
International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

36

An Empirical Study on the Evolution of Android

Operating System in terms of Lehman’s Laws

Nazifa Tasnim Hia
Institute of Information

Technology
University of Dhaka
Dhaka, Bangladesh

Nishat Tasnim Mim
Institute of Information

Technology
University of Dhaka
Dhaka, Bangladesh

Abdus Satter
Institute of Information

Technology
University of Dhaka
Dhaka, Bangladesh

Kishan Kumar
Ganguly
Institute of

InformationTechnology
University of Dhaka
Dhaka, Bangladesh

ABSTRACT

Software evolution refers to the changes made to a software

product to enhance its capabilities. In this phase, different

software metrics are measured to ensure the maintainability

status. Software evolution has some rules postulated by

Lehman and his collaborators. Several empirical studies have

been performed to analyze the trend of software evolution in

different types of software. Observing the evolution and

Lehman’s laws applicability in Android source code is the

main objective of this research work. Various types of

software metrics have been calculated to measure the change

among releases. After that, using those metrics, the changing

pattern has been analyzed and six out of eight Lehman’s laws

have been found to be confirmed in Android source code

evolution. The remaining law 4 and law 5 are difficult to

determine as those require deeper empirical studies in the

field of open-source software.

Keywords

Software evolution, software metrics, Lehman’s laws.

1. INTRODUCTION
Software evolution is such attribute which controls the ability

of the software system thus it can accommodate with different

changes in software lifetime[1]. The term“evolution”

describes the idea of anything developing over time to achieve

various goals. Software undergoes a continual evolution

process across the full development life cycle where various

upcoming stakeholder or market requirements are addressed.

The evolution process is useful to meet the current necessity

and maintain the quality level of the software products.

Software evolution is highly observed in OpenSource

Software (OSS) systems like industrial software. OSS refers

to those kinds of software whose source code are easily

accessible, modifiable and distributive. Linux, Libre Office,

VLC media player, Mozilla Firefox, Android Open Source

project (AOSP) etc., can be referred to as very common and

popular OSS systems.

AOSP, has attracted its users with its continuously updated

features in each release and achieved widespread use all over

the world. It was started its journey in 2003 with Android Inc.

now owned by Google. Android being open source the

competitors in smartphone operating system industry Android

has the largest market share in terms of units shipped

worldwide and the number of android users [2]. It has gained

vast popularity because its software system is maintained by

the developers according to the different stakeholder and

market requirements. It has released 22 versions till 2022, as

lots of evolutionary changes happened to android, it is quite

necessary to focus on its evolution practices to get insight

about how it is coping with different changes, continuous

growth rates, instabilities and many other complex situations.

From this perspective, the following research question is

addressed:

RQ: What are the Android operating system’s evolution

practices in terms of Lehman’s Laws?

M M Lehman in his research work [3] [4] [5] observed the

software evolution process and claimed that the evolutionary

process of an industrial software has eight laws. He stated that

these laws characteristics are commonly observed in software

maintenance. Many researchers have experimented the

evolution process on different types of industrial [6], open

source [7], mobile applications [8], Linux kernel [9], web

application [10], Eclipse IDE [11] based and many more to

evaluate the Lehman’s laws. To the best of our knowledge,

there is no work to track android operating system’s evolution

based on Lehman’s laws. So, the objective of this research is

to analyze android source code based on different code

metrics and get insight into the source code behavior and then

analyze the Lehman’s laws applicability in Android system.

458 android versions from 2009 to 2022 have been used. The

only metrics that can be retrieved from the source code are

code metrics. Because of this, decisions regarding these two

laws—i.e., both the Conservation of familiarity and

organizational stability could not be made. Aside from this

confusion, it can be said that android adhere to all of

Lehman’s laws.

This source code analysis will assist both researchers and

developers to understand how being an OSS system android is

maintaining the evolution process, whether Lehman’s laws

have created impact on the evolution process, visualizing the

trends and understand where the changes are required and

where not and many more.

