
International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 48, February 2023

8

An Enhanced CICD Pipeline: A DevSecOps Approach

Olumide Bashiru Abiola
Beechnet Solutions Limited
2967 Dundas Street West,

#724D, Toronto, Ontario M6P 1Z2, Canada

Olusola Gbenga Olufemi
Hood College

401 Rosemont Ave
Frederick, MD, U.S.

ABSTRACT

This paper presents approaches to integrating more

DevSecOps techniques into the CICD pipeline, how this can

be done, and the benefits of the approaches. Subsequently,

unique challenges software development is facing are

identified, and some elaborate solutions to these problems are

proposed. This work will enable organizations involved in

software development, practicing agile enterprise application

development to acquire more insight into securing CICD

pipelines, which lead to fast and better releases. Secured

DevOps as this can be termed, is DevSecOps in a nutshell,

which is progressively becoming the only feasible solution to

the many challenges organizations face with CICD handling

[12]. In its simplest expression, DevSecOps is the process of

providing a security enhancement to DevOps. Undoubtedly,

attacks are on the rise, and threat actors are not resting, but are

getting stronger at hacking targets willingly. Hence,

organizations practicing CICD need to know how to combat

this menace by getting better at incorporating effective

security techniques and doing this very fast. This is exactly

what DevSecOps helps to accomplish – providing necessary

insights on better and stronger security techniques

incorporation and execution [11]. Security moved closer to

development and operations in the SDLC i.e., DevSecOps has

brought so much dividend to software development [12]. The

flexibility, know-how, and capacity to accomplish CICD

security techniques are lacking in many organizations

engaging in CICD practices [12]. Hence, DevOps transitioned

to DevSecOps – is as much about culture as it is about the

tools and processes that enable the rapid, frequent, and safe

delivery of software [2]. When applying DevSecOps

practices, the development lifecycle iterates frequently,

providing the team with regular feedback on how safe

software is, its behavior, and its usage in the real world. In

total, incorporating security into CI/CD pipeline provides

regular feedback on the security of the application, and can

improve application functionality capacity.

General Terms

Security, Software, Code, Open-source, Cybercrime, SDLC

Keywords

AWS, CICD, DevOps, DevSecOps, Pipeline, Repository,

CodeCommit, GitHub, Jenkins, Kubernetes, Ansible

1. INTRODUCTION
Though DevOps is made up of tools and technologies,

DevOps also tends to inform and promote teamwork. One of

the essential parts of DevOps is automation, which is achieved

through tools and technologies that bridge gaps between

teams and technologies [11]. Automation has reduced manual

intervention on most DevOps processes and made these much

faster. Automation is an embedded component of the

application security strategy that should be embraced by all

organizations involved in CICD, to minimize the surface of

exposure and the risk of any compromise [9]. Many DevOps

teams are devoid of DevSecOps knowledge and capability to

implement security at multiple CICD points, to preserve

teamwork, agility, and speed, and this put the whole CICD

pipeline at great risk [3].

The agile development methodology is helping development

teams complete projects on time and within budget. Moreso, it

helps to improve communication between the development

team and the product owner. Additionally, Agile development

methods reduce the risks associated with complex software

development projects [11]. When vulnerabilities are

discovered in software provided through agile development,

the participating parties usually point to inadequacy in

security competence in DevOps teams [11].

Inadequate security competence in DevOps is a result of poor

security testing, which leads to insecure systems. Cybercrime

is growing at an alarming rate year in and year out.

Nevertheless, there should be no fear in software development

practices if adequate DevSecOps measures are put in place to

check cyber criminals. It is indeed a general concept that

modern security practices are the surest way to keep up with

the agility and speed of DevOps.

In addition, the application of automation principles in

DevSecOps is as helpful as it is in DevOps. Key tools to be

put in place as part of the automation strategy to protect the

software properly are as follows [9]:

a. Static Application Security Testing (SAST) tool

b. Software Composition Analysis (SCA) tool

c. Dynamic Application Security Testing (DAST) tool

d. Interactive Application Security Testing (IAST) tool

e. Runtime Application Self-Protection (RASP) tool

f. Web Application Firewalls (WAF) tool

DevSecOps can as well be described as incorporating security

processes and practices in software development processes,

thereby helping the SDLC team in ensuring the proper

security of developed products [11]. Invariably, DevSecOps

makes everyone in the SDLC team with different roles an

important software security personnel. From the looks of the

overall narratives, security testing becomes an essential part

of each stage of DevOps pipelines. To make the CICD

pipeline more viable and secure, these practices need to be

ensured in CICD pipeline [10]:

a. Being able to run unit, functional, integration, security,

etc. tests in separate jobs such that they can be run in

parallel.

