforth abbreviate Conditionally Invariant Set $B^{\text {‘ }}$ by ${ }^{\prime}$ C.I. set B '

Theorem 6.1. Let the assumptions of theorem (3.3) be satisfied except that (3.11) is replaced by

$$
\begin{equation*}
b\left(d^{*}(X, B)\right) \leq V(t, X) \leq a\left(t, d^{*}(X, A)\right), \text { for all } t \geq t_{0} \tag{6.9}
\end{equation*}
$$

where $a \in K^{*}, b \in K$ and d^{*} is the distance as explained in the remark above. Then the C.I. set B is equistable with respect to A for the g.d.s. in E.

Proof. Due to the condition (2) of theorem (3.3) $V\left(t, F\left(t, t_{0}, X_{0}\right)\right) \leq V\left(t_{0}, X_{0}\right)$. From (6.9)

$$
\begin{aligned}
b\left(d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right)\right) & \leq V\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \leq V\left(t_{0}, X_{0}\right) \leq a\left(t_{0}, d^{*}\left(X_{0}, A\right)\right)
\end{aligned}
$$

implying

$$
\begin{aligned}
& d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq b^{-1} a\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) \\
& \quad=c\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) \text { where } c=b^{-1} a \in K^{*}
\end{aligned}
$$

Hence the equistability of the C.I. set B with respect to A for the g.d.s. in E.

Theorem 6.2. Let the assumptions of theorem (3.4) hold except that the conditions (3.11) and (3.12) are replaced by

$$
\begin{align*}
b_{1}\left(d^{*}(X, B)\right) & \leq V_{1}\left(t, X \leq a_{1}\left(t, d^{*}(X, A)\right)\right) \tag{6.10}\\
\text { and } \quad b_{2}\left(t, d^{*}(X, B)\right) & \leq V_{2}(t, X) \leq a_{2}\left(d^{*}(X, B)\right) \tag{6.11}
\end{align*}
$$

for all $t \geq t_{0}$, where $b_{1}, a_{2} \in K$ and $a_{1}, b_{2} \in K^{*}, d^{*}$ being as explained under the remark. Then the C.I.set B is equistrict stable with respect to A for the g.d.s. in E.

Proof. As in theorems (3.3) and (3.4)

$$
\begin{aligned}
b_{1}\left(d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right)\right) & \leq V_{1}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \leq V_{1}\left(t_{0}, X_{0}\right) \\
& \leq a_{1}\left(t_{0}, d^{*}\left(X_{0}, A\right)\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq b_{1}^{-1} a_{1}\left(t_{0}, d^{*}\left(X_{0}, A\right)\right) \tag{i}
\end{equation*}
$$

Again

$$
\begin{aligned}
b_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) & \leq V_{2}\left(t_{0}, X_{0}\right) \\
& \leq V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \leq a_{2}\left(d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right)\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
a_{2}^{-1} b_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) \leq d^{*}\left(F\left(t, t_{0}, x_{0}\right), B\right) \tag{ii}
\end{equation*}
$$

putting $a_{2}^{-1} b_{2}=c_{2}$ and $b_{1}^{-1} a_{1}=c_{1}$ where $c_{1}, c_{2} \in K^{*}$, we get from (i) and (ii) above

$$
c_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) \leq d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq c_{1}\left(t_{0}, d^{*}\left(X_{0}, A\right)\right)
$$

which means the equistrict stability of the C.I.set B with respect to A for the g.d.s. in E.

Theorem 6.3. Let the assumptions of theorem (6.1) be satisfied except that (6.9) is replaced by

$$
\begin{equation*}
b\left(d^{*}(X, B)\right) \leq V(t, X) \leq a\left(d^{*}(X, A)\right) \tag{6.12}
\end{equation*}
$$

for all $t \geq t_{0}$, where $a, b \in K$. Then the C.I.set B is uniform stable with respect to A, for the g.d.s. in E.

Proof. By the assumptions, as in theorem (6.1)

$$
\begin{aligned}
b\left(d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right)\right) & \leq V\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \leq V\left(t_{0}, X_{0}\right) \\
& \leq a\left(d^{*}\left(X_{0}, A\right)\right)
\end{aligned}
$$

implying

$$
d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq b^{-1} a\left(d^{*}\left(X_{0}, A\right)\right)=c\left(d^{*}\left(X_{0}, A\right)\right)
$$

where $c \in K$. Hence the uniform stability of the C.I.set B with respect to A for the g.d.s. in E.

Theorem 6.4. Let the assumptions of theorem (6.2) be satisfied with the conditions (6.10) and (6.11) replaced by

$$
\begin{array}{ll}
& b_{1}\left(d^{*}(X, B)\right) \leq V_{1}(t, X) \leq a_{1}\left(d^{*}(X, A)\right) \\
\text { and } & b_{2}\left(d^{*}(X, B)\right) \leq V_{2}(t, X) \leq a_{2}\left(d^{*}(X, B)\right) \tag{6.14}
\end{array}
$$

for all $t \geq t_{0}$, where $a_{1}, b_{1} \in K,(i=1,2)$. Then the C.I.set B is uniform strict stable with respect to A for the g.d.s. in E.

Proof. As in the proof of the theorem (6.2),

$$
\begin{array}{ll}
& V_{1}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \leq V_{1}\left(t_{0}, X_{0}\right) \\
\text { and } & V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \leq V_{2}\left(t_{0}, X_{0}\right) \tag{ii}
\end{array}
$$

for all $t \geq t_{0}$. Consequently, by (6.15) and (i) above

$$
\begin{align*}
b_{1}\left(d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right)\right) & \leq V_{1}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \leq V_{1}\left(t_{0}, X_{0}\right) \leq a_{1}\left(d^{*}\left(X_{0}, A\right)\right) \\
\text { implying } \quad d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) & \leq b_{1}^{-1} a_{1}\left(d^{*}\left(X_{0}, A\right)\right) \tag{iii}
\end{align*}
$$

Likewise, by (6.16) and (ii) above

$$
\begin{aligned}
a_{2}\left(d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right)\right) & \geq V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \geq V_{2}\left(t_{0}, X_{0}\right) \\
& \geq b_{2}\left(d^{*}\left(X_{0}, B\right)\right)
\end{aligned}
$$

$$
\begin{equation*}
\text { implying } \quad d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \geq a_{2}^{-1} b_{2}\left(d^{*}\left(x_{0}, B\right)\right) \tag{iv}
\end{equation*}
$$

Putting $b_{1}^{-1} a_{1}=c_{1} \in K$ and $a_{2}^{-1} b_{2}=c_{2} \in K$ in (iii) and (iv) above respectively

$$
c_{2}\left(d^{*}\left(X_{0}, B\right)\right) \leq d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq c_{1}\left(d^{*}\left(X_{0}, A\right)\right)
$$

Thus, the C.I. set B is uniform strict stable with respect to A for the g.d.s. in E.