2. BACKGROUND
Lehman’s Laws: Lehman observed the nature of software,

evolving patterns, coping mechanism to deal with the radical

software changes etc. Successful evolution of a software is not

easy rather the evolution has some patterns and goes through

several constraints. The laws that Lehman postulate are

discussed below.

1. Continuing Change: Software system should be dynamic

to adapt different changes. Specifically, an E-type software

needs to be changed depending on its end users’ requirements

otherwise it cannot rival other new software and over time

could lost the favor of its user [3].

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

37

2. Increasing Complexity:The more software changes its

functionality, the more possibility arises to increase the

complexity. This law is complimentary with the first one, but

the complexity should be minimized as much as possible with

continuous changes. Therefore, in maintenance phase, enough

preventive mechanism is advised to include for decreasing the

complexity rate [3].

3. Self Regulation:This law claims that the E-type software

evolution process holds the self regulation characteristic. That

means, the system keeps a trade-off between the changing

requirements and the actual changeability [3].

4. Conservation of Organizational Stability:This law says

that large organization are not seem to bring change in large

scale to maintain the stability during software active lifespan.

If lots of changes for example, budget increment, investments

to the developers, change in strategies are accepted in large

scale then the overall situation causes to the unstable situation

in the organization [3].

5. Conservation of Organizational Familiarity: Lehman

noticed the importance of software familiarity maintenance

with its developer and end users. Massive changes in software

system slow down the developers productivity rate of

developers as well as decreases the interest of end users [3].

6. Continuing Growth:Continuing growth means adding

functionality to enhance software feature according to the

demand of its stakeholders. When a piece of software

develops new capabilities, it helps to increase the overall

usage of the software [5].

7. Declining Quality:A software system may lose its uses if

it does not change with time, does not upgrade its

functionality etc. This situation arises due to the failure of

capability enhancement. To keep the evolution running a

software needs to be consistent with in quality maintenance

[5].

8. Feedback System:In software evolution process, to keep

the regularity, feedback system has great importance. This

system actually keeps the balance among different

stakeholders’ suggestions, demands and helps to maintain the

system's self-regulation characteristics [5].

3. LITERATURE REVIEW
Researchers have worked on several domains related to

software evolution to understand and justify the evolution

process according to Lehman’s laws. Different evolutionary

analysis-based works on open source as well as industrial

software system have been performed over the years.

Ayelet Israeli conducted an open source based case study over

800 versions of the Linux Kernel [9]. The objective was to see

the systems evolving nature over time, how the system growth

changes, the nature of complexity. In this study different

software metrics were collected from large number of data

set.Giovanni Grano in [12] experimented on the android

applications. The objective was to infer the software evolution

trends on different versions. A tool named” PAPRIKA” was

introduced for monitoring the evolving mobile applications

using anti patterns.

Software evolution analysis is not confined to the open and

industrial boundary. Researchers are trying to analyze the

evolutionary pattern in web-based applications [10]. This

research conducted an empirical study on 30 PHP project to

investigate whether Lehman’s laws are applicable in web

applications. They found Continuing Change, Self regulation,

Conservation of organizational stability, Conservation of

familiarity and Continuing growth are confirmed in that PHP

projects.

Taranjeet Kaur performed a study [13] on two OSS (built in

C++) named Graphic Layout Engine and Flight Gear

Simulator. The core objective was to analyze the evolution

pattern of these two software systems and finding the

applicability of Lehman Laws using object-oriented code

metrics (CBO, WMC, DIT, RFC, LCOM and NOC). In this

study it is found that only three Lehman Laws (Continuous

change, Continuous growth and Increasing complexity) are

applicable in these two software system. They claimed, the

applicability of Self-regulation, Organizational stability and

Conservation of familiarity are difficult in terms of OSS. Two

laws, declining quality and feedback system, are

hypothetically related to the changing log of OSSsoftware.

They advised for OSS to conduct deeper empirical study for

finding more effective outcome of Lehman laws.

A case study [14] was performed by Kalpana Johari and

Arvinder Kaur in two java OSS system, named JHot Draw (13

versions) and Rhino (16 versions). This study was conducted

using Object Oriented Metrics to investigate the Lehman’s

Laws applicability’s. They found the impact of continuing

change, increasing complexity, and continuous growth

according to the collected data and metric measurements.

