
International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 47, February 2023

45

Application of Machine Learning for Test Case

Optimization in Functional Regression Testing of GUIs:

Exploring the Current State

Sara Khan
Dept. of Computer Application

Veer Bahadur Singh PurvanchalUniversity
Jaunpur, Uttar Pradesh, 222003, India

Saurabh Pal
Dept. of Computer Application

Veer Bahadur Singh Purvanchal University
Jaunpur, Uttar Pradesh, 222003, India

ABSTRACT

This paper tries to explore recent research developments in

the application of Machine Learning in functional regression

testing of GUIs, mainly focusing towards test case

optimization scenarios. A brief literature study was conducted

by exploring the available literature from top digital

repositories mainly from years 2017-2022 and identifying the

research gaps and challenges. Analysis reported certain

important research gaps in the available literature and also

challenges faced by researchers. This paper provides a quick

overview for those who are interested in this area of research.

Simplified description and presentation of the research

literature provides clear mapping for further research scope.

General Terms

Software Testing, Machine Learning, Automation

Keywords
GUI, Test Case Optimization, Functional Regression Testing

1. INTRODUCTION
Testing of Graphical User Interface (GUI) has become a very

complex task, since interface of today‟s application is not

simple. As the interdependence of different components of the

GUI with one another and with the environment has

increased, it has become a challenge for testers to perform

timely and accurate testing of these GUIs. Increasing adoption

of Agile and CI/CD environment in the organization have

made it more intense process to be performed. As the software

evolves, changes are integrated in the software, which directly

imposes certain level of threat to the existing software test

suites. To ensure that no threat is introduced to the available

software component functionality, Regression Testing is

performed. If simply defined, Regression Testing is a form of

testing that ensures all the functionalities of software work

correctly after required changes are incorporated. This testing

can be performed in three ways i.e. partial, selective and all

[1]. Selection entirely depends upon the situation and impact

of the changes. Since, Machine Learning (ML) is a recent area

of research in almost every dimension. Its application in

handling GUI regression testing is an important prospect in

terms of attaining quality and saving human effort in an

organization. GUI testing revolves around mainly two types

of testing i.e. Behavioral or Functional Testing and Structural

or Non-Functional testing. Functional testing is a black box

testing technique that is use to validate the behavior of the

GUI in response to interaction with the users. It is use to

inspect entire functionality of the UIX components like

validating the functioning of login page, hyperlinks, and

submit buttons etc. Whereas, Non-Functional testing deals

with internal implementation like layout, navigation,

appearance etc. Both types of testing brings huge challenge

for the testers since, GUI‟s are susceptible to changes in

accordance to the browsers they run on, operating systems,

screen size, resolution etc. Creating and maintaining the test

scripts require huge efforts and cost. Even a slight change

may require complete updating in the test cases. Hence, ML

and Deep Learning (DL) has started playing a huge role in

providing a more feasible solution to perform test case

creation and maintenance [2]. This paper dives to study the

same through ML only .It is arranged as follows. Sec. 2

describes research objectives, Sec. 3 describes challenges in

GUI regression testing, Sec. 4 has related literature study, Sec.

5 enlists the identified research gaps and Sec. 6 provides

conclusion to the paper

2. RESEARCH OBJECTIVES
Main objective of this research is to study the research

development related to GUI functional regression testing. It

can be further stated as below.

RO1: To study the challenges of GUI functional regression

testing in organizations.

RO2: To study the latest available literature for ML related

methodologies in test case optimization w.r.t regression

testing.

RO3: To document the research gaps.

RO4: To provide the future prospects of research.

3. STUDY ON CHALLENGES OF GUI

FUNCTIONAL REGRESSION TESTING
As companies are struggling to meet user expectations on the

available resources, automation of testing is an integral

process in an organization to speed up the release cycle.

