
International Journal of Computer Applications (0975 – 8887) 

Volume 184 – No. 47, February 2023 

17 

Frequency Response Analysis for T-S Fuzzy Systems 

Shinq-Jen Wu 
 Department of Electrical Engineering Da-Yeh University 

168 University Rd., Dacun 
Changhua 51591, Taiwan, R.O.C 

 
 

ABSTRACT 

Frequency response is an important physical quantity in audio 

systems for minimizing audible distortion and in control 

systems for assessing system relative stability. For linear 

time-invariant systems (LTI systems), frequency response has 

one-to-one relationship to system impulse response. However, 

the LTI systems-based analysis cannot describe nonlinear 

frequency response well.  T-S fuzzy systems are based on 

fuzzily blending several linear subsystems and are widely 

used to describe nonlinear systemsbehavior in various fields. 

Recently, researcherstried to obtain frequency response of T-S 

fuzzy systems through the assumption thatthe same fuzzy 

relationship exists in both time domain and frequency domain. 

In this paper, we focus on deriving fuzzy frequency response 

from both basic definitions of frequency response and 

previously proposed neural-network-based fuzzy blending 

feature to find out the limitations, the range of frequency 

response for T-S fuzzy systems.  Steady-state system response 

is additionally discussed and tested with two active magnetic 

bearing systems. 
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1. INTRODUCTION 
Fuzzy logic (an extension of multivalued logic) is always used 

to describe the classes of objects or data which are vague and 

lack certainty.Recently, T-S type fuzzy systems were widely 

used to describe the dynamic behavior of various physical 

systems and have demonstrated to be universal 

approximations of any smooth nonlinear systems [1-3]. 

Various fuzzy controllers for physical systems have been 

developed since 2000. In 2016 Wiktorowic further used 

frequency domain methods to design output-feedback-based 

adaptive fuzzy controllers [4]. Kluska and Zabinski recently 

proposed PID-like adaptive fuzzy controllers [5]. Zhao and 

coworkers developed observer-based 𝐻∞  controllers for 

spacing type-II T-S fuzzy systems [6].  We demonstrated that 

affine T-S fuzzy systems possess more advantages than T-S 

fuzzy systems in nonlinear modelling [7].Wang and Yang 

introduced dilated linear matrix inequality to develop 

piecewise controllers for affine T-S fuzzy systems [8, 9], and 

proposedpiecewise-Lyapunov-functions-based 𝐻∞  controllers 

for affine T-S fuzzy systems in finite frequency domain [10]. 

Qiu and coworkers used quantized measurements to develop 

observer-based piecewise output-feedback controllers for 

affine T-S fuzzy systems [11]. Recently, research focus on the 

development of filter design of T-S fuzzy models of physical 

systems. Liu and Yang discussed sensor fault detection for 

systems in finite domain [12]. Hellani and coworkers 

developed finite-frequency-based𝐻∞ filter design [13]. Li and 

coworkers proposed finite-frequency-based 𝐿2 − 𝐿∞  filters 

[14]. 

