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ABSTRACT 

This work proposed an improved neural network model known 

as AI Pipeline Monitoring System for Predictive Monitoring of 

oil and gas installation vandalism threats. The system 

employed a sparse representative long-short-memory 

(SLSTM) learning network as part of a refinement to an 

existing feed-forward neural network. The system also uses a 

Gaussian membership function with a context-decision gate for 

detection and monitoring operations. In this paper the proposed 

system's efficiency is compared to that of the Particle Swarm 

Optimization Technique; a swarm intelligence algorithm that is 

emerging as an alternative to more conventional approaches for 

predictive monitoring operations. To test and evaluate the 

performance, dynamic simulations were performed using real-

time dataset of most likely vandal behavior and the efficiency 

of the two systems in predictive monitoring operations. The 

results of simulation study showed impressive results and 

proves that the AI Pipeline Monitoring System is more 

preferred to the Particle Swarm System, because of its (AI 

Pipeline Monitoring System) continual long range context 

learning capability, which is a likely feature of most observed 

pipeline threat context-data.  
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1. INTRODUCTION 
Crude oil theft has increased in recent years, as have continuous 

threats and sabotage to oil and gas installations by self-

proclaimed militant groups, as well as offshore piracy in the 

world's oil producing regions. As a result of this act, there has 

been a significant loss of revenue and significant disruptions in 

gas supply to power industries, businesses, and public sector 

services [1]. 

This paper compares an AI pipeline monitoring, which is based 

on long short-term memory with a particle Swarm optimization 

anti-vandal’s intelligent system for efficiency in oil and gas 

pipeline facility threat-claificaton and predictive monitoring 

operations. It is a context-based system that utilizes the concept 

of context management [2]. Contextual information (feature 

dataset) about potential threats to oil facility in [3] will be used 

in the study as shown in table 1. The system is expected to 

predict activities that exhibit abnormal behavior up to a 

predetermined threshold, then classify as threats to pipeline 

installations. 

Table 1: Input/output feature data for the vandalism predictions. 

Time (hrs)   
6:00 8:00 10:00 12:00 14:00 

Date   
     

20/08/2022 Pressure (bar) 17.14 16.00 18.14 20.28 19.78 

 

20/08/2022 Vehicle Passing (kg) 

 

20.22 20.78 17.99 19.22 21.22 

20/08/2022 Manual Digging (inches) 

 

16.26 18.87 20.39 19.67 18.19 

20/08/2022 Machine Excavation 

 

18.47 17.29 15.28 16.29 20.18 

21/08/2022 Pressure (bar) 

 

18.35 17.98 18.99 19.99 16.88 

21/08/2022 Vehicle Passing 

 

15.00 18.76 15.78 16.76 20.17 

21/08/2022 Manual Digging 

 

18.12 19.38 20.98 17.28 19.98 

21/08/2022 Machine Excavation 17.23 18.88 14.45 20.55 19.27 

2. RELATED LITERATURES 
Recurrent neural networks (RNNs) are a class of artificial 

neural networks (ANNs) with an inherent time varying feature 

that allows for the continual processing of the weights of a 
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typical feed-forward network on different instances of artificial 

neurons through time [4]. A generalized version of an RNN is 

typically defined as a recursive neural network. With the 

current interest in mining streaming/or time varying data, 

RNNs play an important role as a candidate ANN model of the 

intelligent mind. In this section a brief overview of the 

development in RNNs is introduced. The idea of using RNNs 

was historically first introduced in [5], where the same weight 

structure is used for varying instances of the artificial neurons 

in an ANN with different time steps. 

The biologically inspired computational search and 

optimization technique Particle Swarm Optimization (PSO) 

is based on the behavior of an insect colony or swarm, such as 

ants, termites, bees, and wasps, a flock of birds, or a school of 

fish [6]. 

The particles exchange information or good positions with 

one another and adjust their individual positions and velocities 

in response. This is done according to the following model 

[7]: 

𝑣𝑖
𝑘+1 = 𝑊𝑣𝑖

𝑘 + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 - 𝑥𝑖

𝑘) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑘  − 𝑥𝑖
𝑘)    (1)                       

     

𝑥𝑖
𝑘+1   = 𝑥𝑖

𝑘 + 𝑣𝑖
𝑘+`               (2)                                                                      

     

Where:  

➢ C1 and C2 are two positive constants. 