Researchers has studied the challenges of GUI test automation

through important 49 publications [3]. It reported 24 core

challenges which was categorized into 3 categories namely

challenge in Test Execution Fragility, Appropriate Tools and

Automation Skills and Model-Based Testing (MBT).Though,

GUI automation is considered to be the toughest, with the

application of Agile software development model, testing

process has started switching towards AI- Enabled tools to

support the process with much accuracy and least cost, like

Static code analyser „Facebook Infer‟ [4], Unit test generation

„Diffblue‟ [5] and entire testing platform „SmartBear‟ [6]. A

study in [7] stated that 80% of maintenance cost comes from

regression testing and that too maximum effort is due to

testing of GUIs. Goal is to reduce regression cycle and also

technical and financial cost. The challenge is to attain robust

automation and capture the bugs before production. Issues

related with GUI regression testing can be categorized into

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 47, February 2023

46

three core categories that can be understood further through

Table 1.

Table 1.Key challenges in GUI regression testing

Automation Process Issues/Challenges

GUI Test Case Designing Test Case Generation (TCG),

Test Framework Designing,

Risk Based Profiling

GUI Test Case

Maintenance

Test Case Repair (TCR)

GUI Test Execution Decision on type of

regression testing to execute

(all, partial, hybrid or

prioritized), Test Case

Optimization (selection and

minimization)

3.1 GUI Test Case Designing
It is the process of deciding testing scenarios, framework and

generation of test cases for testing the GUIs. Goal of Test

Case Designing is to maximize the test coverage. Core

techniques used for designing is generally Boundary Value

Analysis, Equivalence Class partitioning, Decision Table,

State Transition and Error Guessing. Details of these

techniques can be read at [8]. Some of the important literature

who contributed to address this issue recently has been

provided in Table 2.

Table 2. Important literature who contributed towards

GUI TCG for regression testing in the past 5 years.

Ref. Contribution Methodology

Pradeep Kumar,

Rajesh Bhatia

[9]

Agent Based

approach to generate

regression test cases.

Combined UML

case diagram, use

cases and activity

diagram to identify

changes at both

syntax and

semantic levels.

Thomas

Wetzlmaier and

Rudolf Ramler

[10]

Hybrid approach

combining available

regression tests and

random test

generation

technique.

Based on “monkey

testing

framework”.

Random

interaction with

the GUI is done

and SUT

behaviour is

recorded to detect

failures.

M. Medhat

Kamal,

SaadM.Darwish,

Ahmed Elfatatry

[11]

TCG of GUI for web

application using

HTML file.

Test cases are

generated

individually for

the elements of the

web page, and also

between different

elements.

Granda, M.,

Parra, O. and

Alba-Sarango, B

[12].

TCG using user

requirement

specification.

Based on “Agile-

Model driven

development”.

Test scenarios are

generated by

parsing user

stories.

3.2 GUI Test Case Maintenance
As the software grow from time to time, its complexity

increases. Therefore, it becomes a necessity to efficiently

capture, retrieve, execute and store the test cases, so to avoid

any unnecessary human efforts that can delay scheduled

delivery. Starting from test case breakage to test case

management, GUI testing possess certain challenges at

software evolution. Latest research related to test case

breakage and repair in case of software evolution is

mentioned in Table 3.

Table 3. Research w.r.t. GUI TCR for regression testing

Ref. Objective Contribution

AtifMemon, Mary Lou

Soffa [13]

Test Case

Generation

and Repair

w.r.t

regression

testing of

GUIs.

Divides the

available

regression test

cases into usable

and unusable

according to

changes.

Unusable ones

are further

repaired

according to new

changes using

event sequence.

Minxue Pan, Tongtong

Xu, Yu Pei , Zhong Li,

Tian Zhang

andXuandong Li[14]

GUI test

scripts

repair for

regression

testing.

Proposed an

approach

„METER‟ that

uses computer

vision for GUI

changes. It works

on screenshots to

infer GUI

changes and

repairmen.

Zebao Gao,

ZhenyuChen,YunxiaoZou

and Atif M. Memon [15]

GUI test

scripts

repair for

regression

testing.

Proposes novel

approach

„SITAR‟ for

repairing of low

level test script

using three main

steps i.e. Ripping,

Mapping and

Repairing.

