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ABSTRACT 

Diabetes remains a significant health problem that demands 

serious attention and costly to maintain in the western world 

and developing countries adopting western lifestyles and diets. 

Since the development of insulin in the 1920s, there have been 

myriad problems in developing suitable technology for optimal 

administration of correct dosage to maintain normoglycaemic 

state in both type 1 and type 2 diabetic patients. A promising 

direction is the development of artificial pancreas (AP), a 

control engineering approach that mimics the pharmacokinetic 

counterbalancing action of the pancreas in producing optimal 

insulin and glucagon for blood glucose regulation. However, 

the optimal controller design to properly handle postprandial 

disturbances has been a significant challenge in AP design. 

Although there is a plethora of controller design techniques in 

the literature, there is no generally agreed benchmark criteria 

for comparing these controllers. Therefore, in this paper, an 

experimental testbed where the popular control algorithms can 

be compared and their response can be studied is proposed. 

This was done by simulating a virtual patient using a well-

designed mathematical model. Using the testbed, the 

performance of three controllers was studied and rich insight 

was gleaned from these controllers' behaviour onhow they 

handled the postprandial disturbances. 
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1. INTRODUCTION 
Diabetes, also known as diabetes mellitus is one of the most 

widely spread disease. According to International Diabetes 

Federation, approximately 425 million people (8.8% of the 

world population) aged between 20 and 79 years suffered 

diabetes in 2017 and this number is expected to grow by 148% 

in the year 2045 [1]. Maintenance of diabetes is expensive, 

about $727 billion account for total healthcare expenditure for 

diabetes globally [1]. Although accurate data is unavailable for 

Africa, the estimated number of people suffering from diabetes 

in Africa is 16 million and expected to increase by 156% in 

2045 [1]. In Nigeria, it is estimated that about 1.7 million adults 

suffered diabetes. Diabetes is a chronic disease [2].In 2019, an 

estimate of 1.5 million deaths were directly caused by diabetes 

[1]. 

Diabetes disease occurs when the blood glucose level increases 

because the body cannot produce any or enough hormone 

insulin or make adequate use of the insulin available in the 

body. In human body, the pancreas is responsible for the 

delicate balancing of blood glucose level by producing and 

releasing the counteracting hormones insulin and glucagon [3]. 

The glucagon hormone, produced in the alpha cells of the 

pancreas increases the blood glucose while insulin hormone, 

produced in the beta cells of the pancreas decreases the blood 

glucose level. In a healthy individual the counteracting work of 

insulin and glucagon stabilizes the blood glucose concentration 

within the physiological range of 65 to 110 mmol/L [3]. 

Insulin is a very important hormone; it transports glucose from 

the bloodstream into peripheral cells where glucose is 

converted to adenosine triphosphate (ATP) which is the cell’s 

energy [4]. When the beta cells produce insufficient insulin or 

when cells’ sensitivity to insulin falls, it leads to high 

concentration of glucose in the blood stream, a condition 

known as hyperglycaemia. Hyperglycaemia occurs when blood 

glucose exceeds 120mmol/L and if left unchecked over a long 

period, the excess blood glucose can cause serious damage to 

various body organs leading to dysfunction of such organs and 

fatal health complications such as cardiovascular diseases, 

neuropathy, nephropathy, and retinopathy [4].  

On the other hand, hypoglycaemia occurs when the body lacks 

sufficient glucose to carry out its normal function. This results 

when the fasting glucose level falls below 60mmol/L. This 

could result from insufficient production of glucagon in the 

alpha cells or poor healthy lifestyle. When left unchecked for a 

long period, hypoglycaemia can lead to diabetes-induced coma 

and eventual death. 

Diabetes remains a major health problem that demands serious 

attention and costly to maintain both in western world and 

developing countries which are adopting western lifestyle and 

diet [1]. Since the development of insulin in the 1920s, there 

have been myriad of problems in developing suitable 

technology for optimal administration of correct dosage to 

maintain normoglycaemic state in both type 1 diabetic 

mellitus(T1DM) and type 2 diabetic mellitus(T2DM) patients. 

Such developed techniques range from multiple daily insulin 

injection, nasal inhalations and enzymatic supplementation; 

however, each comes with its associated challenges [5]. A 

promising direction is the development of artificial pancreas 

(AP), a control engineering approach which mimic the 

pharmacokinetic counterbalancing action of pancreas in 

producing optimal insulin and glucagon for blood glucose 

regulation.  