➢ r1 and r2 are two randomly generated numbers with 

a range of [0,1]. 

➢ w is the inertia weight. 

➢ 𝑝𝑏𝑒𝑠𝑡𝑖
𝑘 is the best position of the particle i achieved 

based on its own experience; k i pbest  

➢ 𝑔𝑏𝑒𝑠𝑡𝑖
𝑘 is the best particle position based on overall 

swarm’s experience, k gbest  

➢ K is the iteration index.  

 

The field of threat identification and risk assessment in 

industries is an active one with recent progress made in both 

understanding and application-oriented approaches. 

In [8], a fault diagnosis system for interdependent critical 

infrastructures was developed and applied to a synthetic 

benchmark. 

Energy network (IEEE 30 bus model): This system used the 

Hidden Markov Model (HMM) – a state-based model that uses 

time as its operational learning parameter. Such models are 

useful as time-observers in fault-critical situations. Using the 

HMM model, the quantification of cyber-paths of critical 

infrastructures (CIs) was attempted. The cyber-paths include 

BGP routing protocols, SCADA servers, corporate networks 

etc. The paths are built into a state model that varies through all 

possible states (ergodic HMMs).  

This approach used the probabilistic distance metric (PDM) for 

decision making and the torch framework 

(http://www.torch.ch//) for simulation experiments. 

Performance measures based on false positive and negative 

rates and the detection delay was shown to be encouraging. 

However, one drawback in using the HMM is its inability to 

fully account for the state space – as the capability of detecting 

a possible threat to a CI is a function of time and space. 

Bowties, a diagrammatic cause-and-effect-barrier model, have 

been studied as a risk/threat detection and monitoring 

mechanism for oil and gas and similar environments [9]. Their 

analysis of existing bow-tie schemes from the qualitative and 

quantitative bow-tie paradigms revealed some competing 

intelligent schemes based on fuzzy logic, Bayesian networks, 

and Boolean logical calculus.  

Using an agent-based model and regression-based statistical 

design of experiments (doE), [10] were able to simulate pirate 

behavior that accounts for exploitation of marine environments 

in Somalia. With the Concept of Operations (CONOPS) agent, 

they tried to determine which factors of the Meteorology and 

Oceanography conditions (METOC) likely influence pirate 

behavior and increase the chances of a threat to existing 

facilities – these factors or parameters were then allocated more 

intelligent resources from a mobile pirate control system. 

However, they found out that using the doE approach with 

CONOPs for the different regression models did not present a 

clear-cut direction as to which parameters or conditions are 

more useful. In [11], the potentials of a Bayesian network for 

effective identification of threats due to piracy to oil industry 

infrastructure was investigated. 

3. METHODOLOGY 
An iterative object-oriented software engineering methodology 

known as Rational unified Process was used in accordance with 

the Action Research, which involves iterative refinement and 

redesigning of the practitioners' equirements. A software 

engineering process known as Rational Unified Process 

(RUP) offers a structured method for allocating tasks and 

responsibilities within a development organization. The RUP 

strives to produce high-quality software that meets the needs of 

its end users while adhering to a set schedule and budget [12]. 

To ensure that the process is continually updated and improved 

to reflect recent experiences as well as evolving and tried-and-

true best practices, the RUP development team works in 

collaboration with customers, partners, Rational's product 

groups, and Rational's consultant organization. RUP activity 

emphasizes developing and maintaining models that are 

semantically rich representations of the software system being 

developed in addition to creating and maintaining models [13] 

RUP is a guide for using the Unified Modelling Language 

effectively (UML). Our ability to clearly communicate 

requirements, architectures, and designs is made possible by 

the industry-standard language known as the UML [14]  The 

standards body Object Management Group now maintains the 

UML.  

4. PREDICTIONS WITH AI PIPELINE 

MONITORING SYSTEM 
Figure 1 depicts the architecture of the AI pipeline Monitoring 

System, which is a sequence learning recurrent neural network 

based on Long-Short Term Memory. 