3.3 GUI Test Case Execution
Major challenge lies in deciding which all test cases need to

be executed for regression testing. Since, executing all the test

cases is infeasible w.r.t time and cost, therefore certain

methods like Test Case Prioritization (TCP), Test Case

Selection (TCS) and Test Case Minimization (TCM) of the

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 47, February 2023

47

test cases can be applied on the basis of relevancy of test cases

for the applied changes. Importance of TCS has been seen

effective in real scenarios. Detailed analysis of the available

literature on TCS has been done by [16], covering from year

1997 to 2006.Parameters forvaluation was cost reduction and

fault detection effectiveness. Another research review has

been done by [17], from 2007 to 2015. Result observed that

maximum of the studies being analyzed, used cost as the

effectiveness measure compared to fault-detection capability

and coverage, with coverage being minimum. TCP is

considered as the most efficient method for executing test

cases, as it does not eliminate any test cases, instead, it

prioritizes the test cases based on certain weights. TCM

method eliminates unnecessary test cases which no longer is

related to the applied changes.It is one of the process for Test

Case Reduction. Figure 1 demonstrates current scenario of

research done for Test Case Optimization (TCO) based on

TCG, TCS, TCM, TCR and TCP.

Figure 1. Literature Count for Test Case Optimization

4. LITERATURE STUDY ON ML BASED

TEST CASE OPTIMIZATION

Question arises what can be different possibilities in which

ML can be applied to reduce the cost of regression testing. By

studying various literature, it was found that academic

researchers are generally inclined towards optimizing the test

cases through techniques of prioritization, selection and

reduction/pruning/minimization. Whereas, researchers from

industries are more tending their focus on doing optimization

by determining obsolete test cases, unreliable test cases and

flaky test cases. But the goal remains same i.e. better code

coverage, improved traceability and better fault prediction.

Authors in [18] proposed an optimization model based on

historical data of test cases. They tried to provide the solution

to existing optimization techniques which mainly rely on

source code dependency. In this study, aim is to explore the

application of ML in this context. We gathered the literature

from different reputed repositories like IEEE Explore, ACM

Digital library, Scopus, Web of Science, Google Scholar,

Wiley online libraries and others. Greatest challenge was to

retrieve exact literature concerning to our problem statement.

Different queries were framed like<ML, GUI Testing, and

Regression Testing>, <Automation, UI Test Cases, and

Optimization>, < GUI Test Cases, AI, Regression Testing>

and many more, but it was found that such a literature

addressing all the keywords in our problem statement were

very rare. Though, research papers using traditional methods

of natural optimization methods like ABCO (Ant Bee Colony

Optimization), PSO (Particle Swarm Optimization), Bat

Optimization algorithm, etc. were huge, but papers regarding

ML in this context were very limited. Secondly, it was found

that objective for optimization of the GUI test cases were

generally limited for improving the test coverage, reducing

the feedback time and improving the fault detection ability.

4.1 Optimizing Regression TCS and TCP

Using ML
Selecting the desired test case based on the changes is

desirable to reduce the cost of regression testing. Engineers of

Meta team has proposed a method called „Predictive Test

Selection‟ [19]. Their objective is to determine the likelihood

of a given test to be able to find the regression. Method allows

training the ML model using historical code changes.

Gradient-boosted machine learning model has been used for

training. Another methodology based on „Test Impact

Analyses‟ creates an adaptive subset [20]. Its objective lies in

selecting the subsets of test cases by applying ML model on

the test execution data. Data being information related to Git

commits and test execution results. Retrieving the literature

related to our topic, it was found that very less literature in the

past 5-6 years is available i.e. less than 20 papers can be found

that are directly or indirectly related to optimization of GUI

test cases in regression testing, though huge amount of TCP

and TCS literature can be found using traditional optimization

techniques in general, like prioritization through social

network analysis, code coverage, multi-objective

prioritization etc. [21]-[23]. Table 4 provides overview of

some of the important and recent research work carried out in

this area.