They mentioned self-regulation, organizational stability,

familiarity conservation is hard to relate in terms of

OSS.Their suggestion to conduct OSS related empirical study

on large amount of data.

4. METHODOLOGY
In order to conduct the study, 458 tags were collected from

GitHub. Then exploited the understand [20] tool to calculate

each metric. Analysis was done to comprehend the source

evolution based on those metrics. The complete breakdown of

this study’s phases is given below.

1.1 Data Collection & Processing
Since Android is an open-source project. The majority of its

source codes are hosted and maintained on a Google Git

repository. Additionally, the repository has a Git mirror that is

synced with the primary repository. The sources were

retrieved from the Git mirror. There are 715 available tags in

the Repository. 458 tags were retrieved from 2009 - 2022. At

first, the master branch was cloned, then using the Git

information each tag was checked out [25]. Tags of the source

are considered as the unit. The Understand [20] tool was used

for calculating the required metrics for this study. Every tag is

analyzed through the Understand tool. This tool gives a CSV

containing a measure of the code metrics for every tag. The

release frequency process metric was also calculated by

retrieving the tags' id and their release date. Based on it, the

monthly release frequency from 2009 to 2022 was calculated.

Using the number of files for each version, the incremental

change in number of files was calculated.

Software metrics are calculated in order to assess specific

software [21] characteristics. Different code metrics are used

in the software evolution process to conduct quantitative

analysis.Software performance, quality, and team productivity

can all be understood through the use of software

development metrics, which are quantitative evaluations of a

software product.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

38

Figure 1: Android Source Code Evolution Process

The following list of metrics areused in this study:

1.1.1 Source Lines of Code (SLOC or LOC) [22]:
This metric is one of the traditional, simple and useful metrics

which counts the total line number from a particular program

source code. This line counting help to understand the size

ofthe program, developers' productivity during development,

required effort to maintenance, etc. SLOC measurement can

be done from two perspectives. One is counting the physical

LOC measurement where comment lines are included with

other lines. Conversely, logical LOC is another perspective

where only executable "statements" are get counted. In this

study, LOC was used to understand the evolution.

1.1.2 Number of Methods (NOM) [22]:
In this metric number of the used or unused methods is

counted. This metric helps to understand how many methods

or functions are included in the source code.

1.1.3 Number of Files (NOF):
This is another simple metric where the total number of files

included in a program is measured. This metric helps

tounderstand the systems changes, growth, self-regulation

capabilities, familiarity and organizational stability.

1.1.4 Cyclomatic Complexity (CC) [22]:
Cyclomatic Complexity (CC) is a quantitative measure of

independent paths in a software program. An Independent

path is defined as a path that has at least one edge which has

not been traversed before in any other paths

1.1.5 Response for a Class (RFC) [23]:
This metric counts the total method number which is executed

in response to a message received by an object of a class.

1.1.6 Weighted Method per Class (WMC) [22]:
Generally, a class consists of several methods. Each method

has individual complexities. In WMC the methods included in

a given class are considered to do the sum of their individual

complexities. The resultant value predicts the overall effort

required during development and measures the maintenance

effort. A higher value of WMC represents the more complex

class.

1.1.7 Release Frequency:
This process metric tracks how frequently monthly version

releases occur. Process metrics are those metrics that are

employed to enhance the software development process.

As a result, the source code is transformed into a collection of

metrics.

1.2 Data Analysis
This study examines the evolution of the source code

empirically. Therefore, scatter plots are created from the

processed data. Regression lines are fitted through the plots to

help understand the pattern of those plots. Whether it obeys

Lehman's Law or not was decided based on the coefficients

and the standard error.