The system works as described in figure 1; the contextual 

information (feature dataset) is broken down into a numerical 

context prediction activity see Table 1; using the feature dataset 

module. The context information base on the help of sensors is 

fed to an LSTM block which learns a sequential representation 

of the context in the previous time step and then predicts the 

most likely sequences at the next time step. The predictions are 

then sent to a threat alert which flags predicted threat levels 

with high (abnormal) values. Figure 2 contains concatenated 

local contextual parameters which are incorporated into 

Pipeline Monitoring System as trafficability values using 

wireless sensor. The trafficability are values between zero and 

one, where zero indicates no threat and one indicates threat. 

The pipeline local contextual data includes: 

✓ Pressure 

✓ Vehicle Passing 
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✓ Manual Digging 

✓ Machine Excavation 

The sensed signals (context parameters) are fed into the context 

learning module (LSTM subsystem) through a multiplexer and 

are transformed and seen by the LSTM as words.  The control 

subsystem (Prediction module) combines the individual 

trafficability values corresponding to each piece of contextual 

information into a value that would be used to indicate 

situations that pose danger and the ones that do not. The LSTM 

subsystem keeps track of the sensed signals in the memory 

module and then passes these signals to the control subsystem 

(Prediction module). 

 

Figure 1: Proposed surveillance system architecture 

 

 
Figure 2: Concept-level situation aware design 

The AI Pipeline Monitoring System, which is based on Long 

Short-Term memory, uses the Gaussian membership function 

in Simulink. 

Gaussian built-in membership function Syntax: 

𝑌 =  𝑔𝑎𝑢𝑠𝑠𝑚𝑓(𝑋, [𝑠𝑖𝑔 𝐶])                                                (3) 

The symmetric Gaussian function depends on two parameters 

𝜕 and c as given by 

𝑓(𝑋, 𝜕, 𝐶) =  𝑒
−(𝑥−𝑐)2

2𝜕2                                                                       (4) 

The parameters for gaussmf represent the parameters and c 

listed in order in the vector [sig c].  

Where c is the mean and 𝜕 the standard deviation. 

The deployment interface includes the following parts: 

LSTM BLOCK LSTM BLOCK 

THREAT DETECTION 

ALERT 

CONTINUAL PREDICTION OUTPUT 

LSTM BLOCK LSTM BLOCK 

FEATURE DATASET 

Sense signals 
transformed 
and seen as 
words by  
LSTM 

Vehicle passing Manual digging 

context 

Machine Excavation 

Context 

Pressure 

flow control 

Context concatenation 

 

Sensor of data string 

String-Text transformation 

Store long 
rang context 

Context learning 

 

LSTM Character 

Sequence learning algorithm 

Predictions 

 

Decision making 

Alerts, control signals 

Memory 

Block(s) 
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➢ Random Source: this part is made up of the following: - 

1) Predicted Parameters sensor blocks: this converts the 

real time parameters like pressure, vehicle passing, 

manual digging and machine excavation, etc. into 

electrical signal 

2) Display Sensor block: displays the numerical state of 

the sensed data 

3) Multiplexer block: that concatenates the entire 

sensed signal and synchronizes them through a 

transmission line to the LSTM subsystem. 

➢ LSTM Subsystem: The LSTM subsystem passes these 

signals through different signal line (transmission line) to 

the control subsystem. 

➢ Control Subsystem: the control subsystem predicts the 

sensor output based on the signal it received from the 

LSTM subsystem and displays a 1 to any predicted 

activity that poses threat and 0 to the activity that poses no 

threat. 

Figure 3: AI pipeline monitoring system user interface 

4.1. AI pipeline monitoring systems 

simulation result 
The AI system's efficiency was evaluated using a local pipeline 

contextual feature dataset. Tables 2 and 3 present the test 

results. After several runs of the AI Pipeline Monitoring 

system, the results show a simulation report. The simulation 

results show that when a specific activity is consistent with the 

targeted value of the trafficability data, it does not raise a red 

flag and instead sends a green signal indicating that the pipeline 

is safe; otherwise, it raises a red flag and sends a threat signal. 
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Table 2: Simulation results of the AI pipeline monitoring system 

 Max Trial = 3   Hidden Unit Size = 20 

Time(hrs) Pressure (bar) Vehicle Passing (kg) Manual Digging 

(inches) 

Machine Excavation 

(inches) 

