
International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

30

Micro-services Transactions Resilience Across Bounded

Domains: An Architecture Perspective

Sreenivasa Rao Vangala
Advisory Solutions Architect

 DXC Technologies Ltd
Hyderabad, India

Ravi Kiran Mallidi
School of Computer Applications

Lovely Professional University
Punjab, India

V.L. Prasuna Appili
Department of Information

Technology, MGIT, Gandipet
Hyderabad, India

ABSTRACT
In the digital transformation world, applications across

industries are getting migrated to Cloud platforms. Off latest

buzzword in the digital transformation world is zero touch

solution. Also, several industry-specific SaaS-based

frameworks are getting released in the market, which is in

cloud native. Organizations are adopting buy and use the

above-mentioned SaaS products to reduce development time

and cost and overcome resource skill crunch. Thereby beat the

competition. However, few enterprises and regulatory-specific

applications can't be replaced overnight. Hence, enterprises

are migrating applications to Cloud native solutions to achieve

complete or near-zero digital transformation. The complex

nature of business rules requires communication between

diversified cloud products, typically called bounded context or

domain-driven architecture. The concept of data mesh has

come into place to achieve scalable and secured enterprise

systems. However, there are no data patterns in the area to

take care of CRUD (Create, Read, Update, and Delete)

operations, i.e., address the CRUD operations failure

instances between boundaries. The current work aims to

develop architectural concepts for managing CRUD

operations failure and achieving transactional resilience in

domain-driven architecture.

Keywords

Microservices Best Practices, API Gateway, Domain Driven

Architecture, Bounded Context, Digital Transformation,

Enterprise Architecture, Transactional Process Resilience,

Tran Process (TP) Monitor, TP Audit, Event Handler.

1. INTRODUCTION
Software systems are developed initially to turn around the

work at a faster phase with zero or no errors as against doing

the same work manually. Also, improvements like enhanced

user experience, Enterprise Application Integration (EAI),

data sharing, cloud computing, Digital Transformation, etc., in

Information Technology (IT) have further necessitated to

architect the state of enterprise systems which are compliant

with industry-specific regulatory processes, secured, scalable,

reliable and resilient.

The IT systems built during the initial days are procedure-

oriented and easy to build. However, they are very expensive

and time-consuming regarding maintenance or enhancements.

With the invention of new technologies and IT infrastructure,

the industry has moved to Object Oriented Methodology

(OOM). While OOM systems are better than procedure-

oriented systems, maintainability and future enhancements are

time-consuming and expensive in terms of both development

and infrastructure. Technological advancements like

microservices [1,2], agile/scrum and Dev Ops framework

software engineering and deployment methodologies [3]

respectively have given pathways to developing systems in a

shorter time. As a further development, an API-based

approach has been introduced in [4], adding flexibility to

enterprise systems in disparate system integration.

As mentioned above, several systems across the industry have

been architected, designed, and developed using

microservices. The supporting level infrastructure has also

been architected by infrastructure engineers and architects for

non-cloud environments, and the same has been taken care of

by Cloud native infrastructure. As a next step, the IT industry

has moved towards SaaS products. These SaaS products are

nothing but developing industry-specific frameworks in a

cloud-native environment. With the development of SaaS-

based and migrating existing on-prem applications to the

cloud as part of application modernization, the data mesh has

come into place to establish effective communication across

cloud boundaries. In an enterprise, if one looks at end-to-end

transaction perspective, the flow of any enterprise systems is

as follows:

Step I: The data is entered in the front-end channel by an end

user and submitted for action

Step II: The user request is re-directed to the API gateway for

invoking the respective domain microservice

Step III: CRUD operation triggered as part of the

microservice invocation. The said CURD operations are of

two types: i) executed in the native cloud boundary, ii) outside

the cloud boundary

Step IV: Receive the result and route it to the respective

subsystem or front-end channel

In the execution scenarios mentioned above steps I-IV are

ideal. However, in practice there could be several systems-

related issues, like DBMS systems may be down, and

interfaces or gateways may not respond whenever a

transaction moves and hits destination systems; as a result of

this, CRUD operations might fail. There are well-architected

and designed data patterns to handle CRUD operations failure

within the bounded context or cloud-native boundary. The

crux of the matter is what if a CRUD operation fails outside of

a designated cloud boundary? The current work concentrates

on architecting a framework for CRUD operations failure

outside the cloud boundary. An effort has been taken to

architect Transaction Process (TP) Monitor, TP Audit, and

event handler concepts to ensure that CRUD operations

failures are handled. This will ensure that the enterprise

systems behavior is more consistent, achieving resilient

system behavior.