2. RESULT ANALYSIS
The result analysis performed on the Android source code is

discussed in this section. These graphs were created using 458

tags from the years 2009 through 2022. A linear regression

line was fitted for each metric to examine how the metrics

changed over time. Here's an illustration:

𝒀 = 𝒄 + 𝒎𝒙 (1)

The general equation for any straight line is equation (1)

where m is the gradient (or degree of steepness) and c is the y-

intercept (the point where the line crosses the y-axis).The

variables x and y are related to coordinates on the line in the

linear equation (1).

The formula yields a result for y when a value for x is entered.

The tag's serial number (in accordance with the release) is

used as an independent variable, and the calculated metrics

served as the dependent variable. The gradient of the

equation, M, was predicted using these variables. The

regression's standard error (S), which measures how far the

observed values deviate from the regression line on average,

was also determined. Utilizing the units of the response

variable, conveniently informshow consistently off the

regression model is.

2.1 Law-1: Continuing Change
Continue change means the frequent changes of software with

time with different requirements.

Used metrics: Lines of Code, Number of Methods and

Number of Files.

2.1.1 Lines of Code (LOC)
The Figure 2is showing the change of Lines of Code over the

versions. To understand the pattern of the change, a regression

line was fitted through the chart. The equation is given below:

𝑌 = 6450.42 + 523944.36𝑥

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

39

Figure 2: Lines of Code (LOC)

from the equation, the coefficient is found to be positive. So,

it indicates a linear increase of LOC over the versions. The

standard error should also be considered, which is, in this

case108.785. This means a 95% prediction interval would be

roughly 2×108.785 = +/- 217.56units wide, which is not too

wide and thus this model is sufficiently precise [24].

So, it can be concluded that lines of code have a linear growth

as the version number increases.

2.1.2 Number of Methods (NOM)
Figure 3is a plot that shows the change in the Number of

Methods over the versions. For understanding the pattern of

the change, a regression line was fitted on the data. The

equation is given below:

𝑌 = 76.32 + 8712.75𝑥

It can beinferred that the coefficient's value is positive from

the equation. So, it suggests that the number of methods has

been growing linearly. The standard error has also been taken

into account.It is 1.268 in this instance. This indicates that a

95 percent prediction interval would be approximately 2

×1.268 = +/- 2.536 units wide, which is not excessively wide

and indicates that this model is accurate enough [24].

Figure 3: Number of Class Methods

The trend observed here and in the LOC is comparable. The

number of class methods also rises as the tag version in a brief

period of time.

2.1.3 Number of Files (NOF)
Figure 4 is a graph that displays how the number of files has

changed over the versions. A regression line was fitted

through the chart to help explain the pattern of the change.

The formula is provided below:

𝑌 = 24.75 + 2014.20𝑥

Figure 4: Number of Files

The equation shows that the coefficient is positive. Therefore,

it implies that the number of files has increased linearly. As

Android is a large system. So, for ease of maintenance, it is

necessary to modularize the source code properly. As a result,

for incorporating new features or new changes most of the

time they introduced new files. Additionally, the standard

error should be considered. In this scenario, it is 0.4797. This

proves that a 95 percent prediction interval would be

approximately 2 ×0.4797 = +/- 0.959units wide, which is not

too wide and reveals that this model is sufficient [24].This

chart also shows an increasing trend in the number of files

with the versions.

The increasing trend in each of the aforementioned charts of

the code metrics indicates that changes have occurred during

the course of this project. The law of continuing change is

supported by Android project.

2.2 Increasing Complexity
When changes are made to software there might be enough

risk of increasing the overall complexity. Increasing

complexity may become a great loss in software behavior

understanding, software testing, and overall software

maintenance.

Used metrics: Cyclomatic Complexity (CC), Weighted

Method per Class (WMC) and Response for a class (RFC).

2.2.1 Cyclomatic complexity
An increase in Cyclomatic complexity can be a result of the

growth of the system or a result of lack of maintenance. The

change in cyclomatic complexity is depicted in Figure 5. The

complexity in this case was normalized based on the number

of classes. As it can be seen from these sections 2.1.1, 2.1.2,

2.1.3show an increasing trend as the releases occur.

Additionally, the cyclomatic complexity is a cumulative sum

of all class complexities for a release. Consequently, a

normalization based on the number of classes is necessary. A

regression line is fitted to the graph in order to understand the

true pattern of the entire chart.

