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ABSTRACT 

The process of condensing and organizing a longer text is 

called text summarization. Summarizing lengthy documents, 

reports, and academic writings can be challenging. Selecting 

the important sentences and concepts from a text requires using 

a variety of text summarizing techniques, which reduces the 

time and effort required to read an entire article. In comparison 

to other cutting-edge approaches, the combined common 

extracted keywords employing the most popular techniques 

(Text Rank, Sentence Score, and Gensim Keyword Extraction) 

present only the important sentences that are briefer and more 

similar to human summary. For enhanced output 

summarization, a combination strategy of these cutting-edge 

approaches has been proposed in this thesis. 
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1. INTRODUCTION 
Automatic process of condensing a set of data into a summary 

that only includes the most crucial or pertinent details from the 

original material is known as text summarizing. The raw data 

is mined for text, but the recovered text isn't altered in any way. 

Significant phrases and words found in extracted content can 

be used to "tag" or index a text document. Extracting text is 

similar to skimming, which is reading the summary, headers 

and subheadings, figures, the first and last paragraphs of a 

section, and optionally the first and last words of a paragraph, 

in order to decide whether or not to read the full document in 

detail. Another illustration of extraction is clinically significant 

text sequences, such as patient/problem, intervention, and 

result. 

2. THE NEED FOR TEXT 

SUMMARIZATION 
It can take a lot of time and effort to manually generate a 

summary. Such challenges are supposedly overcome by 

automatic text summary, which makes it simple to identify a 

piece of writing's main concepts. The vast majority of the data 

currently flooding the digital world is unstructured text data. 

Therefore, it is necessary to create automatic text 

summarization tools that make it simple for users to draw 

conclusions from them. At the moment, there is easy access to 

a vast amount of information. Implementing summarization 

can make texts easier to read, cut down on time spent looking 

for information, and allow more information to fit in a given 

space. 

3. LITERATURE REVIEW 
Summarization of text created from one or more texts that 

keeps the majority of the material of the real text while being 

less than half as long. This is known as automatic text 

summarizing when a machine performs it automatically. This 

method can be thought of as a type of compression that will 

ultimately cause information loss. 

M. M. Haider et al. suggested a sentence-based clustering 

technique (K- Means) for a single document. Gensim word2vec 

was utilized for feature extraction. The suggested model 

performed the best on the numerical values, which are 

prioritized by the sentence scoring approach. Over text values 

[10], it delays. The focus of Tanwi1 et al. and associates was 

on creating a system that can swiftly sum up technological 

notions. The system ignores other words with low scores and 

numerical values and only outputs the highest scoring 

keywords that have been considered to be significant [11]. With 

statements that are strongly suggested by other sentences, R. 

Mihalcea's text summary is more likely to be informative for 

the provided text and will therefore receive a better grade. 

4. DATASETS 
Datasets has been taken in from an online repository. The first 

dataset is called Tennis Article. Each instance of data has a full-

sized text, along with three different method generated 

summaries. The second dataset is called House Article. Each 

instance of data has a full-sized text, along with human 

generated summary and three different method generated 

summaries.  

5. PRE-PROCESSING STEPS 

5.1 Sentence Segmentation 
The practice of breaking up a long string of text into its 

individual sentences is called sentence tokenization (also 

known as sentence segmentation). Tokenization is the process 

of breaking down a text string into a group of tokens. An 

example of a token is a word in a sentence, while a sentence is 

a token in a paragraph. You may consider tokens to be 

components. The two different kinds of word segmentation 

algorithms dictionary-based (DCB) and machine-learning-

based (MLB) are as follows: The DCB technique segments and 

parses input texts using a list of keywords. The MLB method, 

on the other hand, uses machine learning to train a model from 

a corpus. 

5.2 Removing Stop Words 
A collection of phrases known as "stop words" is used often in 

all languages. Stop words in English include the words "the," 

"is," and "and." Stop words are used in NLP and text mining 

applications to eliminate superfluous keywords so that 

computers may concentrate on the important words. 

5.3 Removing Stemming Words 
Stemming can be defined as the elimination of a word's middle 

or the reduction of a term to its stem or root. 
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6. MACHINE LEARNING 

APPROACHES 

6.1 Text Rank Algorithm 
A set of sentences from a document can be extracted using Text 

Rank to build a document summary (either through post-

processing of the extracted set of sentences, or by using the set 

of sentences directly as the summary). 

 
Figure 1: Diagram of Text Rank Algorithm 

6.2 Text summarization using SpaCy 
The Python and Cython programming languages were used to 

create the powerful natural language processing framework 

known as SpaCy. SpaCy supports deep learning processes 

using PyTorch and TensorFlow statistical models and is mostly 

utilized in the development of production software. 

 
Figure 2: Dataflow Diagram using SpaCy library 

6.3 Text Summarization by Keywords 

(using Gensim) 
To find a summary, Gensim's summarization is employed. This 

summary is based on the TextRank algorithm, which ranks text 

phrases using a variant of the TextRank algorithm. Figure 

depicts the dataflow diagram for text summarization by 

keyword extraction using the Gensim package. 