Theorem 6.5. Let the assumptions (1) and (2) of theorem (4.1) hold except that the inequalilty of (1) is replaced by (6.9) of theorem (6.1).

Then (i) equistability of the trivial solution of the equation (3.2) implies the equistability of the C.I. set B with respect to A and (ii) equi-asymptotic stability of the trivial solution of the equation (3.2) implies the equi-asymptotic stability of the C.I. set B with respect to A, for the g.d.s. in E.

Proof.

(i) The proof is the same as in theorem (4.1) except that d^{*} replaces d. Moreover the conditional invariancy of the set B with respect to A implies $d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq$ $d^{*}\left(F\left(t, t_{0}, X_{0}\right), A\right)$. This consideration leads to the required conclusion.
(ii) The proof of this part is the same as in theorem (4.5) where d^{*} replaces d.

Note: $d^{*} \leq d$.

Theorem 6.6. Assume the conditions (1) and (2) of theorem (4.1) with the inequality of (1) replaced by (6.12). Then (i) uniform stability of the trivial solution of the equation (3.2) implies the uniform stability of the C.I. set B with respect to A and (ii) uniform asymptotic stability of the trivial solution of the equation (6.2) implies the uniform asymptotic stability of the C.I. set B with respect to A for the g.d.s. in E.

Proof.
(i) The proof of uniform stability of the C.I. set B with respect to A is parallel to that given in theorem (4.2) with d^{*} in place of d. Further the conditional invariance of the set B with respect to A implies $d^{*}\left(F\left(t, T_{0}, X_{0}\right), B\right) \leq d^{*}\left(F\left(t, t_{0}, X_{0}\right), A\right)$. These considerations lead to the required conclusion.
(ii) The proof of uniform asymptotic stability of the C.I. set B with respect to A runs parallel to that of theorem (4.7) with d^{*} in place of d.

Theorem 6.7. Let the assumptions of theorem (4.3) hold except that (3.11) and (3.12) are replaced by (6.10) and (6.11) of theorem (6.2) respectively. Then (i) S_{1}^{*} and S_{2}^{*} imply equistrict stability and (ii) S_{5}^{*} and S_{6}^{*} imply equistrict asymptotic stability of the C.I. set B with respect to A for the g.d.s. in E.

Proof. In view of the assumptions of theorem (4.3), the condition (6.10) and S_{1}^{*}, which means the equistability of the C.I. set B with respect to A is implied by the theorem (6.5) - (i).
Again, since S_{5}^{*} means equiasymptotic stability of the trivial solution of the equation (3.2), equiasymptotic stability of the C.I. set B with respect to A is implied by the theorem (6.5) - (ii)

We now prove the 'STRICT' results -

(1) By the equistability of the C.I. set B with respect to A we have

$$
\begin{equation*}
d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq c_{1}\left(t_{0}, d^{*}\left(X_{0}, A\right)\right) \tag{i}
\end{equation*}
$$

for all $t \geq t_{0}$, where $c \in K^{*}$.
By S_{2}^{*} there exists $p>0$, such that $u_{0} \leq p, u\left(t, t_{0}, u_{0}\right) \geq$ $c_{3}\left(t_{0}, u_{0}\right), c_{3} \in K^{*}$ and $t \geq t_{0}$ for any solution $u\left(t, t_{0}, u_{0}\right)$ of the equation (3.7).
By the property of b_{2} in (6.11)

$$
\text { viz: } b_{2}\left(t, d^{*}(X, B)\right) \leq V_{2}(t, X) \leq a_{2}\left(d^{*}(x, B)\right)
$$

there exists $p_{1}=p_{1}\left(t_{0}, p\right)>0$ such that $d^{*}\left(X_{0}, B\right) \leq p_{1}$ and $b_{2}\left(t, d^{*}\left(X_{0}, B\right)\right) \leq p$ hold simultaneously.

Let $q=\min \left(p_{1}, p\right)$. Then (6.11) holds for all X_{0} such that $d\left(X_{0}, B\right) \leq q$. Choose u_{0} so that $V_{2}\left(t_{0}, X_{0}\right)$ $b_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right)=u_{0}$. As all the conditions of theorem (3.2) are satisfied

$$
\begin{aligned}
V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \geq u\left(t, t_{0}, X_{0}\right) & =u\left(t, t_{0}, b_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right)\right) \\
& \geq c_{3}\left(t_{0}, b_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right)\right) \\
& \geq c_{4}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right)
\end{aligned}
$$

But

$$
\begin{align*}
& a_{2}\left(d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right)\right) \geq V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right), \\
& \text { so that } \quad a_{2}\left(d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right)\right) \geq c_{4}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) \\
& \text { or } \quad d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \geq a_{2}^{-1} c_{4}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) \\
& \text { i.e., } \quad d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \geq c_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) \tag{ii}
\end{align*}
$$

where $c_{2}=a_{2}^{-1} c_{4} \in K^{*}$, for all $t \geq t_{0}$.
The steps (i) and (ii) above imply equistrict stability of the C.I. set B, with respect to A for the g.d.s. in E.
(2) Because of equiasymptotic stability of the C.I. set B with respect to A we have
$d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq c_{1}\left(t_{0}, d^{*}\left(X_{0}, A\right)\right) d_{1}\left(t_{0}, t-t_{0}\right)$
for all $t \geq t_{0}, c_{1} \in K^{*}, d_{1} \in L^{*}$.

By S_{6}^{*} there exists a number $p>0$ with $u_{0} \leq p$ such that, for any solution $u\left(t, t_{0}, u_{0}\right)$ of the equation (3.7) $u\left(t, t_{0}, u_{0}\right) \geq$ $c_{3}\left(\left(t_{0}, u_{0}\right)\right) d_{3}\left(t_{0}, t-t_{0}\right)$, for all $t \geq t_{0}$, where $c_{3} \in K^{*}$ and $d_{3} \in L^{*}$.