Table 4. TCP of GUI/UI test cases

Ref. Latest Research Work

 [24] Name of Technique/Methodology: TERMINATOR

Research Objective: Better Automated UI Test Case

Prioritization technique

Research Gap addressed: Fewer „Black Box‟ based

TCP approach

ML Model: Support Vector Machine(SVM)

Feature Set: Execution history, Test Case

Description, Feedback

Metric: APFDc (Average percentage of faults

detected with cost)

Study: This approach predicts which tests might fail

sooner for a fault. Since, it has been studied that UI

test cases failure do not follow a particular pattern.

This classification cannot be always accurate in real

situations.

0
20
40
60
80

100
120

2015-Till date

2011-15

2005-2010

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 47, February 2023

48

[25] Name of Technique/Methodology: Scripted GUI

Testing of Android Apps

Research Objective: Analyse GUI Test Cases

Fragility in case of software evolution.

Research Gap addressed: Provided a practical

analyses of Android Testing Framework and some

important GUI tools on Test Suite Evolution,

Fragility, Diffusion.

Study: Results concluded that on average, 7.5% of

the changed lines are in the GUI test code and 3% of

the test code is modified. And in terms of fragility,

on average 1 for 5 classes in each test suite needs

modifications.

[26] Name of Technique/Methodology: RLTCP:

Reinforcement Learning approach to prioritizing

automated user interface tests.

Research Objective: To prioritize the test cases.

Research Gap addressed: To reduce the need for

full execution.

ML Model: Reinforcement Learning.

Feature Set: Execution History, Coverage Weights.

Metric: APFD (Average percentage of faults

detected)

Study: Results concluded that RLTCP outperformed

other methods of TCP i.e. Original order, Random

order, History based randomised (HBRF), RETECS.

Result showed significant differences in APFD

values. RLTCP and HBRL (History Based

Randomised new tests Last) performed same with no

significant difference in APFD values.

4.2 Test Suite Reduction using ML
Test Suite Reduction or Test Case Minimization is the process

of reducing the test cases by retaining the coverage and fault

detection ability. Main objective is to minimize the test suite

so that test case maintenance cost can be reduced. Many

researchers have tried to reduce the test suite size by

identifying redundant, flaky and obsolete test cases. Different

other methods have been identified that helps in reduction

keeping in view the coverage and fault detection capability.

Authors of [27] has proposed a new method of call stack

coverage that helps to overcome the traditional methods of

reduction like static analysis based on line or statement

coverage. It performed better in case of GUI testing where

cross browser and event sequences needs to be handled. Call

backs for event handler, multithreading, reflection etc. is well

handled by call stack coverage. Another approach [28], uses

program slicing technique for GUI Test Suite Reduction by

identifying the redundant test cases. How can machine

learning optimize the process of Test Suite Reduction in the

context of GUI testing is a challenging question. Table 5

summarizes some of the latest work in this context.

Table 5. Latest Test Suite Reduction Approaches

Ref. Latest Research Work

[29] Objective: Clustering to optimize test execution

time

Methodology: Cluster the similar test cases and

select a single test case from the suite as a

representative.

ML Algorithm: k-means clustering

Whether specific to GUI Testing: No

Evaluation Criteria: Statement, Branch, Decision

Coverage and Mutation Score.

Results: Algorithm assures an average reduction of

82.2% having the same coverage and mutation

score as the original test set.

[30] Objective: Identifying redundancy in test cases to

optimize testing time.

Methodology: Finds similarity within test cases

based on coverage information.

ML Algorithm: SVM, K-Nearest and Decision

Tree.

Whether specific to GUI Testing: No

Evaluation Criteria: Performance is evaluated

through error and accuracy metrics.

Results: SVM outperforms with 71.43% accuracy.

[31] Objective: Identifying infeasible test cases to

optimize testing resources.

Methodology: Using SVM classifier to classify

infeasible test cases.

ML Algorithm: SVM and Induced Grammars.

Whether specific to GUI Testing: Yes

Evaluation Criteria: Percentage of test cases

correctly classified w.r.t length of test cases.