b. Being able to test multiple versions simultaneously.

c. Each commit to the remote repository should trigger a

pipeline process.

d. Only anything necessary should be built.

e. Availability of the capacity to provide a method to

configure the deployment strategy being used.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 48, February 2023

9

f. There should be clear test results in case of a pipeline

failure.

g. Ability to select different tools for different projects

allows DevOps teams to reuse the knowledge that has

already been acquired by the team.

2. CICD Overview
CI/CD can be viewed as a pipeline since code is committed on

one end, goes through tests performed over stages (source,

build, staging, and production), and finally is made a viable

code for release. Building a CI/CD pipeline should be a

constant routine. Like the software under development, CI/CD

practices also involve iterative approaches to keep analyzing

data and waiting for feedback to refine the CI/CD process. A

stage in CI/CD pipeline serves as a logical unit in the delivery

process [10]. Each stage is a doorway that checks the overall

code. The quality of the code becomes better in the later

stages since many parts of the code would have been

scrutinized. The code is stopped from progressing through the

pipeline as problems are discovered at an early stage. All

further builds and releases are stopped if the software does not

pass the test stages. Hence, by building the solution and

running a set of automated tests whenever a change is

committed, a CI/CD pipeline provides rapid feedback to

developers about their changes, and this helps make the code

more worthwhile [10]. In a nutshell, CI/CD pipelines are

workflows for taking source code through stages like

building, functional testing, security scanning for

vulnerabilities, packaging, and deployment supported by

automated tools with feedback mechanisms [4]. The primary

goal of modern software development teams is to build, test,

and deploy applications rapidly and reliably [14].

3. CICD – The Makeups

3.1 Continuous Integration - CI
CI/CD starts with CI; hence expertise is needed in continuous

integration. Making sure all source code, configuration files,

scripts, libraries, and executables are in source control is an

essential first step in implementing CI, enabling you to keep

track of every change. Developers should regularly commit

their code to a central repository (such as one hosted in

CodeCommit or GitHub) and merge all changes to a release

branch for the application [10]. No developer should keep

code in a separate location from the central repository. Feature

branches needed for a particular time frame should be updated

from the remote repository by merging as often as possible.

As code is pushed to a branch in a source code repository, the

builder tool builds the code and runs the unit tests in a

controlled environment, with the help of a workflow engine

monitoring that branch.

Other quality checks, such as unit test coverage, style check,

and static analysis, can happen at this stage as well. Finally,

the builder tool creates one or more binary builds and other

artifacts, like images, stylesheets, and documents for the

application. However, when you get CI right, not only will

security be an integral component of your entire SDLC, but it

will also transform how your organization thinks and

implements security [12]

3.2 Continuous Delivery - CD
Continuous delivery (CD) is the next phase and entails

deploying the application code in a staging environment,

which is a replica of the production stack and running more

functional tests. The staging environment could be a static

environment made in advance for testing. In the

deployment/delivery pipeline sequence, after the staging

environment, is the production environment, which is also

built using infrastructure as code (IaC) like Terraform or

AWS CloudFormation. The CD provides numerous benefits

for your software development team, including automating the

process, improving developer productivity, improving code

quality, and delivering updates to your customers faster.

3.3 Continuous Deployment - CD
The final phase in the CI/CD deployment pipeline is

continuous deployment, which may include full automation of

the entire software release process including deployment to

the production environment. In a fully mature CI/CD

environment, the path to the production environment is fully

automated, which allows code to be deployed with high

confidence. Feedback about the pipeline is continuously

collected and improvements in speed, scale, security, and

reliability are achieved if collaboration between the different

parts of the development team is involved [11].

3.4 Title and Authors
Olumide Bashiru Abiola - CISSP, CISA, CISM, CRISC |

Olumide currently serves as a Project Manager for one of the

top 5 banks in Canada and is an independent Cybersecurity

Consultant. Olumide draws upon his experience in the

financial and technology industry after holding a myriad of

other positions in System, Network, and Infrastructure

Administration. He is responsible for clients’ end-to-end

cybersecurity programs, coordinating cybersecurity efforts

within the enterprise. He is an active member of ISACA

Toronto.