Figure 3: Dataflow diagram of Gensim Keyword summary 

7. USED ALGORITHM 

7.1 Combined Keywords Extraction and 

Summarization Method 
Summary generated by TextRank algorithm, sentence score 

and Gensim are taken, and keywords are generated from them 

individually. After that we united the keywords and found a list 

of combined common keywords, which has been used to 

generate our resultant summary. The dataflow diagram of 

summarization in this way is shown in figure 4. 

 

Figure 4: Dataflow diagram of proposed methodology 

7.2 Summary by Combined Process. 

7.2.1 Generation of key words from Text Rank 

summary 
After ranking all the sentences from the graph representation, 

we rank all the output sentences and finally, we get some 

number of top-ranking sentences and form the final summary. 

Then Key words are generated from this summary. 

7.2.2 Generation of key words from sentence score 

summary 
By using Spacy library, we first find out the sentence score and 

get a summary from top scored sentences. Now Key words are 

generated from that summary. 

7.2.3 Generation of key words from key word 

extraction using Gensim library 
In this step we have used Gensim library to extract keyword 

and to get a final summary using those extracted keywords. 

7.2.4 Generation of combined keywords 
In this step we have performed an “Union” operation between 

the separate key words we have find out from different process 

to get combined keywords. 

7.2.5 Counting Keyword Frequency 
In this step we count the frequency of each and every keyword 

in the article. 

7.2.6 Counting Sentence score 
By adding the word frequency of very words used in a sentence 

we find the score of every sentence used in the article. To do 

so, here we used SpaCy library. 

7.2.7 Generation of final summary from the 

combined process 
Finally, we get the top scored sentences, and generate our final 

summary. 

7.3 Accuracy Checking 
 We compute Precision, Recall, and F-measure values for the 

dataset in order to assess the effectiveness of the developed 

combined process of text summarization employing (Text 

Rank, Sentence Score, and Gensim Keyword Extraction). 

The suggested combined process of summarization system's 

effectiveness is evaluated using the F-measure score in relation 

to the ROUGE-2 metrics. The best F-score for the summary can 

be determined using Table 3 
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Table 1: Average ROUGE Score calculation of proposed 

system summary 

Average ROUGE 

Score 

Metrics Score in % 

ROUGE-1 Recall-r 43.33 

Precision-p 71.77 

F1 Measure 54.04 

ROUGE-2 Recall-r 27.70 

Precision-p 62.11 

F1 Measure 38.31 

ROUGE-L Recall-r 42.96 

Precision-p 71.16 

F1 Measure 53.57 

 

Table 2: Comparison table of the proposed System 

summary F-Score with various existing methods 

 

Sou

rce 

 

Author 

 

Methodology 

F-Score*(in%) 

R-1 R-2 R-L 

[35] Ramesh 

Nallapat

i, et al 

SummaRuNN

er (two-layer  

RNN-based 

sequence 

classifier) 

46.60 23.10 43.03 

[36] Cengiz 

Harka, 

Ali 

Karcı 

Karcı  

entropy-based 

summarizatio

n 

49.41 22.47 46.13 

[37] Yang 

Liu 

BERT-SUM 

(BERT with 

interval 

segment 

embeddings 

and inter- 

Sentence 

transformer) 

43.25 20.24 39.63 

[38] Aishwar

ya 

Jadhav, 

et al. 

SWAP-NET 

(Seq2Seq 

Model with 

switching 

mechanism) 

41.60 18.30 37.70 

[39] Wafaa 

S. El-

Kassas, 

et al 

EdgeSumm 

(unsupervised 

graph-based 

framework) 

53.80 28.58 49.79 

 Propose

d 

Method

ology 

Combined 

Keyword 

Extraction and   

summarizatio

n 

54.04 38.31 53.57 

 

The above Table shows the comparison between the 

implemented combined process and the existing various 

methods. From the results, marked with bold letter it is clear 

that the proposed method works better than the existing 

methods. 

 
Figure 5: Comparison bar diagram of Proposed System 

and Existing Algorithms 

8. CONCLUSIONS 
Users can gain from text summarizing since it enables them to 

quickly extract only the information they require. Much 

research has been conducted in this area recently. Text 

summarizing is a tough procedure that requires a human-like 

summary to be produced. Extractive summarization is a very 

cohesive, less redundant and cogent way. When we tried to 

match the summary keywords that were generated by humans 

and extracted from those summaries, we discovered distinct 

variable results. This peculiarity and less resemblance to 

human-like procedures for summaries are the result of different 

methods' reliance on different strategies. From this comparative 

study we can conclude that the generated summary from the 

combined extracted keywords (Text Rank, Sentence Score, and 

Gensim Keyword Extraction) provide only the important 

sentences that are short and more similar to human summary 

than other state of the art approaches. 

9. FUTURE RECOMMENDATIONS 
Text synthesis is a method for shortening lengthy text 

paragraphs into manageable chunks. Our objective is to provide 

a coherent, fluid summary that only contains the main points of 

the text. 

In the future, one should aim to summarize in the following 

ways: 

• Text summarization in different languages with limited 

resources, such as Bengali. 

• Text summarization with more combined strategies which 

results more perfection. 

• Creating a system that gets concise summaries of 

technological topics. 
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