𝑌 = 0.00 + 21.30𝑥

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

40

Figure 5: Cyclomatic Complexity

Figure 5shows a sharp rise between 4.x.x and 5.x.x, which is

the year 2013 when Android became the most widely used

tablet operating system. Though the coefficient is positive.

Since 2013 it followed a decreasing trend. It symbolizes that

the code was properly maintained to handle the complexity

issue.

2.2.2 Max Cyclomatic Complexity
Max Cyclomatic Complexity (MCC) is a measure that helps

to identify the tolerance level of the system. When the project

is in the early phase it tends to grow and adapt to new

requirements. As an example, the I/O module has to tackle

several types of Input and output commands. Therefore, it is

natural to have a lot of conditional clauses in those classes.

They learn about all the possibilities, though, once the system

has stabilized. Then, those conditions may be reorganized and

combined into a single structure or something analogous.

It can be seen inFigure 6 that for some versions, the maximum

complexity is high and then in the subsequent version the

complexity starts to normalize.

Figure 6: Max Cyclomatic Complexity

So, it resembles the example that when they develop

something new it’s natural to become complex. However, the

change was refactored after it stabilized. The regression

equation for this graph is:

 Y = −0.15 + 321.45x

This equation has a negative slope, and the regression line

also slopes downward. 0.4797 is the standard error. This

demonstrates that the model is adequate because the 95

percent prediction interval would be about 2 ×0.0253 = +/-

0.0506 units wide.This proves that the code is being

maintained.

2.2.3 Weighted Method per Class (WMC)

Figure 7represents the change of the complexity per class or

weighted method per Class(WMC). Therefore, this plot

resembles the plot Figure 5.

Figure 7: Weighted Method per Class (WMC)

2.2.4 Response for a Class (RFC)
The class's overall design complexity increases and becomes

more difficult to interpret as RFC increases. Pressman claims

that as RFC increases, so does the testing effort necessary

because the test sequence grows. On the other hand, a low

RFC value denotes greater polymorphism. The RFC value for

a class should fall between 0 and 50; in some cases, the higher

number maybe 100. It varies depending on the project.

𝑌 = 0.02 + 65.37𝑥

Figure 8: Response for a Class

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

41

Figure 9: Incremental Change in Number of Files

For the early ages of the Project, a sharp increase in RFC is

seen in Figure . A project's size tends to increase more quickly

in the first few years as new requirements are more frequently

incorporated. After 2013, however, the rate of RFC growth

was incredibly slow. Additionally, the slope for the most

recent years is down. Due to the size of the Android project

and the fact that RFC's value can reach upto 100. It is

therefore evident that the project is being maintained and the

design complexity is still under control.

Although some metrics of complexity increased over the

course of the project, the analysis report of the above chart

shows that preventive measures are taken to keep complexity

from rising. Therefore, the Android source is consistent with

the law of increasing complexity.

2.3 Law-3: Self Regulation
According to this law, the changes in software are accepted in

a certain scale when necessary. This law ensures the self

regulation of the evolution process to make a steady trend.

This law implicitly controls the organization's stability and

reserves the familiarity of the software product.

Used metrics:Line of Code (LOC), Number of Method and

Number of File.

Result Analysis:There is no exact metric for self regulation

measurement. In this work, the self regulation is interpreted

by the growth of LOC Figure 2, Number of method Figure 3

and Number of Files Figure 4[22]. From those figures, it is

observed that all these measures exhibit a steady increasing

trend and slight jumps in major releases. Then the following

subsequent minor releases and patches follow a steady

growth.

Thus, the self-regulation law is reflected in the Android

project.

2.4 Law-4: Conservation of Organizational

Stability
According to this law, the average effective global activity

rate of an evolving system remains invariant over the life time

of the system [6]. Organizational stability refers to the concept

that there will not have lots of changes in software product

that might be a reason for lots of unstable situations in the

organizational environment.

Used Metrics:Incremental Change in Number of files,

Releases per month.