Fuzzy set theory showsgreat potential in dealing with 

biological data and modellingbiological systems because of 

the use of linguistic variables and fuzzy relationship. Luo and 

An took a review of fuzzy set theory in device control, 

biological control, classification and pattern recognition, and 

prediction and association [15]. Komlyama and coworkers 

emphasized that fuzzy interactions always exist in cell 

macromolecularnanoarchitectonics[16].Abyad and coworkers 

used T-S fuzzy models to describe biomass growth processes 

and then optimal fuzzy control was used to control the process 

[17].  Bordon et al. used fuzzy logic to achieve the 

quantitatively modelling of repressilators withunknown 

kinetic data [18].Liu and coworkers introduced fuzzy Petri 

nets for biological system modellingand discussed the 

capacities and applications [19].They further proposed a 

hybrid of continuous Petri nets and fuzzy inference systems to 

achieve integrated modelling of biological systems with 

uncertainties [20].Zhu and coworkers used fuzzy neural 

networksas inverse systems to achieve decoupling control 

ofmarine biological enzyme fermentation processes [21].An 

adaptive T–S type neural-fuzzy scheme was proposed to 

achieve the fuzzy modeling of multi-inputs multi-outputs 

biological systems (small-scale genetic networks, 

branchpathways and cascadenetworks systems) [22]. The 

number of generated rules depends on the number of input 

variables of underlying systems and the division of the input 

space: There are 3𝑛  rule numbers for an 𝑛 -dimensional 

biological system with each input variable being divided into 

three intervals. To reduce the number of rules, researchers 

tried to construct biological fuzzy systems with a fixed 

number of rules. However, to determine the number of rules 

which are sufficient to ensure the accuracy researchers should 

fully understand underlying biological systems. This will lose 

the essence of adaptive T–S type neural-fuzzy modeling. 

Frequency response is one of important analysis methods in 

audio, control and statistic fields. For liner time-invariant 

system, sinusoidal input signals generate sinusoidal output 

signals with differentamplitudes and phasesdetermined by 

system frequency response. However, such good 

characteristics do not exist in nonlinear systems. T-S fuzzy 

systems, at a time instant, are the fuzzy blending of their 

linear subsystems. This feature prompted researchers to 

explore the feasibility of frequency analysis of T-S fuzzy 

systems. Kumar and coworkers proposed a probabilistic data-

driven geospatial fuzzy frequency ratio for avalanche 

susceptibility mapping [23]. Ali and coworkers used 

frequency domain analysis (power spectral density graphs) to 

get both primary and average frequencies as fuzzy inputs for 

rotating machinery vibration analysis [24]. Ferreira and Serra 

tried to propose a definition on fuzzy frequency response 

[25].They used the proposed estimation methods of frequency 

response to deal with experimental data of mechanical 

structures of aircraft and aerospace vehicles[26], and data 

from flexible robot arms [27]. They also do a case study for 

pH neutralization process [28]. However, an important issue 

was ignored that membership functions of fuzzy systems are 
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time-varying functions, and the corresponding normalized 

firing strength cannot be represented by fixed functions. In 

this study, we shall stem on the principle of frequency 

response to define the frequency response of T-S fuzzy 

systems. 

2. FUZZY-NEURAL-NETWORKS-

BASED FREQUENCY RESPONSE 
Frequency response methods serves as the backbone of the 

classical control methods and still give shed light to such an 

importantcharacteristic as robustness for modern control 

techniques. Musical notes generated by a guitar are related to 

its frequency response [29]. For linearly time-invariant 

systems, system outputs 𝑦 𝑡 are the convolution of system 

impulse response 𝑕(𝑡) and system inputs 𝑢 𝑡 ;  𝑦 𝑡 = 𝑕 𝑡 ∗
𝑢(𝑡), where the notation ∗ denotes the convolution operation. 

We then have 𝑌 𝑗𝑤 = 𝐻 𝑗𝑤 𝑈 𝑗𝑤 , where 𝑌 𝑗𝑤 , 𝐻 𝑗𝑤  

and 𝑈 𝑗𝑤 are, respectively, the Fourier transforms of 

𝑦 𝑡 , 𝑕(𝑡) and 𝑢(𝑡) , and 𝐻 𝑗𝑤 denotes system frequency 

response. However, there does not exist such a relationship in 

nonlinear systems although system inputs and outputs also 

have their corresponding Fourier transforms. 

Wehave previously developed neural–fuzzy inference 

networks to capture the dynamic behavior of current/voltage-

controlled 1/4-vehicle MagLev systems [7], car model 

systems [30], radial active magnetic bearing systems [31], 

half-car active suspension systems [32].In this study, we shall 

derive the frequency response of T-S fuzzy systems based 

onpreviously proposed self-constructing neural–fuzzy 

inference networks in Fig. 1 which were used to realize T–S 

fuzzy modelling of various physical systems [7, 30-32]. 