By the property of b_{2} in (6.11), there exists $p_{1}=p_{1}\left(t_{0}, p\right)>$ 0 , such that $d^{*}\left(X_{0}, B\right) \leq p_{1}$ and $b_{2}\left(t, d^{*}\left(X_{0}, B\right)\right) \leq p$ hold simultaneously. Let $q=\min \left(p, p_{1}\right)$. Then (6.11) holds for all X_{0} such that $d^{*}\left(X_{0}, B\right) \leq q$. Choose u_{0} such that $V_{2}\left(t_{0}, X_{0}\right) \geq b_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right)=u_{0}$. As all the conditions of theorem (3.2) are satisfied,

$$
\begin{aligned}
V_{2}\left(t, F\left(t, t_{0}, u_{0}\right)\right) & \geq u\left(t, t_{0}, u_{0}\right)=u\left(t, t_{0}, b_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right)\right) \\
& \geq c_{3}\left(t_{0}, b_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right)\right) d_{3}\left(t_{0}, t-t_{0}\right)
\end{aligned}
$$

But

$$
\begin{aligned}
a_{2}\left(d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right)\right) & \geq V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \\
& \geq c_{3}\left(t_{0}, b_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right)\right) d_{3}\left(t_{0}, t-t_{0}\right) \\
& \geq c_{4}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) d_{3}\left(t_{0}, t-t_{0}\right)
\end{aligned}
$$

implying

$$
\begin{align*}
& \qquad \begin{aligned}
d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) & \geq a_{2}^{-1}\left[c_{4}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) d_{3}\left(t_{0}, t-t_{0}\right)\right] \\
\text { i.e., } \quad d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) & \geq c_{2}\left(t_{0}, d^{*}\left(X_{0}, B\right)\right) d_{2}\left(t_{0}, t-t_{0}\right) \\
\text { for all } t \geq t_{0}, \text { where } c_{2} & \in K^{*} \text { and } d_{2} \in L^{*} .
\end{aligned} \text {. }
\end{align*}
$$

The steps (iii) and (iv) above imply equistrict asymptotic stability of the C.I. set B with respect to A for the g.d.s. in E.

Theorem 6.8. Assume that the conditions of theorem (4.3) hold, with conditions (3.11) and (3.12) replaced by (6.13) and (6.14) respectively.

Then (i) s_{3}^{*} and S_{4}^{*} imply uniform strict stability of the C.I. set B with respect to A and (ii) S_{7}^{*} and S_{8}^{*} imply uniform strict asymptotic stability of the C.I. set B with respect to A, for the g.d.s. in E.

Proof. All the conditions of theorem (6.6) - (1) and (2) are satisfied, since S_{3}^{*} and S_{7}^{*} mean the uniform and uniform asymptotic stability of the trivial solution of the equation (3.2).

Accordingly, the C.I. set B is uniform stable/uniform asymptotic stable with respect to A.

Considering $S_{4}^{*}: u\left(t, t_{0}, u_{0}\right) \geq c_{3}\left(u_{0}\right)$, for all $t \geq t_{0}$ with $u_{0} \leq p$, $p>0$ and $S_{8}^{*}: u\left(t, t_{0}, u_{0}\right) c_{3}\left(u_{0}\right) d_{3}\left(t_{0}, t-\bar{t}_{0}\right)$ with $u_{0} \leq p$, $p>0$, the 'strict' results of the stability of the C.I. set B with respect to A for the g.d.s. in E can be proved on the same lines as in theorem (6.7).

Note:

Theorems (6.5) - (1) and (2)
(6.6) - (1) and (2)
(6.7) - (1) and (2)
and (6.8) - (1) and (2)
correspond, in order, to theorems (4.1) - (4.5); (4.2) - (4.7); (4.3) (4.6) and (4.4) - (4.8).

Converse theorems on the existence of Lyapunov functions for the stability properties of the C.I. set B with respect to A for a r.d.s. can be proved on similar lines of theorems in section 5.

We state and prove a theorem corresponding to theorem (5.2).

Theorem 6.9. If the set B is uniform strict stable with respect to A for a r.d.s. in E, there exist a pair of Lyapunov functions $V_{i}(i=$ $1,2)$ satisfying the hypotheses of theorem (6.4).
Proof. Define the functions V_{1} and V_{2} as follows -

$$
\begin{aligned}
& V_{1}(t, X)=\inf _{O \leq T \leq t} d^{*}(F(T, t, X), A) \\
& V_{2}(t, X)=\sup _{O \leq T \leq t} d^{*}(F(T, t, X), B)
\end{aligned}
$$

Since the C.I. set B is uniform strict stable with respect to A, $a_{2}\left(d^{*}\left(X_{0}, B\right)\right) \leq d^{*}\left(F\left(t, t_{0}, X_{0}\right), B\right) \leq a_{1}\left(d^{*}\left(X_{0}, A\right)\right), t \geq t_{0}, a_{i}(i=1,2) \in K$.

Then for $T \leq t$, by the reversibility condition, $X=$ $F(t, T, X(T))$, we have

$$
\begin{equation*}
a_{2}\left(d^{*}(X(T), B)\right) \leq d^{*}(X, B) \leq a_{1}\left(d^{*}(X(T), A)\right) \tag{i}
\end{equation*}
$$

where $X(T)=F(T, t, X)$. Hence for each T such that

$$
\begin{equation*}
O \leq T \leq t, d^{*}(X(T), A) \geq a_{1}^{-1}\left(d^{*}(X, B)\right) \tag{ii}
\end{equation*}
$$

so that $\quad V_{1}(t, X)=\inf _{O \leq T \leq t} d^{*}(X(T), A) \geq a_{1}^{-1}\left(d^{*}(X, B)\right)$

Also trivially

$$
\begin{equation*}
V_{1}(t, X) \leq d^{*}(X, A) \tag{iv}
\end{equation*}
$$

(iii) and (iv) together give

$$
a_{1}^{-1}\left(d^{*}(X, B)\right) \leq V_{1}(t, X) \leq d^{*}(X, A), O \leq T \leq t
$$

This verifies (6.13) of theorem (6.4).

$$
\begin{equation*}
V_{2}(t, X) \geq d^{*}(X, B) \tag{v}
\end{equation*}
$$

Also from (i)

$$
\begin{gather*}
d^{*}(X(T), B) \leq a_{2}^{-1}\left(d^{*}(X, B)\right) \\
\text { so that } \quad V_{2}(t, X)=\sup _{O \leq T \leq t} d^{*}(X(T), B) \leq a_{2}^{-1}\left(d^{*}(X, B)\right) \tag{vi}
\end{gather*}
$$

(v) and (vi) together give

$$
d^{*}(X, B) \leq V_{2}(t, X) \leq a_{2}^{-1}\left(d^{*}(X, B)\right)
$$

which verifies (6.14) of theorem (6.4).
$V(t, X)$ and $V_{2}(t, X)$ satisfy the inequality (3.3) with $g \equiv 0$ and the inequality (3.8) with $h \equiv 0$.