Results: It proved how induced grammar can show

event sequences and constraint. Pairwise input

extraction algorithm worked best in SVM.

[32] Objective: Reducing software regression testing

cost.

Methodology: Using Similarity based test cases

clustering.

ML Algorithm: K-means and K-means++

clustering.

Whether specific to GUI Testing: Yes

Evaluation Criteria: Size of Test Suite reduction

and Fault Detection Loss.

Results: Efficiently finds subsets of test cases with

reduced test time in budget and adequate version.

Though, literature study retrieved more than 85 papers related

to Test Suite Reduction, but it was found that very rare

literature is present that matched proposed problem statement.

It can thus be derived that, there is a vast area of scope for

applying ML Techniques in this prospect.

4.3 Identification of Unreliable/Flaky test

cases using ML
TCO based on reliability of test cases is the recent research

dimension. Determining the quality of tests is in itself very

crucial for testing accuracy. According to [33], approx. 73K

of 1.6 M test failures per day is recorded at Google due to

flaky tests. Authors in [34] has mentioned flakiness of test

cases as unreliability in test case behavior i.e. sometimes it

fails and sometimes it passes, without a change to the

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 47, February 2023

49

underlying product or app. This in turn allows engineers to

spend extra time identifying the issues. They proposed

„Probabilistic flakiness score (PFS)‟ to monitor the quality of

test cases using Bayesian Inference Algorithm implemented in

statistical modeling environment „stan‟. In [35] authors has

provided a detailed analysis on issues, causes, costs and

repairing strategies related to flaky tests. GUI test cases can

be more flaky or brittle due to unpredictable changes over

time and its dependency on application, environment and

certain non-deterministic values [36]. Certain other techniques

like Athena [37] and Odeneye [38] has been created to detect

and handle test case flakiness. It‟s therefore important to

monitor those tests that can reduce the quality of testing

results. Table 6 illustrates some of the recent literature on Test

Case Flakiness.

Table 6. Important research related to Test Case Flakiness

Category Contribution Result

Empirical

Analysis on

flakiness on

235 UI Test

cases from 62

projects of

both web and

mobile

projects [39]

Provided

study on

relationships

between root

causes and

fixing

strategies of

flakiness

Root Cause identified:

Async wait, Test Script

Logic Issues, Test

Runner API issue,

Environment. Fixing

Strategies: Disable

Animation, Add Delay,

Fix Await mechanism,

Refactor Logic, Fix API

Access, Change Library

Version.

Identification

and Fixing of

the UI flaky

tests in

iTrust2

(Electronic

Health

Record

System) [40]

Studied the

impact of

Web Driver,

Wait

Conditions,

Hardware,

Host

Operating

System and

Effect of

Restarting the

web browser

between tests

HtmlUnit yields fewer

flaky tests than chrome.

Thread waits provide

lowest flakiness for both

HtmlUnit and chrome,

while explicit waits gives

highest. Paper also

contributes towards

providing more stable

and reliable teaching

application.

Automatic

fixing of

flaky

tests[41]

Targets

problems of

ordered

dependent

tests that are

flaky.

Recommends

patches to fix

flaky tests.

Evaluating iFixFlakies

on 110 ordered

dependent test from a

public data set, showed

that it can automatically

recommend patches for

58 out of 110.

Identification

and finding

the root cause

of flaky

tests[42]

Log analysis

tool

„RootFinder‟

that analyses

log of

runtime

properties by

finding

differences in

the logs of

passing and

failing runs.

Some of root causes

analysed are Time,

Randomness, Async

Wait, Concurrency and

Resource Leak. Paper

also mentioned some of

the research challenges

in this area.

Identification

of Flaky tests

without

rerunning the

tests[43]

ML based

approach that

looks for test

behaviour

and predict

flaky tests

based on

similarities in

test

behaviour.

FlakeFagger reported

fewer false positives as

compared to other

classifiers.

5. RESEARCH GAPS
Studying and analyzing the available literature on GUI test

cases in the context of ML, very less literature were retrieved.