The neural-fuzzy inference network in Fig. 1 possesses 

sixlayers [7]. Layers 1 and 6 are the input layer and output 

layer, respectively. There are four hidden layers which are 

corresponding to fuzzification, fuzzy blending, normalization 

anddefuzzification of fuzzy logic inference systems. Each 

node has finite weighted fan-in connections to the last-layer 

nodes and fan-out connectionsto the next-layer nodes.  

Layer 1: The nodesdenote input variables and directly 

transmit input variables to the next layer. 

Layer 2: This layer performs fuzzification and each node 

in this layer denotes a linguistic label. In this study, we 

choose Gaussian distributions as membership functions to 

achieve smooth and general fuzzification. 

Layer 3: This layer performs fuzzily blending 

operation.Each node describes one fuzzy logic rule. 

Layer 4: This layer performs normalization to let the 

summation of firing strength of rules be one.  

Layer 5: This layer is the consequence layer which 

performs Sugeno-type defuzzification. 

Layer 6: This layer performs defuzzification operations 

and each node corresponds to one output variable of 

underlying systems. 

The numeric input variable 𝑥𝑙 is directly transmitted into the 

network in Layer 1, and then fuzzified to fuzzy term sets 

𝑇𝑙𝑗 which possess Guassian membership functions with mean 

𝑚𝑙𝑗  and standard deviation 𝜎𝑙𝑗  in Layer 2. The firing strength 

of each fuzzy rule are obtained in Layer 3 and the 

corresponding normalized firing strength are then estimated in 

Layer 4.The linear-system-type rule consequences are 

generated in Layer 5 and system outputs are obtained through 

Sugeno-type defuzzification in Layer 6. 

Fig. 1: Neural–fuzzy inference network for T–S fuzzy 

systems [7]. 

According to fuzzy set theory and the scheme of neural fuzzy 

inference systems in Fig. 1 [7], we know at any time instance 

the overall dynamic behavior of T-S fuzzy systems can be 

described as fuzzily blending the dynamic behavior of their 

linear subsystems. Therefore, the unit impulse response of the 

entire fuzzy system is h t =  𝜇𝑖 𝑥 𝑡  𝑕𝑖
𝑛
𝑖 (𝑡) , 

where𝑕𝑖 𝑡 , 𝜇𝑖 𝑥 𝑡  are the unit impulse response of the 𝑖-th 

subsystem and the corresponding firing strength, respectively. 

Then, the following theorems are derived. 

Theorem 1: The frequency response of the entire fuzzy 

system is 

H jw =  M𝑖(x jw )𝑛
𝑖 ∗ 𝐻𝑖 𝑗𝑤 , (1) 

where * denotes the convolution operator; 𝐻𝑖 𝑗𝑤 and 

M𝑖 x jw   are, respectively, the corresponding Fourier 

transform of the unit impulse response 𝑕𝑖(𝑡)  and the 

normalized firing strength𝜇𝑖 𝑥 𝑡  , i.e.,𝐻𝑖 𝑗𝑤 = ℱ{𝑕𝑖 𝑥 𝑡   

and M𝑖(x jw ) = ℱ{𝜇𝑖 𝑥 𝑡  }.  

Proof:At any time-instant,the unit impulse response of the 

entire fuzzy system is 𝑕 𝑡 =  𝜇𝑖 𝑥 𝑡  𝑕𝑖
𝑛
𝑖  𝑡 .The system 

frequency response is then obtained through Fourier transform, 

H jw =  ℱ 𝑕 𝑡  = ℱ   𝜇𝑖 𝑥 𝑡  𝑕𝑖

𝑛

𝑖
 𝑡   

=  ℱ{𝜇𝑖 𝑥 𝑡  ∗ 𝐻𝑖(𝑗𝑤)
𝑛

𝑖
 

= M𝑖(x jw )𝑛
𝑖 ∗ 𝐻𝑖 𝑗𝑤            (2)         ∎ 

Therefore, the frequency response of the entire fuzzy 
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systems  H jw ≠  𝜇𝑖 𝑥 𝑡  𝐻𝑖 𝑗𝑤 𝑛
𝑖 . Ferreira and Serra 

proposed a series of researches in fuzzy frequency response 

[25, 27, 33] which are all based on an assumption that the 

normalized firing strength 𝜇𝑖 𝑥 𝑡   is a constant value 𝜇𝑖  and 

assume that H jw =  𝜇𝑖 ∙ 𝐻𝑖 𝑗𝑤 𝑛
𝑖 . 