To see this,

$$
\begin{aligned}
V_{1}\left(t, F\left(t, t_{0}, X_{0}\right)\right) & =\inf _{O \leq T \leq t} d^{*}(F(T, t, X), A) \\
& =\inf _{O \leq T \leq t} d^{*}(X(T), A)
\end{aligned}
$$

Also for $h>0$,

$$
V_{1}\left(t+h, F\left(t+h, t_{0}, X_{0}\right)\right)=\inf _{O \leq T \leq t+h}\left(d^{*}(X(T), A)\right)
$$

clearly, $\quad V_{1}\left(t+h, F\left(t+h, t_{0}, X_{0}\right)\right) \leq V_{1}\left(t, F\left(t, t_{0}, X_{0}\right)\right)$
so that $\quad D^{+} V_{1}(t, X) \leq 0$
which is (3.3) with $g \equiv 0$.

$$
\begin{aligned}
& V_{2}\left(t+h, F\left(t+h, t_{0}, X_{0}\right)\right)=\sup _{O m \leq T \leq t+h} d^{*}(X(T), B) \\
& \sup _{O \leq T \leq t} d^{*}(X(T), B)=V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right)
\end{aligned}
$$

Thus $D^{-} V_{2}(t, X) \geq 0$ which is (3.8) with $h \equiv 0$.
Thus V_{1} and V_{2} satisfy all the conditions of the theorem (6.4).

Remarks:

(1) The function V_{1} shows that this is a Lyapunov function of theorem (6.3).
(2) One can easily see that theorem (6.9) with $B=A$ and d^{*} replaced by d, is a converse for theorem (4.4) giving two different functions V_{1} and V_{2} unlike theorem (5.2).

7. CONDITIONAL (OR RELATIVE) STABILITY OF A COMPACT SET A WITH RESPECT TO A G.D.S. IN E

Let the set $A \in A(E)$ be compact in E and M be a subset of E such that $A \subset M \subset E$. We state the definitions of conditional stability of the set A with respect to a g.d.s. in E. Lyapunov (vector) function defined on $I X A(E)$ is used to determine the sufficient conditions for conditional stability of A with respect to a g.d.s. in E. This concept (i.e., conditional stability of . .) is identical with the concept of relative stability (5).
Definition 7.1. The set A is daid to be
(1) Conditionally equistable for the set M with respect to a g.d.s. in E if there exists a function $a \in K^{*}$ such that

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a\left(t_{0}, d\left(X_{0}, A\right)\right) \tag{7.1}
\end{equation*}
$$

(2) Conditionally uniformly stable for the set M with respect to a g.d.s. in E if there exists a function $a \in K$ such that

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a\left(d\left(X_{0}, A\right)\right) \tag{7.2}
\end{equation*}
$$

(3) Conditionally equiasymptotically stable for the set M with respect to a g.d.s. in E if there exist functions $a \in K^{*}$ and $b \in L^{*}$ such that

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a\left(t_{0}, d\left(X_{0}, A\right)\right) b\left(t_{0}, t-t_{0}\right) \tag{7.3}
\end{equation*}
$$

(4) Conditionally uniformly asymptotically stable for the set M with respect to a g.d.s. in E if there exist functions $a \in K$ and $b \in L$ such that

$$
\begin{equation*}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a\left(d\left(X_{0}, A\right)\right) b\left(t-t_{0}\right) \tag{7.4}
\end{equation*}
$$

WHENEVER (IN THE DEFINITIONS (1) TO (4) ABOVE)

$X_{0} \subset M \cap \bar{S}(A, P)$, for some $p>0$ and for all $t \geq t_{0}$.

Note:

(1) If $M=E$, the above definitions reduce to S_{1}, S_{3}, S_{5} and S_{7} (of section 2).
(2) These definitions are similar to the ones given in (7). They are expressed here in terms of monotonic functions belonging to the classes: K, K^{*}, L and L^{*}.
(3) If M is a neighbourhood of A, then also note (1) above holds.

To obtain sufficient conditions for the conditional stability properties of the set A, we use the comparison techniques based on Vector Lyapunov function.

Let $W=W(t, r)$ be a continuous vector function with components $w_{1}, w_{2}, w_{3}, \ldots, w_{n}$ in $r=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ so that we write $W \in C\left(I X R^{n}, R^{n}\right)$.
W is said to possess quasi-monotone property in r for each fixed $t \in I$, if for each $i=1,2, \ldots, n$, the $i-$ th component $w_{1}(t, r)$ is monotonic non-decreasing in $r_{j}, j \neq i$ for each j.
If W has the quasi-monotone property in r, then the differential system:

$$
\begin{equation*}
r^{\prime}=W(t, r),\left(^{\prime}=d / d t\right) \tag{7.5}
\end{equation*}
$$

has the maximal (in the sense of component-wise majorisation) solution existing to the right of t_{0}.
W is assumed to be smooth enough that the maximal solution exists for all $t \in\left[t_{0}, \infty\right]$.
Let V be a n-vector and $V \in C\left(I X A(E), R_{+}^{n}\right)$, where R_{+}^{N} the set of n-tuples with all components non-negative. Interpreting the vector inequality as being satisfied component-wise,

$$
\text { let } V^{+}(t, X(t))=\lim _{h \rightarrow 0^{+}}\left[\frac{1}{h}\{V(t+h, X(t+h))-V(t, X(t))\}\right]
$$

for $(t, X(t)) \in I X A(E)$.
Theorem 7.1. Let there exist a vector function V defined above so that V^{+}defined above in (7.6) satisfy the vector inequality:

$$
\begin{equation*}
V^{+}(t, X(t)) \leq W(t, V(t, X(t))), \quad t \geq t_{0} \tag{7.7}
\end{equation*}
$$

where W is a smooth function having the quasi-monotone property.
Let $r\left(t, t_{0}, r_{0}\right)$ be the maximal solution of the differential system (7.5), existing to the right of t_{0}. Then
implies

$$
\begin{align*}
V\left(t_{0}, X\left(\left(t_{0}\right)\right)\right. & \leq r\left(t_{0}, t_{0}, r_{0}\right)=r_{0} \tag{i}\\
V(t, X(t)) & \leq r\left(t, t_{0}, r_{0}\right) \tag{ii}
\end{align*}
$$