6:00 19.66 17.39 20.71 20.37 

0:00 19.43 21.36 19.81 19.55 

10:00 19.43 20.05 19.99 20.79 

22:00 18.71 19.99 19.23 19.85 

2:00 19.95 20.27 19.35 18.67 

0:00 17.71 18.55 19.82 20.23 

18:00 19.74 19.41 18.12 19.35 

16:00 18.89 19.85 21.20 21.01 

22:00 20.08 19.76 17.78 21.77 

2:00 20.57 19.45 20.19 20.65 

10:00 17.38 18.38 20.23 19.30 

4:00 20.36 20.94 20.20 20.30 

6:00 19.75 19.92 21.12 20.63 

8:00 20.95 21.98 19.06 20.76 

4:00 22.11 19.01 20.71 20.70 

10:00 21.83 20.98 20.92 19.71 

0:00 21.73 20.38 20.22 21.08 

16:00 20.32 18.49 21.59 19.89 

6:00 19.46 20.02 21.11 18.87 

2:00 18.73 19.42 20.44 18.87 

0:00 20.13 20.68 19.97 20.26 

Table 3: Threat events prediction table based on simulation result 

Contextual parameters Sensory Signal Label 

Pressure 19.66 0  OK 

Vehicle Passing 20.05 1  DANGER 

Manual Digging 17.88 0  OK 

Machine Excavation 16.78 0  OK 

Pressure 22.71 1  DANGER 

Vehicle Passing 19.78 0  OK 

Manual Digging 21.65 1  DANGER 

Machine Excavation 20.8 1  DANGER 
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Figure 4: Graph of the predicted parameters against time 

5. PREDICTION WITH PARTICLE 

SWARM OPTIMIZATION TECHNIQUE 
An evolutionarily based artificial intelligence called Particle 

Swarm Optimization Technique (PSO) is used to categorize 

feature data gleaned from a real-world pipeline sensor detection 

system. Figure 3 depicts the architecture of the PSO Predictive 

Monitoring System. The PSO system consists of feature dataset 

blocks with pre-processed threat detection parameters obtained 

from real-time phase-shifted optical time domain response 

systems (ɸ - OTDR). The input/output specifications for the 

PSO decision system are listed in table 1, and they include 

pressure, vehicle passing, manual digging, and machine 

digging activities. These same data are also used in the AI 

Pipeline Monitoring System. These data are fed into the PSO-

classifier module, where the PSO algorithm optimizes the 

crucial parameter(s) to create a model of the threat classifier. 

Any activity that continues over time and approaches a 

restricted value or a predetermined threshold based on the 

activity being performed at a specific time should be detected. 

5.1 Particle swarm optimization simulation 

results 
Table 4 lists the simulation results following several PSO 

system runs. According to the simulation results, a particular 

activity would not be predicted to be hazardous to an oil and 

gas pipeline facility if it is consistent with the threshold value 

of the trafficability data and instead would give a signal of 

green indicating that the pipeline is safe. 

 
Table 4: Particle swarm optimization system simulation results 

  Max Iteration = 3   Population Size   = 20 

TIME 

(hrs) Pressure(bar) 

Vehicle 

Passing(kg) 

Manual 

Digging 

(inch) 

Machine Excavation 

(inch) 

6:00 17.99 16.45 18.22 17.89 

0:00 15.77 15.66 15.43 19.56 

10:00 15.12 20.21 14.87 19.17 

22:00 19.25 18.16 14.32 17.05 

2:00 19.83 15.67 16.43 14.65 

0:00 18.26 15.54 16.23 16.15 

6:00 0:00 10:0022:00 2:00 0:00 18:0016:0022:00 2:00 10:00 4:00 6:00 8:00 4:00 10:00 0:00 16:00 6:00 2:00 0:00 22:00 6:00 6:00 0:00 2:00 4:00 0:00 6:00 10:00
17

18

19

20

21

22

23

Model output

Time

P
a

ra
m

e
te

rs

 

 

Pressure Vehicle Passing Manual Digging Machine Excavation
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18:00 15.78 16.43 14.99 15.87 