It has been at an attention of researchers since a decade, with

CI/CD and Agile becoming more applicable. Papers specific

in providing TCO w.r.t GUIs regression testing were around

20 only. Some of the key finding in terms of research gaps

can be stated as follows.

 It has been observed that ML techniques has been generally

applied in understanding the input sequences of GUI Android

apps, Web Based Applications are not much explored.

 Optimizing the execution of GUI test cases for improving

the test coverage seems to be tough and harder problem for

researcher.

 Test Case Generation using event interaction graph or model

based testing seems to be the best choice for researcher to

analyze the structure and behavior of GUIs.

 Test Case Prioritization and Test Case Selection using ML

has been done mostly for unit test cases.

 SVM, Clustering, Decision Trees, Gradient Boost and

Reinforcement Learning algorithms were seen to dominate.

 Rare use of ensemble techniques has been seen for Test

Case Optimization.

 Approach using white box testing data were used more in

comparison to black box testing data.

 In the context of GUI testing, it was seen that very rare

literature is present that contributes towards minimizing Test

case flakiness through ML. Though, lots of literature are

present in the context of test flakiness and ML, but for UI and

specific to GUI test cases, there are very few.

 Generating and gathering data sets related to testing of GUIs

are tough and tedious, which possess one of the greatest

challenge for researchers.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 47, February 2023

50

 Systematic literature reviews and literature analysis on GUI

regression testing is very rare and needs to be done more.

 Empirical papers are also very limited in this dimension.

6. CONCLUSION AND FUTURE SCOPE
This paper provides recent developments in the research of

GUI functional regression testing in terms of Test Case

Optimization mostly focusing in and around 5- 6 years.

Reason behind selection of limited period was a steady

progress of automation graph in these 5

years.Where,industries are struggling to keep up user‟s

expectations in time-constrained software models. Research

literature primarily providing an analysis of GUI Test cases

were found very rare. This paper tried to structure the

scenarios of Test Case Optimization putting some of the latest

and important research papers in the context of GUI Test

cases. In future, more detail systematic literature review can

be carried out consisting of papers from past 20 years to see

the growth. A mapping study can be also done to structure the

scenarios of regression testing and GUI testing. Papers

exploring DL, NLP and Computer Vision can also be

considered in this context.

7. REFERENCES
[1] Ngah A., Munro M., AbdallahM,”An Overview of

Regression Testing”, Journal of Telecommunication,

Electronic and Computer Engineering 9, pp. 45-49, 2017.

[2] Durelli V.H., Durelli R.S., Borges S.D., Endo A.T., Eler

M.M., Dias D.R., Guimarães M.P, “Machine Learning

Applied to Software Testing: A Systematic Mapping

Study”. IEEE Transactions on Reliability 68, pp 1189-

1212, 2019.

[3] Nass M.D., Alégroth E., Feldt R, “Why many challenges

with GUI test automation (will) remain”, Inf. Softw.

Technol. 138, 106625, 2021.

[4] “Infer”, Available at: https://fbinfer.com/. Accessed on

20 February 2022.

[5] “Diffblue”, Available at:

https://www.diffblue.com/.Accessed on 21 March 2022.

[6] “SmartBear” Available at: https://smartbear.com/.

Accessed on 21 March 2022.

[7] Chittimalli P.K., Harrold M.J,”Recomputing coverage

information to assist regression testing”. IEEE

Transactions on Software Engineering 35(4): pp. 452–

469, 2009.

[8] “softwaretestinghelp”, Available at:

https://www.softwaretestinghelp.com/. Accessed on 26

March 2022.

[9] Arora P.K. and Bhatia R. 2018. Agent-Based Regression

Test Case Generation using Class Diagram, Use cases

and Activity Diagram. In Procedia Computer Science

125: pp 747-753. ISSN 1877-0509,

https://doi.org/10.1016/j.procs.2017.12.096 2018.

[10] Wetzlmaier T. and Ramler R. 2017. Hybrid monkey

testing: enhancing automated GUI tests with random test

generation. In Proceedings of the 8th ACM SIGSOFT

International Workshop on Automated Software Testing.