We will henceforth (unless otherwise stated) use V and W in twodimensions only. Thys $V=\left(V_{1}, V_{2}\right), W=\left(W_{1}, W_{2}\right)$ and the quasi-monotone property of W is now equivalent to W_{1} being nondecreasing in r_{2} and W_{2} being non-decreasing in r_{1}.
Let $\left(r_{1}, r_{2}\right) R_{+}^{2}$.
Define $|V|=V_{1}+V_{2}$ and $|r|=r_{1}+r_{2}$.
These make sense since $V_{1}, V_{2}, r_{1}, r_{2}$ are all non-negative, by definition.
Let

$$
\begin{equation*}
r_{0}=\left(r_{1}, 0\right) \tag{7.9}
\end{equation*}
$$

Then

$$
\left|r_{0}\right|=r_{1}
$$

Let $r\left(t, t_{0}, r_{0}\right)$ be the maximal solution of (7.5) with r_{0} defined in (7.9). Corresponding to the definitions (7.1) (1) to (4) we state the following properties -

Properties 7.1.

(1) - s: There exists $a \in K^{*}$, for a given $p>0$ such that $\left|r_{0}\right| \leq p$ implies

$$
\begin{equation*}
\left|r\left(t, t_{0}, r_{0}\right)\right| \leq a\left(t_{0},\left|r_{0}\right|\right) t \geq t_{0} \tag{7.10}
\end{equation*}
$$

(2) - s : There exists a function $a \in K$ for a given $p>0$ such that $\left|r_{0}\right| \leq p$ implies

$$
\begin{equation*}
\left|r\left(t, t_{0}, r_{0}\right)\right| \leq a\left(\left|r_{0}\right|\right), t \geq t_{0} \tag{7.11}
\end{equation*}
$$

(3) - s: There exist functions $a \in K^{*}$ and $b \in L^{*}$ for a given $p>0$ such that $\left|r_{0}\right| \leq p$ implies

$$
\begin{equation*}
\left|r\left(t, t_{0}, r_{0}\right)\right| \leq a\left(t,\left|r_{0}\right|\right) b\left(t_{0}, t-t_{0}\right), t \geq t_{0} \tag{7.12}
\end{equation*}
$$

(4) - s: There exist functions $a \in K$ and $b \in L$ for a given $p>0$ such that $\left|r_{0}\right| \leq p$ implies

$$
\begin{equation*}
\left|r\left(t, t_{0}, r_{0}\right)\right| \leq a\left(\left|r_{0}\right|\right) b\left(t-t_{0}\right), t \geq t_{0} \tag{7.13}
\end{equation*}
$$

Theorem 7.2. Let

$$
\begin{equation*}
M=\left\{X \in A(E): V_{2}(t, X)=0\right\} \tag{7.14}
\end{equation*}
$$

and V (where $\left.\left(V_{1}, V_{2}\right)\right)$ satisfy -

$$
\begin{equation*}
b(d(X, A)) \leq V(t, X) \leq a(t, d(X, A)) \tag{7.15}
\end{equation*}
$$

for all $(t, X) \in I X A(E)$. Further, let the conditions of theorem (7.1) be satisfied.

Then (i) property (7.1): (1) - s implies the conditional equistability of A, and
(ii) property (7.1): (3) $-s$ implies the conditional equiasymptotic stability of A, for the set M with respect to the g.d.s. in E (where M is given by (7.14)).

Proof.

(i) By the property of a in (7.15), there exists $p_{1}=p_{1}\left(t_{0}, p\right)>$ 0 such that $d\left(X_{0}, A\right) \leq p_{1}$ and $a\left(t_{0}, d\left(X_{0}, A\right)\right) \leq p$ hold simultaneously.

Choose $r_{0}=\left(r_{1}, 0\right)$ with $r_{1}=V_{1}\left(t_{0}, X_{0}\right)$.
Let $X_{0} \in M$. Then $V_{2}\left(t_{0}, x_{0}\right)=0$ by (7.14). If $X_{0} \in$ $\bar{S}\left(A, p_{1}\right)$, then $d\left(X_{0}, A\right) \leq p_{1}$ and the choice of p_{1} and r_{0} show that

$$
\begin{equation*}
r_{0} \leq a\left(t_{0}, d\left(X_{0}, A\right)\right) \leq p, a \in K^{*} \tag{i}
\end{equation*}
$$

Thus (7.8)-(i) of theorem (7.1) is satisfied so that

$$
\begin{equation*}
V\left(t, F\left(t, t_{0}, X_{0}\right)\right) \leq r\left(t, t_{0}, r_{0}\right), t \in t_{0} \tag{ii}
\end{equation*}
$$

for $X_{0} \in M \cap \bar{S}\left(A, p_{1}\right)$.
This inequality, component-wise would mean

$$
\begin{array}{ll}
& V_{1}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \leq r_{1}\left(t, t_{0}, r_{0}\right) \\
\text { and } & V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right) \leq r_{2}\left(t, t_{0}, r_{0}\right) \tag{iv}
\end{array}
$$

From these two and the definition of the norm, we have

$$
\begin{equation*}
\left|V\left(t, F\left(t, t_{0}, X_{0}\right)\right)\right| \leq\left|r\left(t, t_{0}, r_{0}\right)\right| \tag{v}
\end{equation*}
$$

Now

$$
\begin{aligned}
b\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \leq\left|V\left(t, F\left(t, t_{0}, X_{0}\right)\right)\right| \\
& \leq\left|r\left(t, t_{0}, X_{0}\right)\right| \\
& \leq a_{1}\left(t_{0},\left|r_{0}\right|\right) \\
& \leq a_{1}\left(t_{0}, a\left(t_{0}, d\left(X_{0}, A\right)\right)\right) \\
& =a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right)
\end{aligned}
$$

```
so that }\quadd(F(t,\mp@subsup{t}{0}{},\mp@subsup{X}{0}{}),A)\leq\mp@subsup{b}{}{-1-}\mp@subsup{a}{2}{}(\mp@subsup{t}{0}{},d(\mp@subsup{X}{0}{},A))=\mp@subsup{a}{3}{}(\mp@subsup{t}{0}{},d(\mp@subsup{X}{0}{},A)
where }\mp@subsup{a}{3}{}\in\mp@subsup{K}{}{*},t\geq\mp@subsup{t}{0}{}
```