16:00 15.54 15.00 18.14 16.18 

22:00 15.76 17.09 16.67 16.87 

2:00 18.87 16.89 15.56 14.45 

10:00 15.45 18.78 14.56 16.89 

4:00 20.24 15.60 16.79 17.11 

6:00 15.45 15.15 15.07 15.00 

8:00 14.54 14.67 16.17 18.56 

4:00 20.22 15.87 15.12 14.65 

10:00 16.06 16.73 15.53 19.76 

0:00 17.87 15.45 15.71 19.32 

16:00 18.56 16.89 16.27 20.57 

6:00 16.00 15.87 15.76 15.46 

2:00 16.45 14.78 15.25 16.43 

0:00 16.45 17.76 17.65 16.88 

22:00 15.00 15.17 14.81 16.72 

6:00 15.76 14.75 16.87 17.25 

10:00 16.00 16.72 17.44 19.99 

0:00 17.77 15.43 15.43 19.87 

2:00 18.76 15.43 16.65 16.34 

4:00 14.54 15.76 15.87 14.34 

0:00 20.45 16.43 17.40 21.54 

6:00 19.60 15.43 16.21 17.53 

10:00 14.56 19.17 17.43 21.27 
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Figure 5:  Graph of predicted parameter against time using pso system 

6. COMPARING SIMULATION 

RESULTS OF AI PIPELINE 

MONITORING SYSTEM AND 

PARTICLE SWARM 

OPTIMIZATION TECHNIQUE 

 

 

 

Table 5: Comparison between simulation results of the AI pipeline system and PSO system 

 PSO LSTM PSO LSTM PSO LSTM PSO LSTM 

Time 

(hrs) 

Pressure 

(bar) 

Vehicle Passing 

(kg) 

Manual Digging 

(inch) 

Machine Digging 

(inch) 

06:00 17.99 19.66 16.45 17.39 18.22 20.71 17.89 20.37 

00:00 15.77 19.43 15.66 21.36 15.43 19.81 19.56 19.55 

10:00 15.12 19.49 20.21 20.05 14.87 19.99 19.17 20.79 

22:00 19.25 18.71 18.16 19.99 14.32 19.23 17.05 19.85 

02:00 19.83 19.95 15.67 20.27 16.43 19.35 14.65 18.67 

00:00 18.26 17.71 15.54 18.55 16.23 19.82 16.15 20.23 

18:00 15.78 19.74 16.43 19.41 14.99 18.12 15.87 19.35 

16:00 15.54 18.89 15.00 19.85 18.14 21.2 16.18 21.01 

22:00 15.76 20.08 17.09 19.76 16.67 17.78 16.87 21.77 

02:00 18.87 20.57 16.89 19.45 15.56 20.19 14.45 20.65 

10:00 15.45 17.38 18.78 18.38 14.56 20.23 16.89 19.37 

6:00 0:00 10:0022:00 2:00 0:00 18:0016:0022:00 2:00 10:00 4:00 6:00 8:00 4:00 10:00 0:00 16:00 6:00 2:00 0:00 22:00 6:00 6:00 0:00 2:00 4:00 0:00 6:00 10:00
14

15

16

17

18

19

20

21

22

PSO output

Time

d
a

ta

 

 
Pressure Vehicle Passing Manual Digging Machine Excavation
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04:00 20.24 20.36 15.60 20.94 16.79 20.2 17.11 20.3 

06:00 15.45 19.75 15.15 19.92 15.07 21.12 15.00 20.63 

08:00 14.54 20.95 14.67 21.98 16.17 19.06 18.56 20.76 

04:00 20.22 22.11 15.87 19.01 15.12 20.71 14.65 20.70 

10:00 16.06 21.83 16.73 20.98 15.53 20.92 19.76 19.71 

00:00 17.87 21.73 15.45 20.38 15.71 20.22 19.32 21.08 

16:00 18.56 20.32 16.89 18.49 16.27 21.59 20.57 19.89 

06:00 16.00 19.46 15.87 20.02 15.76 21.11 15.46 18.87 

02:00 16.45 18.73 14.78 19.42 15.25 20.44 16.43 18.78 

00:00 16.45 20.13 17.76 20.68 17.65 19.97 16.88 20.26 

22:00 15.00 20.9 15.17 18.79 14.81 19.69 16.72 20.12 

06:00 15.76 20.23 14.75 19.16 16.87 20.51 17.25 18.41 

10:00 16.00 20.02 16.72 18.59 17.44 20.6 19.99 20.35 

00:00 17.77 20.72 15.43 19.32 15.43 19.58 19.87 21.24 

02:00 18.76 18.63 15.43 20.33 16.65 18.51 16.34 18.33 

04:00 14.54 18.74 15.76 20.21 15.87 20.82 14.34 18.89 

 