Theorem 2: In the frequency domain there does not exist a 

simple relationship between system outputs Y jw and system 

inputs U jw : 

Y jw ≠ H jw U jw ,(3) 

where Y jw and U jw are the Fourier transform of system 

output y(t) and system input u(t).  

Proof: At any time-instant, system response is the fuzzily 

blending of all of subsystem response. We have 

𝑦 𝑡 =  [𝜇𝑖 𝑥 𝑡  ∙ (𝑕𝑖
𝑛
𝑖  𝑡 ∗ 𝑢(𝑡))],  (4) 

where * denotes convolution operators. We know Fourier 

transform is a linear operator. So, 𝑌 𝑗𝑤 = ℱ 𝑦 𝑡  becomes 

𝑌 𝑗𝑤 =  ℱ{𝜇𝑖 𝑥 𝑡  ∙ (𝑕𝑖

𝑛

𝑖
 𝑡 ∗ 𝑢(𝑡))} 

               =  ℱ 𝜇𝑖 𝑥 𝑡   ∗ (𝐻𝑖

𝑛

𝑖
 𝑗𝑤 𝑈 𝑗𝑤 ) 

=  M𝑖(x jw )
𝑛

𝑖
∗ 𝐻𝑖 𝑗𝑤 U jw  

            ≠ H jw U jw .                      (5)       ∎ 

We know that the normalized firing strength𝜇𝑖 𝑥 𝑡  not only 

varies by time but also depends on subsystems. We cannot use 

a fixed function to describe the normalized firing strength 

even the Gaussian membership function is used. Therefore, 

there are no analytical solution for the corresponding Fourier 

transform, M𝑖(x jw ). In the future we shall integrate block-

based graphical methods and numerical methods to estimate 

M𝑖(x jw ) and then to get a numericalapproximation ofH jw . 

Theorem 3: 2πδ w min𝑖 inf𝑡 𝑕𝑖 (𝑡) ≤  H jw ≤
2πδ w max

𝑖
 𝑕𝑖(𝑡) ∞ , where δ w is the impulse 

function. 

Proof: 𝑕 𝑡 =  𝜇𝑖 𝑥 𝑡  𝑕𝑖
𝑛
𝑖  𝑡 . The corresponding 

Fourier transform is 

H jw =   𝜇𝑖 𝑥 𝑡  𝑕𝑖
𝑛
𝑖=1  𝑡 𝑒−𝑗𝑤𝑡∞

−∞
𝑑𝑡.  (6) 

According to  𝜇𝑖 𝑥 𝑡  = 1,𝑛
𝑖=1 we obtain 

 𝜇𝑖 𝑥 𝑡  𝑕𝑖

𝑛

𝑖=1
 𝑡 ≤  𝜇𝑖 𝑥 𝑡  ∙

𝑛

𝑖=1
sup

𝑡
𝑕𝑖  𝑡  

=  𝜇𝑖 𝑥 𝑡  ∙
𝑛

𝑖=1
 𝑕𝑖(𝑡) ∞ 

                                                    ≤  𝜇𝑖 𝑥 𝑡  ∙
𝑛

𝑖=1
max

𝑖
 𝑕𝑖 𝑡  ∞ 

                                                 = max
𝑖

 𝑕𝑖 𝑡  ∞ .                (7) 

 𝜇𝑖 𝑥 𝑡  𝑕𝑖

𝑛

𝑖=1
 𝑡 ≥  𝜇𝑖 𝑥 𝑡  ∙

𝑛

𝑖=1
inf
𝑡

𝑕𝑖  𝑡  

                                               ≥  𝜇𝑖 𝑥 𝑡  ∙
𝑛

𝑖=1
min

𝑖
inf
𝑡

𝑕𝑖  𝑡  

                                            = min
𝑖

inf𝑡 𝑕𝑖  𝑡 .   (8) 