Olusola Gbenga Olufemi – Olusola is experienced in

Distributed Systems Implementations, Cloud Application &

Infrastructure Provisioning, and Information Security

Management. He is an active member of ISACA, PMI, and

ACM. Olusola is known by colleagues as a life-long learner.

3.5 Implementing Continuous Integration

& Continuous Delivery
CI/CD can be seen as a pipeline, looking at figure 1.0 and

figure 2.0, where new code is submitted on one end, tested

over a series of stages (source, build, staging, and production),

and then published as production-ready code [10]. Each stage

of the CI/CD pipeline is structured as a logical unit in the

delivery process. In addition, each stage acts as a gate that

vets a certain aspect of the code. As the code progresses

through the pipeline, the assumption is that the quality of the

code is higher in the later stages because more aspects of it

continue to be verified. Problems uncovered in an early stage

stop the code from progressing through the pipeline. Results

from the tests are immediately sent to the team, and all further

builds and releases are stopped if the software does not pass

the stage. Some stages can be repeated several times for

testing, security, and performance. Some stages can be

repeated several times at different levels; however, this relies

on the complexity of the project and the team’s structure.

 Fig 1.0 CICD Workflow – Source: [16]

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 48, February 2023

10

Fig 2.0 CICD Pipeline – Source: [16]

3.6 Security in Continuous Integration
Developers need to create unit tests as early as possible for

any code written and run these tests before the code is pushed

to the central repository. Any problem seen early in the

software development process is still the cheapest and easiest

to fix. Developers are encouraged to check their code in a

central repository often since this helps catch errors early and

expedite the whole development cycle [13]. There should be a

suitably sized build process handling all activities, like pushes

and tests that might happen during the commit stage, to get

fast feedback [10]. Hence, with CI, developers share changes

by committing code to source control regularly, at least once a

day. They also check that the code builds and passes tests. If

something breaks, then there are far fewer changes to go

through to find the source of the problems encountered.

3.7 Security in Continuous Delivery
Continuous delivery (CD) is the next phase and entails

deploying the application code in a staging environment,

which is a representation of the production stack, and running

more functional tests. The staging environment could be a

static environment that is prepared for testing or could be a

provisioned and configured dynamic environment with

committed infrastructure and configuration code for testing

and deploying the application code [4]. In the

deployment/delivery pipeline sequence, after the staging

environment, is the production environment, which is also

built using infrastructure as code (IaC). Hence, in continuous

delivery, each successful build is automatically deployed to

each of the pre-production environments, with the mindset

that quality is increasing with every stage.

3.8 Continuous Deployment & CICD

Growth
The final phase in the CI/CD deployment pipeline is

continuous deployment, which may include full automation of

the entire software release process including deployment to

the production environment. In a fully mature CI/CD

environment, the path to the production environment is fully

automated, which allows code to be deployed with high

confidence. As such, codes will automatically be released to

production if a build passes all previous stages in the pipeline

successfully. This means software gets delivered to the users

as soon as any change to the software has passed all tests.

Continuous deployment fast-tracks the feedback loop from

code changed to code used in production [4]. The team

happily has quick insight into how changes made perform in

the actual sense, without compromising on quality.

Although automating the deployment of software to

production is not suitable for every product and organization,

it’s worth considering the steps required to get there as each

element is valuable on its own. The organization will surely

experience growth, and will continue to improve the CI/CD

model by including more of the following [10]:

 Adding more staging environments for specific

performance, compliance, security, and user interface

(UI) tests

 Exploiting unit tests of infrastructure and configuration

code along with the application code

 Integration with other systems and processes such as

code review, issue tracking, and event notification

 Integration with database schema migration (if

applicable)

 Additional steps for auditing and business approval

Fig 3.0 DevOps transitioned to DevSecOps – Source: Microsoft

4. TESTING STAGES IN CICD
Adopting DevSecOp approaches in CICD delivers several

benefits, including an overall improvement in speed, agility,

and security across the organization’s entire SDLC (including

all application development pipelines). DevSecOps also

delivers the potential for rapid changes to existing processes,

faster and more secure software development, and an

increased speed to market. (DR). The Unit tests are at the

bottom of the pyramid of testing stages, they are both the

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 48, February 2023

11

fastest to run and the least expensive. Therefore, unit tests

should make up the bulk of the testing strategy, recommended

rule of thumb is about 70 percent [10]. Unit tests should have

near-complete code coverage because bugs caught in this

phase can be fixed quickly and cheaply.