2.4.1 Incremental Change in Number of Files
The number of files added or removed from the previous

version is depicted in this Error! Reference source not
found.. The work rate is more stable the fewer variations

there are between the versions. To understand the pattern of

the change, a regression line was fitted through the chart. The

equation is given below:

𝑌 = 0.01 + 4.47𝑥

The equation gives a positive coefficient and the value is very

low. So, it depicts a steady work rate. Though the graph

shows some sudden increase that could be a result of the

refactoring.

Thus, the familiarity of the project among developers is

conserved.

2.4.2 Release Frequency
This Figure shows the release frequency of Android per

month over 13 years. For Understanding the work rate, it is an

important measure.

Though from the graph and the regression line it is predictable

that the work rate was not always consistent. However, there

are some points that need attention. This plot is showing a

release frequency of 157 months or 13 years. Over these years

Android had to cope with many internal and external

influences and structural and organizational changes. Under

those circumstances, the fluctuation of the release frequency

is very low. Most of the time the frequency was below 50.

Figure 10: Release Frequency

Though from the graph and the regression line it is predictable

that the work rate was not always consistent. However, there

are some points that need attention. This plot is showing a

release frequency of 157 months or 13 years. Over these years

Android had to cope with many internal and external

influences and structural and organizational changes. Under

those circumstances, the fluctuation of the release frequency

is very low. Most of the time the frequency was below 50.

In this study, the invariant work rate is interpreted by

Incremental changes in the Number of Files and Releases per

month. Error! Reference source not found.and Figure

showed that the work rate is nearly constant in terms of

adding new files or new releases. Only slight inconsistency

occurs in releasing major versions. Thus, the law of

organizational stability can be interpreted as valid in the

Android source Code project.

2.5 Law-5: Conservation of Familiarity

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

42

According to this law, the content of successive releases is

invariant in an evolving system [1]. In this metric, the changes

are scaled in such a manner that the familiaritylevel with the

software product remains in the feasible range.

Used Metric:Releases per Month, Incremental Changes in

Number of files.

Result Analysis:This law suggests that the change between

releases should be limited which allows the developer to

maintain familiarity with the code. This law can be validated

by observing incremental growth. If it seems to be constant or

declining on average, familiarity is conserved.In this study,

Releases per Month 2.4.2and incremental changes in number

of files are considered to assess the law 2.4.1.

So, the law of conservation of familiarity is supported by

Android.

2.6 Law-6: Continuing Growth
According to this law, the functional content of a system must

be continuallyincreased to maintain user satisfaction over time

[6]. Growthcan be interpreted as an increase in the size of

code in orderto add new features. New software is developed

from initialrequirements that are the foundation of the system.

Sooneror later the changing requirements need to be adapted

tomaintain the satisfaction of users that leads to growth.

Used Metrics: Lines of Code, Number of Methods and

Numberof Files.

Result Analysis:Above metrics measures are used in this

study to capture the growth as the increase of these measures

reflects the growth of a system by size and functionality.

In the above sections 2.1.1, 2.1.2, 2.1.3, it was proved that

these metrics grow as the version releases. So, the law of

continuing growth is supported by this project.

2.7 Law-7: Declining quality
According to this law, the quality of an evolving system

degrades over time unless it is rigorously maintained and

adapted to a changing operational environment [6].

Used Metrics:Comment to Code Ratio.

2.7.1 Comment to Code Ratio

This

Figure 8: Comment to Code Ratiodisplays theRatio of

Comment Lines to Code Lines across versions. Earlyon, there

is a noticeable sharp decline, but after that, the ratioremains

constant.

𝑌 = −0.00 + 0.42𝑥

Figure 8: Comment to Code Ratio

The early phase’s sudden decline has an effect on the

regression line, which is why the coefficient is also negative.

However, the ratio is still around 35 %. Though there is no

standard value for comment-to-code ratio still it’s believed

that excellent code has >25% comment-to-code ratio. So,

according to this metric, the code is properly maintained.