Therefore, we have 

 min
𝑖

inf
𝑡

𝑕𝑖  𝑡 𝑒
−𝑗𝑤𝑡

∞

−∞

𝑑𝑡 ≤ H jw 

≤  max
𝑖

 𝑕𝑖 𝑡  ∞𝑒−𝑗𝑤𝑡
∞

−∞

𝑑𝑡.  (9) 

We then obtain the following inequality because both 

max
𝑖

 𝑕𝑖 𝑡  ∞  andmin
𝑖

inf𝑡 𝑕𝑖  𝑡  are constants for the integral, 

and ℱ 𝑒−𝑗𝑤0𝑡 = 2𝜋𝛿 𝑤 − 𝑤0 . 

2πδ w min𝑖 inf𝑡 𝑕𝑖 (𝑡) ≤  H jw ≤ 2πδ w max
𝑖

 𝑕𝑖(𝑡) ∞ . 

(10)                                                                                                   ∎ 

3. STEADY-STATE SYSTEMS 

RESPONSE 
Steward mentioned in [29] that frequency response is related 

to the steady state of a system when a harmonic function is 

applied as the input.In this section we demonstrate that the 

steady states responseof T-S fuzzy systems are predicable 

when input signals are exponential functions, sine functions 

and cosine functions, even frequency response of underlying 

systems cannot obtain through analytical methods. However, 

there does not exist such a relationship that the responses to 

sine input signals and cosine input signals are exactly the real 

part and imaginary part of the response to exponential input 

signals, respectively.  

Theorem 4: The steady state response 𝑦𝑠𝑠 t of T-S fuzzy 

systems to harmonic input signals u t  is 𝑦𝑠𝑠 t =
𝑢0𝐻  jw 𝑒𝑗𝑤𝑡  foru t = 𝑢0𝑒

𝑗𝑤𝑡 ,(11) 

𝑦𝑠𝑠
𝑠  t = 𝑢0𝐻  jw sin wt foru t = 𝑢0 sin wt ,(12) 

𝑦𝑠𝑠
𝑐  t = 𝑢0𝐻  jw cos wt foru t = 𝑢0 cos wt ,(13) 

where 𝐻  jw =  𝜇𝑖 𝑥𝑠 
𝑛
𝑖 𝐻𝑖 jw and 𝜇𝑖 𝑥𝑠  is the 

normalized firing strength of the i-th subsystem at the steady 

state 𝑥𝑠 . However, 𝑦𝑠𝑠
𝑠  t ≠ 𝐼𝑚 [𝑦𝑠𝑠 t ] and 𝑦𝑠𝑠

𝑐  t ≠
𝑅𝑒 𝑦𝑠𝑠 t  . 

Proof:The steady state response is defined as 𝑦𝑠𝑠 𝑡 ≜
lim𝑡→∞ 𝑦 𝑡 which is the fuzzily blending of the response of 

subsystems at the steady state, i.e., 

𝑦𝑠𝑠 𝑡 = lim
𝑡→∞

 𝜇𝑖 𝑥(𝑡) [𝑕𝑖
𝑛
𝑖  𝑡 ∗ 𝑢(𝑡)] =

 𝜇𝑖 𝑥𝑠 lim
𝑡→∞

[𝑕𝑖
𝑛
𝑖  𝑡 ∗ 𝑢(𝑡)]. For each subsystem which is 

linear time-invariant system, we have the following responses 

to harmonic inputs at the steady state, 

𝑕𝑖 𝑡 ∗ 𝑢 𝑡 = 𝑢0𝐻𝑖 jw 𝑒𝑗𝑤𝑡  , foru t = 𝑢0𝑒
𝑗𝑤𝑡 , 

     = 𝑢0𝐻𝑖 jw sin wt , foru t = 𝑢0 sin wt , 

          = 𝑢0𝐻𝑖 jw cos wt , foru t = 𝑢0 cos wt . (14) 