Service, component, and integration tests are above unit tests

on the pyramid. These tests require detailed environments and

therefore, are more costly in infrastructure requirements and

slower to run. Performance and compliance tests are the next

levels, they require production-quality environments and are

more expensive yet. UI and user acceptance tests are at the top

of the pyramid and require production-quality environments

as well. All these tests are part of a complete strategy to

assure high-quality software development. However, for

speed of development, the emphasis is on the number of tests

and the coverage in the bottom half of the pyramid. The

following sections discuss the CI/CD stages:

4.1 CICD Stages
These include setting up the source, setting up and running

builds, staging, and production, more elaboration as follows

[10]:

4.1.1 Source code setting up
A source where one can store raw code should be set up, and

configuration and schema changes done. In the source stage, a

source code repository should be chosen, like the one hosted

in GitHub or AWS CodeCommit.

4.1.1.1 Setting up builds and running
Choosing the right build tool is the first task when setting up

build automation. There are lots of build tools, such as Ant,

Maven, and Gradle for Java, Make for C/C++, Grunt for

JavaScript, and Rake for Ruby [11].

4.1.1.2 Building
The build tools will take as input any change to the source

code repository, build the software, and run the following

types of tests:

a. Unit Testing – Unit testing is performed by software

developers during the development phase. At this stage, a

static code analysis, data flow analysis, code coverage,

and other software verification processes can be applied.

b. Static Code Analysis – This test is performed without

executing the application after the build and unit testing.

This analysis can help to find coding errors and security

holes, and it also can ensure conformance to coding

guidelines.

4.1.1.3 Staging
Full environments are being created that mirror the real

production environments. Tests performed in staging are as

follows:

a. Integration testing – Verifies the interfaces between

components against a software design. Integration testing

is an iterative process and facilitates building robust

interfaces and system integrity.

b. Component testing – Tests message passing between

various components and their outcomes. A key goal of

this testing could be unchangeability in component

testing. Tests can include extremely large data volumes,

or edge situations and abnormal inputs.

c. System testing – Tests the system end-to-end and

verifies if the software satisfies the business requirement.

This might include testing the user interface (UI), API,

backend logic, and end state.

d. Performance testing – Determines the responsiveness

and stability of a system as it performs under a particular

workload. Performance testing is also used to investigate,

measure, validate, or verify other quality attributes of the

system, such as scalability, reliability, and resource

usage. Types of performance tests might include load

tests, stress tests, and spike tests. Performance tests are

used for benchmarking against predefined criteria.

e. Compliance testing – It determines if you are

implementing and meeting the defined standards.

f. User acceptance testing – This testing is executed by an

end user in a staging environment and confirms whether

the system meets the requirements of the requirement

specification. Typically, customers employ alpha and

beta testing methodologies at this stage.

4.1.1.4 Production
Finally, after passing the previous tests, the staging phase is

repeated in a production environment. In this phase, a final

Canary test can be completed by deploying the new code only

on a small subset of servers or even one server, or one AWS

Region before deploying code to the entire production.

Environment.

4.2 Pipeline Building
Starting with aggregated automation of builds, environment

creation, and testing reduces the time from development to

release while providing confidence in the quality of the

product for consumption. The stages of a CI/CD pipeline

encompass performance tests, and manual testing, these

require test environments that reflect production. When these

environments are refreshed automatically, maximum

efficiency and consistency of testing are derived. However,

automation testing is ideally needed for repetitive tasks and

produces more consistent results than manual testing [1]. To

accomplish this efficiency and consistency of testing, DevOps

skills, tools, several infrastructures compute capacities for the

CI server, build agents, test environments and data stores are

required. The size, complexity of the project, and the number

of developers contributing to it determine the number of

machines required to support the pipeline. The

implementation of CI/CD processes can take place with

adequate automation in three segments. Firstly, Continuous

Integration, which involves development and testing;

secondly Continuous Delivery - extending CICD with

automated integration testing; and lastly adding Continuous

Deployment to a production environment [1]. Start the

pipeline with components needed for CI, then move to a

continuous delivery pipeline with added components and

stages [10]. Lastly, the pipeline deploys the code to a

production environment, after the acceptance and security

tests have passed and the testing version has been approved to

be deployed [10].