Therefore A is conditionally equistable for the set M with respect to a g.d.s. in E.
(ii) Proceeding on the same lines, as above, because of property (7.1):(3)-s, we get

$$
\begin{aligned}
b\left(d\left(F\left(t, t_{0}, X_{0}\right), A\right)\right) & \leq\left|V\left(t, F\left(t, t_{0}, X_{0}\right)\right)\right| \\
& \leq\left|r\left(t, t_{0}, X_{0}\right)\right| \\
& \leq a_{1}\left(t_{0},\left|r_{0}\right| b_{1}\left(t_{0}, t-t_{0}\right)\right) \\
& \leq a_{1}\left(t_{0}, a\left(t_{0}, d\left(X_{0}, A\right)\right)\right) b_{1}\left(t_{0}, t-t_{0}\right) \\
& =a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right) b_{1}\left(t_{0}, t-t_{0}\right)
\end{aligned}
$$

implying

$$
\begin{aligned}
d\left(F\left(t, t_{0}, X_{0}\right), A\right) & \leq b^{-1}\left(a_{2}\left(t_{0}, d\left(X_{0}, A\right)\right) b_{1}\left(t_{0}, t-t_{0}\right)\right) \\
& \leq a_{3}\left(t_{0}, d\left(X_{0}, A\right) b_{3}\left(t_{0}, t-t_{0}\right)\right)
\end{aligned}
$$

(Here $p_{1}=p_{1}\left(t_{0}, p\right)$ is such that $d\left(X_{0}, A\right) \leq p_{1}$ and $a\left(t_{0}, d\left(X_{0}, A\right)\right) \leq p$ hold simultaneously).

Thus A is conditionally equiasymptotic stable for M with respect to the g.d.s. in E.

Theorem 7.3. Let M be the set defined in (7.14) and V satisfy -

$$
\begin{equation*}
b(d(X, A)) \leq V(t, X) \leq a(d(X, A)), t \geq t_{0} \tag{7.16}
\end{equation*}
$$

for all $(t, X) \in I X A(E)$ where $b \in K$ and $a \in K$.
Let the conditions of theorem (7.1) be satisfied.
(i) Property (7.1): (2)-s implies the conditional uniform stability of A, for the set M with respect to the g.d.s. in E and
(ii) Property (7.1): (4)-s implies the conditional uniform asymptotic stability of A, for the set M with respect to the g.d.s. in E.

Proof. The properties of a in (7.16) imply that there exists $p_{1}>0$, $p_{1}=p_{1}(p)$ such that $d\left(X_{0}, A\right) \leq p_{1}$, and $a\left(d\left(X_{0}, A\right)\right) \leq p$ hold simultaneously. Choose $r_{0}=\left(r_{1}, 0\right)$ with $r_{1}=V\left(t_{0}, X_{0}\right)$. Let X_{0} M so that $V_{2}\left(t_{0}, X_{0}\right)=0$.
If $X_{0} \in \bar{S}\left(A, p_{1}\right)$ then $d\left(X_{0}, A\right) \leq p_{1}$ and the choice of p_{1} and r_{0} show that

$$
\begin{equation*}
r_{0} \leq a\left(d\left(X_{0}, A\right)\right) \leq p \tag{i}
\end{equation*}
$$

Thus (7.8) - (i) of theorem (7.1) is satisfied so that

$$
\begin{equation*}
V\left(t, F\left(t, t_{0}, X_{0}\right)\right) \leq r\left(t, t_{0}, r_{0}\right), t \geq t_{0} \tag{ii}
\end{equation*}
$$

for $X_{0} \in M \cap \bar{S}\left(A, p_{1}\right)$.

Component-wise, this implies

$$
\begin{array}{lrl}
& V_{1}\left(t, F\left(t, t_{0}, X_{0}\right)\right) & \leq r_{1}\left(t, t_{0}, r_{0}\right) \tag{iii}\\
& & V_{2}\left(t, F\left(t, t_{0}, X_{0}\right)\right)
\end{array} \leq r_{2}\left(t, t_{0}, r_{0}\right), ~\left(t, F\left(t, t_{0}, X_{0}\right)\right)\left|\leq\left|r\left(t, t_{0}, r_{0}\right)\right|\right.
$$

Then we have

$$
\begin{equation*}
u^{*}\left(t, 0, u_{0}\right) \leq u\left(t, 0, u_{0}\right), t \in I \tag{8.4}
\end{equation*}
$$

Suppose $p_{1}=\left(u_{10}, 0\right) \in R_{+}^{2}$ and $p_{2}=\left(u_{10}, u_{20}\right) \in R_{+}^{2}$.
Then let the solutions of (8.3) through $\left(0, p_{1}\right)$ and $\left(0, p_{2}\right)$, be denoted $u_{1}^{*}\left(t, 0, p_{1}\right)$ and $u_{2}^{*}\left(t, 0, p_{2}\right)$ respectively.

Writing these equation component-wise -

$$
\begin{aligned}
& u_{1}^{*}\left(t, 0, p_{1}\right)=\left(u_{11}^{*}\left(t, 0, p_{1}\right), u_{12}^{*}\left(t, 0, p_{1}\right)\right) \\
& u_{2}^{*}\left(t, 0, p_{2}\right)=\left(t_{12}^{*}\left(t, 0, p_{2}\right), u_{22}^{*}\left(t, 0, p_{2}\right)\right)
\end{aligned}
$$

Then we have

$$
\left.\begin{array}{cc}
& u_{1}^{*}\left(t, 0, p_{1}\right) u_{2}^{*}\left(t, 0, p_{2}\right) \tag{8.5}\\
\text { i.e., } & u_{11}^{*}\left(t, 0, p_{1}\right) u_{21}^{*}\left(t, 0, p_{2}\right) \\
& u_{12}^{*}\left(t, 0, p_{1}\right) u_{22}^{*}\left(t, 0, p_{2}\right)
\end{array}\right\}
$$

Theorem 8.1.