[11] Kamal M.M., Darwish S.M. and ElfatatryA.

2019.Enhancing the Automation of GUI Testing. In

Proceedings of the 2019 8th International Conference on

Software and Information Engineering.

[12] Granda M.F., Gonzalez O.P., and Alba-Sarango

B.2021.Towards a Model-Driven Testing Framework for

GUI Test Cases Generation from User Stories. In

Proceedings of16th International Conference on

Evaluation of Novel Approaches to Software

Engineering (ENASE 2021), pages 453-460.

[13] Memon A.M., Soffa M.L,”Regression testing of GUIs”,

SIGSOFT Softw. Eng. Notes 28, 5, pp 118–127,

https://doi.org/10.1145/949952.940088, 2003.

[14] Pan M., Xu T., Pei Y., Li Z., Zhang T. and Li X,” GUI-

Guided Test Script Repair for Mobile Apps” IEEE

Transactions on Software Engineering, 2020.

[15] Gao Z., Chen Z., Zou Y. andMemon A.M,” SITAR: GUI

Test Script Repair”, IEEE Transactions on Software

Engineering 42, pp 170-186, 2016.

[16] Engström E.,Runeson P. and Skoglund M,” A systematic

review on regression test selection techniques,” Inf.

Softw. Technol 52, pp 14-30, 2010.

[17] Kazmi R., Jawawi D.N., Mohamad R. andGhani I,”

Effective Regression Test Case Selection”, ACM

Computing Surveys (CSUR) 50, pp- 1 – 32, 2017.

[18] Magalhães C., Mota A. andMomente L,” UI Test case

prioritization on an industrial setting: A search for the

best criteria.” Software Quality Journal 29, pp 381–403,

https://doi.org/10.1007/s11219-021-09549-y 2021.

[19] Machalica M., Samylkin A., Porth M. and Chandra S.

2019.Predictive Test Selection. In proceedings of the

IEEE/ACM 41st International Conference on Software

Engineering: Software Engineering in Practice

(ICSESEIP), pp 91-100.

[20] “launchableinc”. Available at:

https://www.launchableinc.com/what-is-test-impact-

analysis. Accessed on 10 March 2022.

[21] Maitrikul C. and Limpiyakorn Y., “GUI Test Case

Prioritization using Social Network Analysis”, Journal of

Physics. IOP Publishing. DOI: 10.1088/1742-

6596/1619/1/012020,2020.

[22] He Z.W. and Bai C.G. 2015. GUI Test Case

Prioritization by State-Coverage Criterion. In 2015

IEEE/ACM 10th International Workshop on Automation

of Software Test, pp 18-22, DOI: 10.1109/AST.2015.11.

[23] Sun W., Gao Z., Yang W., Fang C. and Chen Z. 2013

.Multi-objective test case prioritization for GUI

applications In proceedings of the 28th Annual ACM

Symposium on Applied Computing.

[24] Yu Z., Fahid F.M., Menzies T., Rothermel G., Patrick K.

and Cherian S.2019.TERMINATOR: better automated

UI test case prioritization.In Proceedings of the 2019

27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the

Foundations of Software Engineering.

[25] Coppola R., Morisio M. and Torchiano M. 2017.

Scripted GUI Testing of Android Apps: A Study on

Diffusion, Evolution and Fragility. In Proceedings of the

13th International Conference on Predictive Models and

Data Analytics in Software Engineering.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 47, February 2023

51

[26] Nguyen V. and Le B,” RLTCP: A reinforcement learning

approach to prioritizing automated user interface tests”,

Information and Software Technology, Volume 136,

https://doi.org/10.1016/j.infsof.2021.106574, 2021.

[27] McMaster S. and Memon A.M. 2005. Call stack

coverage for test suite reduction. In proceedings of the

21st IEEE International Conference on Software

Maintenance (ICSM'05), pp. 539-548,doi:

10.1109/ICSM.2005.29.