4.3 The Gains of Building a Secured CICD
DevSecOps culture is a culture where overall security is

germane within an organization CICD. Teams that are

traditionally reluctant to change work closely together with

DevSecOps, hence fostering stronger and better working

relationships. Additionally, it shortens development cycles

and faster development. It also improves flexibility and

scalability since this provides both a rapid response capability

and the means to adapt to change much easier. This allows

visibility, traceability, and accountability – being able to see

who made what changes and when is excellent for bug

tracking, awareness, and accountability. The ability to address

and alleviate errors at the source, as they arise, enables one to

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 48, February 2023

12

build better software, and release it faster, and with fewer

bugs and vulnerabilities. This not only results in greater cost

savings but also minimizes overall disruption, improves

workflow, helps build better software, and improves overall

security. Transitioning an organization CICD to the

DevSecOps CICD model doesn’t happen instantly, it’s both a

strategic and continual improvement process [7]. To end up

with secured software production, each phase (initiation,

development, deployment, maintenance, and disposal) of

software development needs to be protected from malicious

attacks [6]. Creating software with fewer bugs and

vulnerabilities, that is detecting and eliminating them at

source, reduces time to market for finished products.

4.4 AWS CICD Tools & Capacities’ Idea
CI/CD tools play a central role in coordinating and

automating the various stages of the pipeline, from kicking off

the process following a commit to managing the build,

triggering automated tests, publishing artifacts, and collating

and relaying feedback. Choosing the right tool for an

organization will help realize the benefits of CI/CD and allow

it to keep evolving and improving software development

processes. Hence, tools should be able to provide integration

options, tech stack support, and interfaces for everyone,

should be customizable, provide feedback, provide

infrastructure options, improve CICD performance, provide

support, provide metrics, and provide security. Using the

appropriate tools in CICD does not fully secure the pipeline

but reinforces it to a certain level [6]. Securing pipelines

against malicious actors should therefore be the highest

priority. This should include managing secrets securely,

applying the principle of least privilege, and monitoring

activity across the pipeline. Investigating any unusual

behavior should also be made possible by tool providing an

audit trail. AWS CodeStar, AWS CodeCommit, AWS

CodePipeline, AWS CodeBuild, AWS CodeDeploy, and

AWS CodeArtifact are some of the AWS developer tools or

services offering CI/CD tools’ capabilities. In addition to

these tools, AWS also provides security services such as

Config, CloudTrail, CloudWatch, and custom Lambda

services that incorporate the DevSecOps CICD [7]. These

services rapidly and securely deliver software and are readily

made available to Developers and IT operations engineers

practicing DevOps. When services are in the stack, these

services securely store and apply version control to the source

code. AWS CodeStar or CodePipeline can be used to rapidly

orchestrate an end-to-end software release workflow, together

with other services [10]. AWS CodePipeline has the

flexibility to integrate each service independently with other

existing tools, for an existing environment. AWS

Management Console, AWS application programming

interfaces (APIs), and AWS software development toolkits

(SDKs) are the means to access these AWS services, which

are highly available, easily integrated services [10]. Other

CICD tools like Jenkins, Kubernetes, Docker, Chef, Gradle

and Ansible can also be integrated with AWS CICD tools to

enhance CICD functionalities. The authors will discuss details

about these tools in a follow up publication.

4.5 Conclusion - Securing the CICD

Pipeline
In conclusion, the following security tasks should be practiced

to the minimum for securing the CI/CD pipeline [4]:

1. Ensuring hardening servers hosting code & artifact

repositories

2. Securing the credentials for accessing repositories like

authorization tokens and for generating pull requests.

3. There should be controls on who can check in and

checkout in container image registries since they are the

storage for artifacts produced by the CI pipeline and

serve as bridges between CI and CD pipelines.

4. Logging all code and build update activities.

5. Testing is carried out in all stages when necessary.

6. Assigning a security champion helps in defining clear

project requirements, the pipeline you must protect, real-

time feedback on pipelines, and providing adequate

resources.