AP is a closed-loop control technique, a miniaturized 

automated insulin delivery system which consists of one or 

multiple continuous Blood Glucose (BG) sensor, a mechanical 

insulin pump (or insulin injecting device) and a controller. The 

sensor (or sensors) which continuously measure the value of 

BG is fed into the controller; the controller estimates the 

optimal insulin injection rate and controls the insulin pump to 

supply it to the blood stream of the patient [6]. 
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Although AP technology has witnessed many advancements, it 

still faces challenges of sensor delays and inaccurate insulin 

delivery especially when the patient takes meal (due to the 

mathematical model employed), this causes the BG to rise 

quickly. A speedy response to this will cause the system to 

oscillate, hence, results in unstable and erratic behaviour of the 

system. A slow response controller design allows this 

disturbance to wear off before taking action; however, this 

cannot provide the required attenuation of postprandial glucose 

spikes [7]. Thus, the design of AP is to find an optimal 

controller in terms of speedy time response, which will 

guarantee stability of the system. 

There is plethora of controller design techniques in the 

literature, however, there is no generally agreed benchmark 

criteria of comparing these controllers. Although, there exist 

control design criteria such as settling time, percentage 

overshoot, and rising time, the criteria for regulating a 

biological system are more complex than these.  

Therefore, in this paper, an experimental workbench where the 

popular control algorithms can be compared and their response 

could be studied is proposed. This was done by simulating a 

virtual patient using a well-designed mathematical model. The 

proposed system can lend a rich insight into the behaviour of 

controllers in different situations in a real patient. 

The rest of this paper is organized as follows.The review of 

literature is presented in section 2 followed by the design of 

mathematical model for the simulation of virtual patient in 

section 3.In section 4, the simulation of virtual patient is 

presented. The design of three controllers whose performance 

are to be compared is presented in section 5followed by the 

simulation results in section 6. 

2. REVIEW OF LITERATURE 
In this section, a concise review of literature is presented. The 

review is focused on the Proportional Integral Derivative(PID) 

controller and the Model Predictive Control (MPC) controllers. 

For MPC controllers, the mathematical model as well as 

optimization technique are reviewed. Again, it is difficult to 

compare the performance of these controllers since there is no 

general benchmark.However, the review presents a theoretical 

background for readers.  

A fuzzy logic based PID control system for regulation of BG in 

diabetic patients was proposed in [8]. The model consists of 

single-glucose compartment in which patient insulin is assumed 

to act through a remote compartment to influence net glucose 

uptake. The inflow of glucose and the infused exogenous 

insulin are modelled using nonlinear differential equations. 

Plasma glucose concentration and its rate of change serve as 

inputs to the Fuzzy Logic Controller (FLC) while insulin 

infusion rate is the output [8].  

Similarly, a fuzzy logic based active insulin infusion closed-

loop controller was developed in [9] based on Bergman 

mathematical model. A Mamdani Fuzzy logic expert system 

was used to tune the mathematical model by designing 

linguistic rules to set the output of the model. The controller’s 

ability to handle multiple meal disturbances was accessed and 

was found to perform satisfactorily. 

Motivated by Bergman model, Parkeret. al.developed a blood 

glucose regulation controller where all the body compartments 

capable of being affected by diabetes was modelled using 

Linear Predictive Model which used internal parameters based 

on past inputs to predict future output values [10]. The 

numerical estimate of the model was carried out using Kalman 

Filtering algorithm. The simulation results were compared with 

internal model controller and non-linear model estimated using 

first-order differential equation plus time-delay [10]. 

A mathematical model for accurate capturing of the complex 

dynamics of BG time series observed in real world 

measurement using fractional calculus concepts was presented 

in [11]. A time dependent fractional model of BG dynamics 

was employed to capture the BG characteristics using a real-

world measurement from a public database. The control 

algorithm was obtained by formulating an average glycaemic 

risk index as cost function. Thus, the controller was tasked with 

the goal of finding the best amount of insulin that minimize 

average glycaemic risk. To measure the performance of the 

model, the distribution of difference of risk index between the 

predicted and actual measured data was observed [11]. 

A hybrid BGLevel controller based on Palumbo model was 

proposed in [12]. The Palumbo delayed model was hybridized 

with Fuzzy logic rules for setting the output of the controller. 

Genetic algorithm was used to select parameters for the model. 