[28] Arlt S., Podelski A. andWehrle M. 2014. Reducing GUI

test suites via program slicing. In proceedings of ISSTA.

[29] Chetouane N., Wotawa F., Felbinger H. and Nica M.

2020. On Using k-means Clustering for Test Suite

Reduction. In proceedings of 2020 IEEE International

Conference on Software Testing, Verification and

Validation Workshops (ICSTW), pp 380-385.

[30] Saputra M.C. and Katayama T. 2020. Code Coverage

Similarity Measurement Using Machine Learning for

Test Cases Minimization. In proceedings of IEEE 9th

Global Conference on Consumer Electronics (GCCE), pp

287-291, doi: 10.1109/GCCE50665.2020.9291990.

[31] Gove R.J. and Faytong J. 2011. Identifying Infeasible

GUI Test Cases Using Support Vector Machines and

Induced Grammars. In IEEE Fourth International

Conference on Software Testing, Verification and

Validation Workshops, pp 202-211.

[32] Cruciani E., Miranda B., Verdecchia R. and Bertolino A.

2019. Scalable Approaches for Test Suite Reduction. In

proceedings of 2019 IEEE/ACM 41st International

Conference on Software Engineering (ICSE), pp: 419-

429.

[33] Memon A.M., Gao Z., Nguyen B., Dhanda S., Nickell E.,

Siemborski R. and Micco J. 2017. Taming Google-Scale

Continuous Testing. In IEEE/ACM 39th International

Conference on Software Engineering: Software

Engineering in Practice Track (ICSE-SEIP), pp 233-242.

[34] “Engineering at Meta”. Available at:

https://engineering.fb.com/2020/12/10/developertools/pr

obabilistic-flakiness/. Accessed on 20 February 2022.

[35] Parry O., Kapfhammer G.M., Hilton M.C. and McMinn

P., “A Survey of Flaky Tests”, ACM Trans. Softw. Eng.

Methodol. 31, 17:1-17:74, 2021.

[36] Dix A, 1990. Non-determinism as a paradigm for

understanding the user interface. In E. H. Harrison,

editors. Formal Methods in Human Computer

Interaction. Cambridge University Press, pp 97-127.

[37] “Dropbox.Tech”. Available at:

https://dropbox.tech/infrastructure/athena-our-

automatedbuild-health-management-system. Accessed on

26 March 2022.

[38] Spotify “R&D Engineering”. Available at:

https://engineering.atspotify.com/2019/11/testflakiness-

methods-for-identifying-and-dealingwith-flaky-tests/.

Accessed on 28 March 2022.

[39] Romano A., Song Z., Grandhi S., Yang W. and Wang

W.2021. An Empirical Analysis of UI-Based Flaky

Tests. In proceedings of the IEEE/ACM 43rd

International Conference on Software Engineering

(ICSE), pp 1585-1597.

[40] Marshall K.P., Horton E., Heckman S. andStolee K.

2019. Wait, Wait. No, Tell Me. Analyzing Selenium

Configuration Effects on Test Flakiness. In proceedings

of the IEEE/ACM 14th International Workshop on

Automation of Software Test (AST), pp 7-13, doi:

10.1109/AST.2019.000.

[41] Shi A., Lam W., Oei R., Xei T. and Marinov D.

2019.iFixFlakies: A framework for automatically fixing

order dependent flaky tests. In Proceedings of the 27th

ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software

Engineering (ESEC/FSE ‟19) New York,

doi:https://doi.org/10.1145/3338906.3338925.

[42] Lam W., Godefroid P., Nath S., Santhiar A. and

Thummalapenta S. 2019. Root Causing Flaky Tests in a

Large-Scale Industrial Setting. In Proceedings of the 28th

ACM SIGSOFT International Symposium on Software

Testing and Analysis.

[43] Alshammari A., Morris C., Hilton M. and Bell J. 2021.

FlakeFlagger: Predicting Flakiness without Rerunning

Tests.In Proceedings of the 43rdInternational Conference

on Software Engineering (ICSE‟21).

IJCATM : www.ijcaonline.org