This paper is organized as follows: Section II describes

Literature Review, Section III describes TP and TA

architecture concepts, Section IV describes a few case studies

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

31

which authors have come across in their day-to-day work, and

Section V Conclusions and further work.

2. LITERATURE REVIEW
The IT systems were initially developed as a standalone

system, and data is transferred to dependent systems through a

manual batch process. The recent trends in the technology

space of IT have moved to digital transformation and ZERO

touch implementation. This has necessitated the application

modernization from monolithic to microservices-based

systems. The legacy modernization from the monolithic has

been described in [1]. The microservices architecture with a

function-first approach has been described in [2].

Microservices architecture with agile/scrum and dev ops has

been described in [3]. The enhanced framework for enhancing

any microservices system is routing microservices through

API Gateway, which has been implemented in [4]. Multi-

tenant-based architecture has been described in [5].

Complexity-based microservices implementation and domain-

based microservices implementations are described in [6] and

[7] respectively. An event-driven-based implementation

further boosts the microservices-based implementation, and

the same has been described in [8,9 and 10]. Adding

streaming to any microservices-based implementation on top

of event-driven architecture has further improved the

performance of the system and handles real-time systems, and

the same has been discussed in [11] and [12]. Application

modernization with microservices in the Cloud infrastructure

has been described in [13]. Cloud and Dev Ops for

microservices has been described in [14]. The digital

transformation maturity model has been described in [15], and

the same digital transformation specific to the finance industry

has been described in [16]. The reference model for digital

transformation has been described in [17]. The serverless

cloud computing concepts have been covered in [18]. The

data mesh concepts, domain driven architecture has been

described in [19].

3. MICROSERVICES AND THE

DOMAIN DRIVEN ARCHITECTURE
The entire system is divided into subsystems based on

business functionality in a domain-driven architecture.

Business processing related to that subsystem is built in the

respective subsystems or cloud infrastructure as described in

[19]. The typical view of sample bounded context has been

depicted in Fig 1.

Fig 1: A sample view of a domain-driven context

In Fig 1, each domain can expose one or more operational

Application Programming Interface (APIs) and one or many

analytics endpoints. The real-time example of domain-driven

architecture is depicted in Fig 2.

Fig 2: Representation of a domain-driven architecture

Each of the domains represented in Fig. 2 is called a bounded

context, and communication among bounded contexts

happens through translation maps. The said bounded contexts

communication is of two types: i) process and ii) Data. The

bounded contexts of communication has been depicted in Fig

3

Fig 3: Communication across Bounded contexts

The basic principles of bounded context are

One should treat each SaaS/SAP/Standalone application as a

bounded context to solve a disparate application issue

As mentioned above, each bounded context should contain

process and data

Bounded context should communicate effectively at the

boundary of the domain

Communication in the transactional context mentioned in Fig.

3 happens through microservices. There are no design patterns

on how best to manage DBMS CRUD operations on a set of

data access patterns. Some patterns for two-phase commits in

technologies such as Spring. But these does not provide robust

transaction management capabilities such as those required in

domains.

In addition, event-driven data architecture requires event

delivery to be robust and reliable. This kind of complex

operation can't be met by a single microservice context.

Simple SQL transaction capabilities don't provide the

necessary functionality for these operations.

The ultimate solution for the above-said transactional issues is

the TP Monitor, which has three components. They are as

follows:

TP Monitor – Creates transaction ID and monitors the flow

within a given microservice

TP Audit – Records the current state of any given transaction

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

32

and can be used to record a failure point in a given transaction

Event Manager – stores the status of any given event and

notifies any subscriber to that event

The above scenarios are depicted in the following Fig 4.

Fig 4: Representation of Transaction Process Components

The role of any TP monitor is to monitor the list of activities

in memory transactions by inspecting transactions that have

passed a designated timeout period. The timeout transactions

are logged, and an exception has been raised for operations

resolutions. The active transaction monitor process has been

depicted in the following Fig. 5.

Fig. 5: Active transaction monitoring process

The transaction monitoring processes in the microservices

context has been depicted in Fig 6.

Fig 6: Active Transaction Process Scenario in the

Microservices context

In Fig 6, the following sequence of events occurs during any

DBMS transaction execution.

TP monitor looks for unmatched transactions IDs and

compares them with a transaction timeout value

Raises an exception if any unmatched exception is found

As soon as any exception is thrown by the TP monitor, the TP

audit process will come into action to log the intermediate

states of the monitored transaction. All states will be logged

and persisted for future reference. This should link to our

standard audit framework and the same has been depicted in

Fig 7.