At the steady state 𝑥𝑠, the normalized firing strength 𝜇𝑖 𝑥𝑠 is 

a constant value. So, we obtain Eqs. (11)~(13) through setting 

𝐻  jw =  𝜇𝑖 𝑥𝑠 
𝑛
𝑖 𝐻𝑖 jw . ∎ 
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Theorem 4 is a predictionofthe dynamic behavior of T-S 

fuzzy systems. The steady states of biological systems always 

depend on experimental environments. Therefore, we here use 

two physical systems to examine the prediction. 

 horizontal radial active magnetic bearings 

We first consider anradial magnetic bearing system, as shown 

in Fig. 2 [34],wherethe roll mass 𝑚 = 0.2𝐾𝑔,the nominal air 

gap 𝑒 = 0.5𝑚𝑚 and the force constants 𝜆1 = 𝜆1 =

0.000005  
𝑁𝑚2

𝐴2
 ; 𝑥denotes the horizon deviation of the center 

of the ball from its nominal position; 𝐹1, 𝐹2are the magnetic 

forces; and 𝑖1,𝑖2are the associated currents. Thedynamics of 

this active magnetic bearing system is described as Eq. (15) 

[34]. 

 
Fig.2: horizontal active magnetic bearing systems [34]. 

𝑚𝑥 = 𝐹1 − 𝐹2 =
𝜆1𝑖1

2

 𝑒 − 𝑥 2
−

𝜆2𝑖2
2

 𝑒 + 𝑥 2
.   (15) 

We choose the rotor position and control current as the 

traininginputs and the rotor acceleration as the 

trainingoutput.2300 training patterns generated from Eq. (15) 

are fed into the neural–fuzzy inference network in Fig. 

1.Thelearning rate is set at 0.005. After training we have the 

following T-S fuzzy system [31], 

𝑅1: 𝐼𝑓 𝑥 𝑡  𝑖𝑠 𝑇1 −0.0025, 0.005 ,               
          𝑡𝑕𝑒𝑛 𝑋  𝑡 = 𝐴1𝑋 𝑡 + 𝐵1𝑢 𝑡 . 

          𝑅2: 𝐼𝑓 𝑥 𝑡  𝑖𝑠 𝑇2 −0.003536, 0.07497 ,                                
                          𝑡𝑕𝑒𝑛 𝑋  𝑡 = 𝐴2𝑋 𝑡 + 𝐵2𝑢 𝑡 ,    (16) 

where the system states  𝑋 𝑡 = [𝑥  𝑡  𝑥 𝑡 ]𝑇  and the 

system inputs 𝑢 𝑡 = [𝑖1 𝑡 𝑖2 𝑡 ]𝑇 ;the fuzzy term 

set𝑇𝑖(𝑚𝑖,𝜎𝑖),𝑖 = 1,2,has Gaussian membership function 

with mean 𝑚𝑖, and standard deviation 𝜎𝑖 ;the system 

parameters 𝐴1 =  
0 55000
1 0

 , 𝐴2 =

 
0 43000
1 0

 ,  𝐵1 =  
63 −59.6
0 0

 , 𝐵2 =

 
49.9525 −46.251

0 0
 .  According to Theorem 4, we are 

able to predict the steady state response of T-S fuzzy system 

in Eq. (13)  to two sinusoidal inputs, 𝑢1 𝑡 =
sin 0.3907𝑡 and 𝑢2 𝑡 = sin 0.1931𝑡 . The sinusoidal 

input𝑢1 𝑡  and the correspondingsteady state response are 

shown in blue color, and those to 𝑢2 𝑡 are shown in red color. 

We observe that the steady state response 𝑦𝑠𝑠 t oscillates at 

±0.001105for 𝑢1 𝑡 and at ±0.001079for 𝑢2 𝑡 . 

 

Fig. 3: steady state response 𝑦𝑠𝑠 t  for fuzzy system in Eq. 