To round up this writeup, a CI/CD pipeline that is insecure

will certainly lead to poor application production. Hence, by

taking control of security risks at all stages of the pipeline via

practices like access control, secrets management, registry

scanning, and testing, surely the risk that insecure code will

flow down the pipeline can be minimized. Measuring and

comparing the DevSecOps capabilities of AWS CICD tools to

other comparable open-source CICD tools are presently being

researched. It is hoped that the outcome of the research will

show the strength of each of these comparable CICD tools.

5. ACKNOWLEDGMENTS
Praise be to God for grace and making this happen. Many

thanks also to families and friends for the inspiration and

support all these years in this endeavor.

6. REFERENCES
[1] Philippa Ornell. August 20. 2020. Kth royal institute of

technology school of electrical engineering and computer

science. Security Assessment of Continuous Deployment

Pipelines. https://www.diva-

portal.org/smash/get/diva2:1471199/FULLTEXT01.pdf

[2] Bakary Jammeh. 2020. DevSecOps: Security Expertise a

Key to Automated Testing in CI/CD Pipeline.

https://www.researchgate.net/publication/347441415_De

vSecOps_Security_Expertise_a_Key_to_Automated_Tes

ting_in_CICD_Pipeline

[3] Justine Goldmith. 2000. Security first: Automating

CI/CD pipelines and policing applications.

https://events.redhat.com/accounts/register123/redhat/eve

nts/701f20000012gfuaay/Security_First_Security_Symp

osium_2019.pdf

[4] Ramaswamy Chandramouli. March. 2022.

Implementation of DevSecOps for a Microservices-based

Application with Service Mesh.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIS

T.SP.800-204C.pdf

[5] Thorsten Rangnau. 2020. 2020 IEEE 24th International

Conference on Enterprise Distributed Object Computing

(EDOC). Continuous Security Testing: A Case Study on

Integrating Dynamic Security Testing Tools in CI/CD

Pipelines.

https://www.researchgate.net/publication/346379276_Co

ntinuous_Security_Testing_A_Case_Study_on_Integrati

ng_Dynamic_Security_Testing_Tools_in_CICD_Pipelin

es

[6] Faheem Ullah. 2017. Security Support in Continuous

Deployment Pipeline.

https://arxiv.org/ftp/arxiv/papers/1703/1703.04277.pdf

[7] AWS & Delloite. 2019. Integrating and automating

security into a DevSecOps model.

International Journal of Computer Applications (0975 – 8887)

Volume 184 – No. 48, February 2023

13

https://www2.deloitte.com/content/dam/Deloitte/us/Docu

ments/risk/us-integrating-and-automating-security-into-

a-devsecops-model.pdf

[8] Geoffrey Sanders. 2021. Software Engineering Institute,

Carnegie Mellon University. July White Paper.

INTEGRATING ZERO TRUST AND DEVSECOPS.

https://apps.dtic.mil/sti/pdfs/AD1145432.pdf

[9] Mike Heim. 2020. National Defense-ISAC Publication.

Software Security Automation: A Roadmap toward

Efficiency and Security. https://ndisac.org/wp-

content/uploads/ndisac-security-automation-white-

paper.pdf

[10] AWS Whitepaper. 2021. Practicing Continuous

Integration and Continuous Delivery on AWS.

https://docs.aws.amazon.com/whitepapers/latest/practicin

g-continuous-integration-continuous-

delivery/welcome.html

[11] Rangnau T. et al. Continuous Security Testing: 2020. A

Case Study on Integrating Dynamic Security Testing

Tools in CI/CD Pipelines.

https://ieeexplore.ieee.org/abstract/document/9233212

[12] Guardrails whitepaper. 2023.

https://www.guardrails.io/whitepapers/how-to-build-a-

devsecops-pipeline/

[13] Akhil Jain. 2021. https://aws.plainenglish.io/devops-102-

lifecycle-and-ci-cd-b18923240d49

[14] Daniel Pohl. 2020.

https://www.logicworks.com/blog/2020/10/cicd-iac-

pipeline-part-1/

[15] Rob Larter. 2020. https://www.linkedin.com/pulse/cicd-

what-why-important-rob-larter

[16] Ishan Gaba. 2021.

https://www.simplilearn.com/tutorials/devops-

tutorial/continuous-delivery-and-continuous-deployment

IJCATM : www.ijcaonline.org