Deciding on this law is difficult as the quality cannot be

measured based on some code metrics. Still, the validation of

previous laws and the raising popularity of Android indicates

that the quality is maintained. So, the law of declining quality

is valid for Android.

2.8 Law-8: Feedback System

This law states that asystem’s evolution is made up of multi-

level,multi-loop, andmulti-agent feedback devices.

Result Analysis:As there is no particular metric to validate

this law. It is difficult to evaluate it. This law seems to apply

on most to open-source projects accurately because

community-driven feature requests, bug reports, and issues

are what drive open-source projects. As an open-source

project, Android's feature requests and bug reports are

managed through GitHub. The opinions of users and the

development community are used to guide the development of

Android. So, the fact is that the Android project follows the

feedback system law.

3. THREATS to VALIDITY
Internal validity:Android source code metadata was

collected from the git mirror repository of the main Google git

repository. There are 715 available tags of Android source.

Due to time constraints, all of the tags could not be analyzed.

There are some missing tags from 2009, 2018 and 2020

respectively. This research conducted an analysis of 458 tags

from 2009 to 2022. Android source is written in both C++ and

Java. However,the focus of this research ison the Javapart as

most of the source code is written in Java. As a whole, it can

be concluded that some data have been missed that might give

more insightful ideas regarding the analysis.

External validity:External validity is such measurements

where the findings of the research are tried to generalize with

other relative factors such as other people, other settings or

other compatible factors. However, in this research, the

investigation of the Android source code produced the results

that are best fitted in this study.

Construct validity:The understand tool [20] was used for the

source code analysis. Only the code metrics are measured by

this tool. For the analysis of the data, the CK metric suite [22]

was used. However, two metrics from the CK metric suite

could not be measured, namely coupling between objects

(CBO) and lack of cohesion in methods (LCOM). Only the

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

43

release frequency was used for the process metrics. It would

be very beneficial to include more process metrics to better

understand the project's development

4. CONCLUSION
Software evolution happens to make the software lifespan

longer and ensure the software product quality. There are two

types of software: Open and industrial. Unlike industrial

software, OSSis influenced by different types of stakeholders.

In spite of that those open source projects become successful

when they can adapt to real world changes. Generally,

software evolution follows several significant laws identified

by Lehman after his thirty years of software industry level

experience. Though Lehman's laws were established on the

basis of industrial software (mostly closed), researchers are

trying to analyze the impacts on different OSS. Many

researchers found these laws strengths in much closed

software as well as in OSSand found that these laws have

almost equal impact in both cases. However, this research is

conducted to see the evolutionary changes in the Android

source code and found that in the Android source code

evolutionary pattern there is a significant impact of Lehman's

laws. The research is conducted using some traditional code

metrics and the future plan is to use more process metrics and

git repository statistics to do further research.

5. ACKNOWLEDGEMENTS
This research has been partially supported by the University

Dhaka, Bangladesh under theCentennialResearch Grant,

University of Dhaka, Reference No: Regi/Admin-3/1414.

6. REFERENCES
[1] Rowe, D., Leaney, J., & Lowe, D. (1994). Defining

systems evolvability-a taxonomy of change. Change, 94,

541-545.

[2] Haris, M., Jadoon, B., Yousaf, M., & Khan, F. H. (2018).

Evolution of android operating system: a review. Asia

Pacific Journal of Contemporary Education and

Communication Technology, 4(1), 178-188.

[3] Lehman, M. M. (1979). On understanding laws,

evolution, and conservation in the large-program life

cycle. Journal of Systems and Software, 1, 213-221.

[4] Lehman, M. M. (1980). Programs, life cycles, and laws

of software evolution. Proceedings of the IEEE, 68(9),

1060-1076.

[5] Lehman, M. M., Ramil, J. F., Wernick, P. D., Perry, D.

E., &Turski, W. M. (1997, November). Metrics and laws

of software evolution-the nineties view. In Proceedings

Fourth International Software Metrics Symposium (pp.

20-32). IEEE.

[6] Lehman, M. M. (1996, October). Laws of software

evolution revisited. In European Workshop on Software

Process Technology (pp. 108-124). Springer, Berlin,

Heidelberg.