(1) Let the g.d.s. be r.d.s. and the flow $F\left(t, t_{0}, X_{0}\right), X_{0} \in A(E)$, be Hausdorff continuous in the triplet of its arguments.
(2) Let there exist functions $a, b \in K$ such that

$$
\begin{equation*}
b\left(d\left(X_{0}, A\right)\right) \leq d\left(F\left(t, t_{0}, X_{0}\right), A\right) \leq a\left(d\left(X_{0}, A\right)\right) \tag{8.6}
\end{equation*}
$$

for $X_{0} \in M$
(3) Let $g \in C\left(I X R_{+}^{2}, R^{2}\right), g(t, 0)=0$ and g has the properties mentioned earlier (viz., existence, uniqueness and continuous depenbdence of solutions (on the initial conditions) of the equation (8.1))
(4) The solution $u\left(t, 0, u_{0}\right)$ of (8.1) satisfy

$$
\begin{equation*}
u\left(t, 0, u_{0}\right) \leq r_{2}\left(\left|u_{0}\right|\right) \tag{8.7}
\end{equation*}
$$

where $u_{0}=u_{20}$ as $u_{10}=0$, when $u_{0}=\left(u_{10}, u_{20}\right)$.
(5) The component $u_{2}^{*}\left(t, 0, u_{0}\right)$ of the solution $u^{*}\left(t, 0, u_{0}\right)$ of (8.3) has the property:

$$
\begin{equation*}
u_{2}\left(t, 0, u_{0}\right) \geq r_{1}\left(\left|u_{0}\right|\right)=r_{1}\left(u_{20}\right) \tag{8.8}
\end{equation*}
$$

where u_{0} satisfies the definition given in (4) above.
Then there exists function $V=V t, X)$ with the following properties:
(i) $V \in C\left(I X A(E), r_{+}^{2}\right)$
(ii) $V^{+}(t, X) \leq g(t, V(t, X))$ for the flows X of r.d.s.
(iii) If $X \in M$, then $V_{1}(t, X)=0$
(iv) $b_{1}(b d(X, A)) \leq|V(t, X)| \leq a_{1}(d(X, A))$
where $a_{1}, b_{1} \in K$ and $(t, X) \in I X A(E)$.
Proof. The g.d.s. is r.d.s. Therefore $X=F\left(t, 0, X_{0}\right)$ implies $X_{0}=F(0, t, X)$

Choosing a function $\mu \in C\left(A(E), R_{+}^{2}\right)$ such that

$$
\begin{align*}
\alpha_{1}(d(X, A)) & \leq \mu(X) \leq \alpha_{2}(d(X, A)) \tag{i}\\
\mu_{1}(X) & =0 \text { if } X \in M \tag{ii}\\
\mu(X) & =\left(\mu_{1}(X), \mu_{2}(X)\right) .
\end{align*}
$$

and (8.1) respectively through the same point $\left(0, u_{0}\right), u_{0} \in R_{+}^{2}$.

Let $u_{1}^{*}\left(t, 0,\left(\mu_{1}(X), 0\right)\right)$ and $u_{2}^{*}\left(t, 0\left(\mu_{1}(X), \mu_{2}(X)\right)\right)$ be the solutions of the equation (8.2).

Define

$$
\begin{aligned}
V_{1}(t, X) & =u_{11}^{*}\left(t, 0,\left(\mu_{1}(F(0, t, X), 0)\right)\right) \\
& =u_{11}^{*}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), 0\right)\right) \\
\text { and } \quad V_{2}(t, X) & =u_{22}^{*}\left(t, 0,\left(\mu_{1}(0, t, X)\right)\right), \mu_{2}(F(0, t, X)) \\
& =u_{22}^{*}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), \mu_{2}\left(X_{0}\right)\right)\right)
\end{aligned}
$$

where u_{11}^{*} and u_{22}^{*} are first and second components of u_{1}^{*} and u_{2}^{*} respectively. The continuity of V_{1} and V_{2} follow from the continuity of u_{11}^{*} and u_{22}^{*} with respect to the initial conditions together with the continuity properties of μ and F with respect to their arguments.

Let $X(t)=F\left(t, t_{0}, X\left(t_{0}\right)\right)$, so that $X(t+h)=F(t+$ $\left.h, t_{0}, X\left(t_{0}\right)\right)$.

Also $F(0, t+h, X(t+h))=F(0, t, x(t))=X_{0}$, by the reversibility property. Hence

$$
\begin{aligned}
V_{1}^{+}(t, X(t)) & =\lim _{h \rightarrow 0^{+}} \frac{1}{h}\left[u_{11}^{*}\left(t+h, 0,\left(\mu_{1}\left(X_{0}\right), 0\right)\right)-u_{11}^{*}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), 0\right)\right)\right] \\
& =u_{11}^{\prime *}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), 0\right)\right) \\
& =g_{1}^{*}\left(t, u_{11}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), 0\right)\right), u_{12}^{*}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), 0\right)\right)\right)
\end{aligned}
$$

Similarly,

$$
v_{2}^{+}(t, X(t))=g_{2}^{*}\left(t, 0, u_{22^{*}}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), \mu_{2}\left(X_{0}\right)\right)\right)\right)
$$

With the definitions of V_{1} and V_{2}

$$
\begin{align*}
V_{1}^{*}(t, X(t)) & =g_{1}^{*}\left(t, V_{1}(t, X(t)), u_{12}^{*}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), 0\right)\right)\right) \tag{iii}\\
\text { and } \quad V_{2}^{+}(t, X(t)) & =g_{2}^{*}\left(t, 0, V_{2}(t, X(t))\right) \tag{iv}
\end{align*}
$$

Now from the inequalities (8.5)

$$
\begin{align*}
u_{12}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), 0\right)\right) & \leq u_{12}^{*}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), \mu_{2}\left(X_{0}\right)\right)\right) \\
& \leq V_{2}(t, X(t)) \tag{v}\\
0 & \leq V_{1}(t, X(t))
\end{align*}
$$

also trivially,

Hence by the quasimonotonicity of g_{1} and g_{2} we have

$$
\begin{align*}
V_{1}^{+}(t, X(t)) & \leq g_{1}^{*}\left(t, v_{1}(t, X(t)), V_{2}(t, X(t))\right) \\
& \leq g_{1}\left(t, V_{1}(t, X(t)), V_{2}(t, X(t))\right) \tag{vii}
\end{align*}
$$

and

$$
\begin{align*}
V_{2}^{+}(t, X(t)) & \leq g_{2}^{*}\left(t, 0, V_{2}(t, X(t))\right) \\
& \leq g_{2}\left(t, 0, V_{2}(t, X(t))\right) \\
& \leq g_{2}\left(t, V_{1}(t, X(t)), V_{2}(t, X(t))\right) \tag{viii}
\end{align*}
$$

(v) and (vi) verify property (ii).

Property (iii) follows from the proepety (8.7) and the fact that $V_{1}(t, X)=0$ if $\mu_{1}(X)=0$.