(16). 

 horizontal differential-driving-mode magnetic 

bearings 

We thenconsider a differential-driving-mode bearing systems 

in Fig. 4 [35]. One magnet is driven by the sum of bias-

current and control-current and the other by the 

differencebetween these two currents. We have the dynamic 

equation of rotor motion in Eq. (17) [35]. 

 

Fig.4: horizontal differential-driving-mode magnetic 

bearing system[35]. 

𝑚𝑥 = 𝜆
 𝑖𝑏+𝑖𝑝  

2

 𝐺−𝛽𝑥  2 − 𝜆
 𝑖𝑏−𝑖𝑝 

2

 𝐺+𝛽𝑥 2,(17) 

The𝑖𝑝 is the control current and 𝑖𝑏 = 0.3is the bias current; the 

rotor mass 𝑚 = 0.0126 𝑙𝑏 ∙
𝑠𝑒𝑐 2

𝑖𝑛
, the nominal air gap 𝐺 =

0.02 𝑖𝑛, the force constant 𝜆 = 0.0186 𝑙𝑏 ∙
𝑖𝑛2

𝐴2
and the 

sensitivity of the air gap to shaft displacement 𝛽 = 0.974. 

We also choose the rotor position and the control current as 

the training inputs, and the rotor acceleration as the training 

output.  After feeding 2300 training patterns generated from 

Eq. (17) into the neural-fuzzy inference network in Fig. 1 with 

a learning rate at 0.005. We have the following T-S fuzzy 

system [31], 

𝑅1: 𝐼𝑓 𝑥 𝑡  𝑖𝑠 𝑇1 0, 0.2 ,                                            
          𝑡𝑕𝑒𝑛 𝑋  𝑡 = 𝐴1𝑋 𝑡 + 𝐵1𝑢 𝑡 . 

 𝑅2: 𝐼𝑓 𝑥 𝑡  𝑖𝑠 𝑇2 −0.4389,0.08826 ,                       
                          𝑡𝑕𝑒𝑛 𝑋  𝑡 = 𝐴2𝑋 𝑡 + 𝐵2𝑢 𝑡 ,       (18) 

where the system states𝑋 𝑡 = [𝑥  𝑡  𝑥 𝑡 ]𝑇 and the system 

input 𝑢 𝑡 = 𝑖𝑝 ; the fuzzy term set 𝑇𝑖(𝑚𝑖,𝜎𝑖 ), 𝑖 = 1,2,  has 

Gaussian membership function with mean 𝑚𝑖, and standard 

deviation 𝜎𝑖 ;the parameters 𝐴1 =  
0 14000
1 0

 , 𝐴2 =
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0 16880
1 0

 , 𝐵1 =  
300

0
 , 𝐵2 =  

560
0

 .Based on Theorem 4, 

we have the steady state response of the T-S fuzzy system in 

Eq. (14)  to a sinusoidal input signal𝑢1 𝑡 = sin 0.3907𝑡 and 

to a cosine input signal 𝑢2 𝑡 = cos⁡(0.1931 + 0.1). The 

sinusoidal input 𝑢1 𝑡  and the corresponding steady state 

response are shown in blue color, and those to 𝑢2 𝑡 are 

shown in red color. We observe that the steady state response 

𝑦𝑠𝑠 t oscillates at ±0.2143 for both signals. 

 

Fig. 5: steady state response 𝑦𝑠𝑠 t for fuzzy system in Eq. 

(18). 

4. CONCLUSION 
Frequency response is used to minimize audible distortion of 

an audio system and to assess system stabilityof control 

systems, for example, vehicle cruise control systems. 

However, linear frequency domain analysis cannot apply to 

nonlinear systems. T-S fuzzy systems possess linear 

subsystems and at any time instant the dynamic behavior of 

entire fuzzy systems is a fuzzily blending effect of all linear 

subsystems. Based on this characteristic, we introduce 

previously proposed neural fuzzy inference network to 

describe system response to input signals in time domain, and 

then to demonstrate the feasibilities and limitationsof 

frequency domain. In the future we shall develop module-

based numerical approaches to overcome the limitations of 

nonlinear T-S fuzzy frequency response. 
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