[7] Xie, G., Chen, J., &Neamtiu, I. (2009, September).

Towards a better understanding of software evolution:

An empirical study on open source software. In 2009

ieee international conference on software

maintenance (pp. 51-60). IEEE.

[8] Saifan, A. A., Alsghaier, H., &Alkhateeb, K. (2018).

Evaluating the understandability of android

applications. International Journal of Software

Innovation (IJSI), 6(1), 44-57.

[9] Israeli, A., &Feitelson, D. G. (2010). The Linux kernel as

a case study in software evolution. Journal of Systems

and Software, 83(3), 485-501.

[10] Amanatidis, T., &Chatzigeorgiou, A. (2016). Studying

the evolution of PHP web applications. Information and

Software Technology, 72, 48-67.

[11] Businge, J., Serebrenik, A., & Van Den Brand, M. (2010,

September). An empirical study of the evolution of

Eclipse third-party plug-ins. In Proceedings of the Joint

ERCIM Workshop on Software Evolution (EVOL) and

International Workshop on Principles of Software

Evolution (IWPSE) (pp. 63-72).

[12] Grano, G., Di Sorbo, A., Mercaldo, F., Visaggio, C. A.,

Canfora, G., &Panichella, S. (2017, September). Android

apps and user feedback: a dataset for software evolution

and quality improvement. In Proceedings of the 2nd

ACM SIGSOFT international workshop on app market

analytics (pp. 8-11).

[13] Kaur, T., Ratti, N., & Kaur, P. (2014). Applicability of

Lehman laws on open source evolution: a case

study. International Journal of Computer

Applications, 93(18), 0975-8887.

[14] Johari, K., & Kaur, A. (2011). Effect of software

evolution on software metrics: an open source case

study. ACM SIGSOFT Software Engineering

Notes, 36(5), 1-8.

[15] Yu, L., & Mishra, A. (2013). An empirical study of

Lehman’s law on software quality evolution.

[16] Alenezi, M. (2021). Internal Quality Evolution of Open-

Source Software Systems. Applied Sciences, 11(12),

5690.

[17] de Oliveira, R. P., Santos, A. R., de Almeida, E. S., & da

Silva Gomes, G. S. (2017). Evaluating Lehman’s Laws

of software evolution within software product lines

industrial projects. Journal of Systems and Software, 131,

347-365.

[18] Sousa, B. L., Bigonha, M. A., & Ferreira, K. A. (2019,

September). Analysis of coupling evolution on open

source systems. In Proceedings of the XIII Brazilian

Symposium on Software Components, Architectures, and

Reuse (pp. 23-32).

[19] Saini, M., Arora, R., & Adebayo, S. O. (2022). In-Depth

Analysis and Prediction of Coupling Metrics of Open

Source Software Projects. Journal of Information

Technology Research (JITR), 15(1), 1-16.

[20] Scientific Toolworks, Inc, "Understand," Scientific

Toolworks, Inc, [Online]. Available:

https://www.scitools.com/. [Accessed 10 December

2022]

[21] Li, H. F., & Cheung, W. K. (1987). An empirical study

of software metrics. IEEE Transactions on Software

Engineering, (6), 697-708.

[22] Chidamber, S. R., &Kemerer, C. F. (1994). A metrics

suite for object oriented design. IEEE Transactions on

software engineering, 20(6), 476-493.

[23] Cook, S., Harrison, R., Lehman, M. M., &Wernick, P.

(2006). Evolution in software systems: foundations of the

SPE classification scheme. Journal of Software

Maintenance and Evolution: Research and

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

44

Practice, 18(1), 1-35.

[24] J. Frost, "Statistics By Jim," [Online]. Available:

https://statisticsbyjim.com/regression/standard-error-

regression-vs-r-squared/. [Accessed 15 December 2022]

[25] Mahir Mahbub. Automated tool for matrics

generation. https://github.com/MahirMahbub/

Automated-Tool-For-Matrics-Generation, 2022

IJCATM : www.ijcaonline.org