 
Figure 6: Graphs of the compared simulation results of the LSTM AI pipeline system and PSO system 
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The contextual feature dataset was tested and run in both 

systems to evaluate their performance and efficiency in 

predictions. The simulation results of the two systems are 

tabulated in table 5. Figure 6 show the graph of simulation 

results of the particle swarm optimization technique as 

recorded in table 5. The PSO system uses Max iterations = 3 

and Population size = 20, and in case of the LSTM AI Pipeline 

Monitoring System uses Max trial = 3 and Hidden unit size 

=20.  

A plot of the compared simulation results of the PSO and 

LSTM of figure 6 is discussed here. The bolded lines with 

asterisks on it represent the PSO result, whereas the normal tiny 

lines represent the LSTM results. the blue line indicates the 

rising and dropping of pressure wave at different time interval 

for PSO and brown for LSTM respectively, at 6:00 am the 

pressure wave as predicted by PSO is 17.99 bar, LSTM is 

19.66, at 0:00 am the wave Predicted by PSO is 15.77 bar, 

LSTM is 19.43 bar, at 10:00 am the pressure dropped as 

predicted by PSO is 15.12 bar and LSTM is 17.38 bar, all of 

which indicate no threat because they fall between the range of 

the set point. At 4:00 pm the pressure rises as predicted by PSO 

is 20.24 bar, LSTM is 22.11 bar and at another interval of 00:00 

am pressure rise by PSO prediction is 21.71 bar and that of the 

LSTM is 21.71 bar which are above rising threshold and 

indicates threat to the pipeline.  The red line with asterisks and 

the normal tiny sky-blue line as shown in figure 4.4 indicate the 

different weight exerted on the pipeline as vehicles passing 

along the oil pipeline area at different time interval as predicted 

by PSO and the LSTM respectively.  At 6:00am the weight 

signal as predicted by PSO to the pipeline system is 16.45 kg 

and LSTM is 17.39 kg which indicates no threat, at 0:00 am 

weight by PSO signal is 15.66 kg indicting no threat and LSTM 

is 21.36 kg indicating threat and at the time interval of 8:00 am 

the vehicle weight by PSO is 14.67 kg indicting no threat to the 

oil pipeline and LSTM is 21.98 kg, indicating a threat to 

pipeline.  This continues for the other parameters as shown in 

figure 5.  Comparison result shows that the PSO holds great 

advantages in terms of its use of an optimization routine, high 

accuracy, and ability to model complex non-linear decisions. 

However, results show that the PSO system is deficient in its 

training time, that is, it has a slow training time and cannot learn 

continual long-range context, which is a likely feature of most 

observed pipeline threat context data; a major issue that the 

proposed Oil and Gas AI Pipeline Monitoring System has come 

to address. 

7. CONCLUSION 
Based on comparison results, it was observed that the Oil and 

Gas AI Pipeline Monitoring System, which is based on the 

LSTM, holds great promises as a future neural network model 

for predictive monitoring operation if properly planned. The 

ideas of advanced machine learning recurrent neural networks 

such as the one proposed here can lead to better neural models 

for diverse tasks. Thus, it is desirable that researchers shift from 

using existing simple neural network architectures to more 

sophisticated ones. 

Further work will be on integration of the AI Pipeline 

Monitoring model into real time hardware, as the system has 

not been integrated into real time hardware, hence, it may not 

be obvious if it will perform as expected.  Finally, the output is 

not symbolic i.e., cannot be interpreted as a mathematical 

expression yet. 
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SLSTM Sparse Representative Long-Short-Memory 

RNNs  Recurrent Neural Networks 

ANNs  Artificial Neural Networks 

PSO  Particle Swarm Optimization 

HMM  Hidden Markov Model 

CI  Critical Infrastructures 

BGP  Border Gateway Protocol 

SCADA Supervisory Control and Data Acquisition 

PDM  Probabilistic Distance Metric 

CONOPS Concept of Operations 

METOC Meteorology and Oceanography conditions 

RUP  Rational Unified Process 

UML  Unified Modeling Language 

OMG  Object Management Group 

LSTM  Long-Short Term Memory 

OTDR  Optical Time Domain Response 
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