Fig 7: TP Audit Flow

The event handler is a mechanism that comes into the picture

whenever a given transaction that requires an event to be

published will post an intent at the beginning of the

transaction. This handler will monitor for expired event

intents and log timeout events. On successful transaction

completion, the transaction will post the required update

event. Events will be sent via a messaging component which

will notify (ensure delivery) of updated events to the

registered subscribers. Failure of a subscriber to acknowledge

event receipt will cause the raising log and sync error

exceptions to the IT operations. The event handler mechanism

is depicted in Fig 8.

Fig 8: TP Event Handler

The messaging capabilities should be proxied out through the

API gateway as many connected systems in the cloud and

outside of the Cloud boundary.

4. SYSTEM ARCHITECTURE

METHODOLOGY
The current TP monitoring system has been architected in

such a way that it overlays an existing data services

architecture. The existing data services architecture has been

depicted in Fig 9, which is outside the scope of the current

work.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

33

Fig 9: High-Level Architecture of Translation System with

Adaptors

Data mapping and services view with the TP monitor are

shown in Fig 10 below.

Fig 10: Data Mapping services and Data Services

Architectural view

The end-to-end transactional view in a practical

implementation has been depicted in the following Fig 11.

Fig. 11: End-to-End Transactional view

The sample end-to-end architecture view of simple transaction

events and transaction plus events has been depicted in Fig.

12 and Fig. 13, respectively.

Fig. 12: An architectural view of a simple transaction

event

Fig 13: An architectural view of transaction plus event

The deployment architecture view for the current system of

consideration has been depicted in Fig 14.

Fig 14: The Deployment Architecture view of

microservices TP monitor and DB Architecture

There are multiple ways in which transactions could fail.

Some of the examples have been captured in the following

Table 1

Table 1: Few examples of transactions failure scenarios

Scenario Sub-

Scenario

Reason

µs

(microservice)

µs native

failure

Event thrown by µs

COTS

product

failure

Occurs during event

consumption phase

DB Write Fail Partial Out of N transactions there

is a possibility that 20-30%

(approximately)

transactions might fail

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

34

Full Out of N transactions, all of

them could fail due to DB

connectivity issue

Messaging

system fail

 The messaging system is

unable to receive messages

due to connectivity failure

to messaging system

Event

consumer fail

 The failure might occur at

event consumer level i.e.,

failure of microservices or

respective Cloud native

functions or any other

Monitoring

functions

failure

 The Cloud DB monitoring

functionality might fail

5. CONCLUSION
In the current work, authors have purely focused to bring

various architectural scenarios with respect to Database

transactions failure and resilience in a microservices context

at an enterprise level. However, there could be few situational

specific issues arise from the business architecture

perspective. These issues will be different for different

industries i.e., issues in Banking, Finance Service and

Insurance (BFSI) will not be same as that of Retail, Telecom,

Media and Entertainment, Oil and Gas, etc. Also, the

applicability of the current work with respect to enterprise

architecture level framework like i) Application Architecture,

ii) Data Architecture and iii) Technology Architecture could

be another dimension one could consider. As an extension of

this work one could pick-up a domain specific on prem to

Cloud migration problem in a digital transformation world

and apply the above detailed concepts and compare the

results. After successful execution of the above work the

concepts could be extended to cross domains.

6. REFERENCES
[1] Bakar, H. K. A., Razali, R., & Jambari, D. I. A Guidance

to Legacy Systems Modernization.

[2] J. -P. GOUIGOUX and D. TAMZALIT, ""Functional-

First" Recommendations for Beneficial Microservices

Migration and Integration Lessons Learned from an

Industrial Experience," 2019 IEEE International

Conference on Software Architecture Companion (ICSA-

C), 2019, pp. 182-186, doi: 10.1109/ICSA-

C.2019.00040.

[3] Muhammad Waseem and Peng Liang, Microservices

Architecture in DevOps, 2017 24th Asia-Pacific

Software Engineering Conference Workshops, DOI:

10.1109/APSECW.2017.18

[4] Chris Richardson, Building Microservices: Using an API

Gateway, Retrieved 10.06.2019 from

https://www.nginx.com/blog/building-microservices-

using-an-api-gateway/

[5] C. Batista, B. Proença, E. Cavalcante, T. Batista, F.