Now

$$
\begin{aligned}
|V(t, X)|= & V_{1}(t, X)+V_{2}(t, X) \\
= & u_{11}^{*}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), 0\right)\right)+u_{22}^{*}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), \mu_{2}\left(X_{0}\right)\right)\right) \\
\leq & u_{21}\left(t, 0,\left(u_{1}\left(X_{0}\right), \mu_{2}\left(X_{0}\right)\right)\right)+u_{22}\left(t, 0,\left(\mu_{1}\left(X_{0}\right), \mu_{2}\left(X_{0}\right)\right)\right) \\
& r_{2}\left(\left|\mu\left(X_{0}\right)\right|\right), \text { by hupothesis }(4) \text { and } \mu\left(X_{0}\right) \\
& \quad=0 \text { implies } X_{0} \in M . \\
= & r_{2}\left(\alpha_{2}\left(d\left(X_{0}, A\right)\right)\right)=r_{2}\left(\alpha_{2} b^{-1}(d(X, A))\right) \\
= & a_{1}(d(X, A)), a_{1} \in K
\end{aligned}
$$

$$
\begin{align*}
V(t, X) & =V_{1}(t, X)+V_{2}(t, X) \\
& \geq V_{2}(t, X) \\
& =u_{22}(t, 0),\left(\mu_{1}\left(X_{0}\right), \mu_{2}\left(X_{0}\right)\right) \\
& \geq r_{1}\left(\mu\left(X_{0}\right)\right) \text { by hypothesis }(5) \text { and } \mu\left(X_{0}\right)=0 \text { implies } X_{0} \in M \\
& \geq r_{1}\left(\alpha_{1}\left(d\left(X_{0}, A\right)\right)\right) \\
& \geq r_{1}\left(\alpha_{1} a^{-1}(d(X, A))\right)=b_{1}(d(X, A)) \text { where } b_{1} \in K \tag{x}
\end{align*}
$$

(ix) and (x) together verify the property (iv). Hence the theorem.

Note:

(1) It is to be noted that the theorem just proved is not strictly a converse for either of the theorems (7.1) and (7.2). We find that the hypothesis (2) on the estimates for $d\left(F\left(t, 0, X_{0}\right), A\right)$ imply strict conditional stability for the set A with respect to the set M. Similarly the condition (4) corresponds to property (7.1) - (2) -s for (8.1), but we also require condition (5), which is compatible with the property (7.1)-(2)-s. Similar remarks hold for the theorem (8.2) stated below.
(2) Using the notion of mini-max solutions for a system, we can obtain theorems that will give strict conditional stability for the set A.
(3) Theorem (8.1) can be considered as the extension of theorem 4.5.1 of (32) on conditional stability of ordinary differential system to reversible dynamical system. The results are special cases fo theorems (4.5.2), (4.5.3) and (4.5.4) from the reference.
we can also prove the following extension of theorem (4.5.2) to reversible dynamical system and a simply state the theorem without proof.

Theorem 8.2. Let the assumptions (1) and (3) of theorem (8.1) hold. Assume further that
(a) there exist functions $b_{1}, b_{2} \in K, c_{1}, c_{2} \in L$ such that, for $X_{0} \in M$
$b_{1}\left(d\left(X_{0}, A\right)\right) c_{1}(t) \leq d\left(F\left(t, 0, X_{0}\right), A\right) \leq b_{2}\left(d\left(X_{0}, A\right)\right) c_{2}(t)$ for $t \geq 0$
(b) the solution $u\left(t, 0, u_{0}\right)$ of (8.1) satisfy the condition

$$
u\left(t, 0, u_{0}\right) \leq r_{2}\left(\left|u_{0}\right|\right) s_{2}(t), t \geq 0, r_{2} \in K, s_{2} \in L
$$

where $u_{0}=\left(u_{10}, u_{20}\right)$ and $u_{10}=0$.
(c) the component $u_{22}^{*}\left(t, 0, u_{0}\right)$ of the solution of equation (8.3) satisfy the condition

$$
u_{22}^{*}\left(t, 0, u_{0}\right) \geq r_{1}\left(u_{0}\right) s_{1}(t)
$$

with u_{0} satisfying conditions in (b), and $r_{1} \in K$ and $s_{1} \in L$
(d) $r_{1}(r)$ is differentiable and $r_{1}^{\prime}(r) \geq \lambda>0$
(e) s_{1} and c_{2} are such that $s_{1}(t) \geq \lambda_{1} c_{2}(t), t \geq t_{0}, \lambda_{1}>0$

Then there exists a function $V(t, X)$ with properties (i) (ii) and (iii) of theorem (8.1) and

$$
b(d(X, A)) \leq V(t, X) \leq a(t, d(X, A))
$$

where $b \in K$, and $a \in K^{*}$. This theorem shows the existence of a Lyapunov function for asymptotic conditional stability.

9. REFERENCES

[1] E.A. Barbashin: vc' en zap M.G.V. no. 135 pp.110-133 (1949) Russian.
[2] R. Bellman: Vector Lyapunov functions. J. SIAM Centro Ser. A1 (1962) pp.32-34, MR, Vol. 26 (1963).
[3] N.P. Bhatia: Stability and Lyapunov functions in Dynamical Systems, Contributions to Differential equations, 3 (1964), pp.175-188, MR Vol. 29 (1965).
[4] N.P. Bhatia and O. Hajek: Local semi-dynamical systems, Lecture notes in Mathematics (1969), Springer-verlag.
[5] N.P. Bhatia and G.P. Szego: Stability theory of Dynomical systems, Springer-Verlag, (1970).
[6] W. Hahn: Stability of Motion, Springer-Verlag (1967) Translated by Arne P. Baartsz, MR Vol. 36 \# 6716 (1968).
[7] A.A. Kayande and V. Lakshmikantam; General Dynamical systems and conditional stability, Proc. Cambridge Philos, Soc. 63 (1967), pp. 199-207, MR Vol. 34 \# 6258 (1967).
[8] A.A. Kayande and V. Lakshmikantham: Conditional invariant sets and vector Lyapunov functions - J. Math. Anal. Appl. 14 (1966), pp.285-293, MR Vol. 32 \# 7880 (1966).
[9] A.A. Kayande and V. Lakshmikantham: General dynamical systems and differential inequalities. Technical report, U.R.I. No. 2 (1968).
[10] V.I. Zubov: The methods of A.M. Lyapunov and their applications (English translation) Noordhoff, (1964).