Morais and H. Medeiros, "Towards a Multi-Tenant

Microservice Architecture: An Industrial

Experience," 2022 IEEE 46th Annual Computers,

Software, and Applications Conference (COMPSAC),

2022, pp. 553-562, doi:

10.1109/COMPSAC54236.2022.00100.

[6] N. Santos and A. Rito Silva, "A Complexity Metric for

Microservices Architecture Migration," 2020 IEEE

International Conference on Software Architecture

(ICSA), 2020, pp. 169-178, doi:

10.1109/ICSA47634.2020.00024

[7] Michel Cojocaru, Alexandru Uta and Ana Oprescu,

MicroValid: A Validation Framework for Automatically

Decomposed Microservices, 2019 IEEE International

Conference on Cloud Computing Technology and

Science (CloudCom), DOI:

10.1109/CloudCom.2019.00023.

[8] Ervin Đogić, Samir Ribić, Dženana Đonko, Monolithic

to Microservices redesign of event driven integration

platform, 2018 41st International Convention on

Information and Communication Technology,

Electronics and Microelectronics (MIPRO), DOI:

10.23919/MIPRO.2018.8400254

[9] Tony Clark, Balbir S. Barn, Event Driven Architecture

Modelling and Simulation, Conference Paper, December

2011, DOI: 10.1109/SOSE.2011.6139091.

[10] Svetoslav Zhelev and Anna Rozeva, Using microservices

and event driven architecture for big data stream

processing, Proceedings of the 45th International

Conference on Application of Mathematics in

Engineering and Economics (AMEE'19), AIP Conf.

Proc. 2172, 090010-1–090010-8;

https://doi.org/10.1063/1.5133587

[11] S. R. Vangala, B. Kasimani and R. K. Mallidi,

"Microservices Event Driven and Streaming

Architectural Approach for Payments and Trade

Settlement Services," 2022 2nd International Conference

on Intelligent Technologies (CONIT), 2022, pp. 1-6, doi:

10.1109/CONIT55038.2022.9848178.

[12] R. K. Mallidi, M. Sharma and S. R. Vangala, "Streaming

Platform Implementation in Banking and Financial

Systems," 2022 2nd Asian Conference on Innovation in

Technology (ASIANCON), 2022, pp. 1-6, doi:

10.1109/ASIANCON55314.2022.9909500.

[13] B. Althani, S. Khaddaj and B. Makoond, "A Quality

Assured Framework for Cloud Adaptation and

Modernization of Enterprise Applications," 2016 IEEE

Intl Conference on Computational Science and

Engineering (CSE) and IEEE Intl Conference on

Embedded and Ubiquitous Computing (EUC) and 15th

Intl Symposium on Distributed Computing and

Applications for Business Engineering (DCABES), 2016,

pp. 634-637, doi: 10.1109/CSE-EUC-

DCABES.2016.251.

[14] A. Balalaie, A. Heydarnoori and P. Jamshidi,

"Microservices Architecture Enables DevOps: Migration

to a Cloud-Native Architecture," in IEEE Software, vol.

33, no. 3, pp. 42-52, May-June 2016, doi:

10.1109/MS.2016.64.

[15] T. Aguiar, S. Bogea Gomes, P. Rupino da Cunha and M.

Mira da Silva, "Digital Transformation Capability

Maturity Model Framework," 2019 IEEE 23rd

International Enterprise Distributed Object Computing

Conference (EDOC), 2019, pp. 51-57, doi:

10.1109/EDOC.2019.00016.

[16] T. Butler, "What's Next in the Digital Transformation of

Financial Industry?," in IT Professional, vol. 22, no. 1,

pp. 29-33, 1 Jan.-Feb. 2020, doi:

10.1109/MITP.2019.2963490.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 45, February 2023

35

[17] S. Bogea Gomes, F. M. Santoro, M. Mira da Silva and

M. -E. Iacob, "A Reference Model for Digital

Transformation and Innovation," 2019 IEEE 23rd

International Enterprise Distributed Object Computing

Conference (EDOC), 2019, pp. 21-30, doi:

10.1109/EDOC.2019.00013.

[18] W. Lloyd, M. Vu, B. Zhang, O. David and G. Leavesley,

"Improving Application Migration to Serverless

Computing Platforms: Latency Mitigation with Keep-

Alive Workloads," 2018 IEEE/ACM International

Conference on Utility and Cloud Computing Companion

(UCC Companion), 2018, pp. 195-200, doi:

10.1109/UCC-Companion.2018.00056

[19] Max Schultze, Arif Wider, Data Mesh in Practice,

O'Reilly Media, Inc, ISBN: 9781098108496.

IJCATM : www.ijcaonline.org