The result shows superiority of the hybridized model over using 

pure Palumbo delayed model and Palumbo delayed model with 

fuzzy logic [12]. Palumbo nonlinear delay model serves as the 

mathematical model employed. The inputs to the model are the 

rate of change of BG and the impaired BG with reference 

glucose. A Mamdani Fuzzy logic controller was used to speed 

up the setting time of the model. Genetic Algorithm was used 

for optimal model parameter selection.  

The control of blood glucose level in diabetic patient using 

predictive controller and delay differential equation was 

presented in [13]. The model takes the quantity of glucose 

intake (from food) as input to model the glucose-dependent 

insulin secretion; insulin-independent glucose consumption by 

the brain and nerve cells; glucose-dependent insulin 

consumption by muscle cells and fat; and glucose production 

controlled by insulin concentration. To ensure the stability of 

the controller, the model was subjected to constraints to form 

an objective function which was optimized using Genetic 

Algorithm [13]. 

3. MATHEMATICAL MODEL FOR 

BLOOD GLUCOSE REGULATION 
The blood glucose regulation process starts from food intake. 

During food ingestion, the mass of glucose in the food increases 

the blood glucose concentration such that it tends to result in 

hyperglycaemia. The hormone called insulin is released from the 

beta-cell of the pancreas which instructed the remote 

compartments to take up excess glucose from the blood and 

store it up for later use as illustrated in Figure 1. The continual 

removal of glucose will eventually result in hypoglycaemia, 

which is prevented by the release of hormone called glucagon 

from the alpha-cell of the pancreas. The glucagon’s effect is to 

inhibit the production of insulin or causes glucose to be released 

from storage when the plasma glucose concentration is critically 

low. 

In type 1 diabetic mellitus(T1DM) patients, the beta-cell has 

been damaged and could not produce adequate insulin to 

regulate the excess plasma glucose.In type 2 diabetic 

mellitus(T2DM) patients, the remote compartment cells have 

developed a form of resistance to insulin such that the excess 

plasma glucose is not absorbed. 

Hence, to augment the performance of insulin in glucose 

regulation, it is necessary to model the complete interaction of 

glucose and insulin in the body. The glucose dynamics was 

modelled to provide information on how glucose is released 

from the meal, how it increases the plasma glucose 
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concentration, how glucose is absorbed and utilized in the 

remote compartment, and how glucose is released from storage 

via the action of glucagon. Furthermore, for diabetic patients, 

insulin infusion was modelled to reflect the behaviour of long-

acting and short-acting insulin, as well as other effects arising 

from insulin injection.  

 
Figure 1: Glucose Homeostasis as a Closed-loop control 

system 

In this work, the Bergman Minimal Model [14] was used to 

simulate the dynamics of the glucose regulatory system.The 

plasma insulin levels arising from subcutaneous insulin infusion 

was simulated using Berger and Rodbard method[15]as 

modified by Østerberg et al. in [16]. Finally, the effect of meals 

on plasma glucose concentration was simulated using an aspect 

of Dalla Man model [18]. 

3.1 Modelling of Glucose Dynamics 
Bergman Minimal model took a compartmental approach in 

modelling the glucose regulatory system which makes it easy to 

understand, decoupled and reassembled for modifications and 

other research purposes. This dynamic is exploited in this work. 

The glucose compartment and the effect of glucose on remote 

compartment is given by Bergman as: 

𝐺 = −𝑝1 𝐺 − 𝐺𝑏 − 𝑆𝑖𝑋𝐺 +
𝑓𝑘𝑎𝑏𝑠

𝑉𝐺
𝐺𝑔𝑢𝑡                   (1) 

𝑋 = −𝑝2(𝑋 − 𝐼)     (2) 

𝐼 = −𝜂 𝐼 − 𝐼𝑏  +
1

𝑉
𝑢(𝑡)    (3) 

Where 𝐺  is the rate of change of plasma glucose concentration; 

𝑝1 is a patient-specific parameter that specify glucose 

effectiveness (
1

𝑝1
,reciprocal of 𝑝1, is the time constant for the 

speed at which plasma glucose returns to equilibrium position 

in the absence of insulin); 𝑝2 is called fractional rate of remote 

insulin clearance which measures the effectiveness of insulin in 

the remote compartment; 𝐺 is the plasma glucose 

concentration; 𝐺𝑏  is the basal or steady-state plasma glucose 

concentration (the basal value is different for both TIDM and 

T2DM, its value indicates the patient’s tendency to 

hyperglycaemia);𝑆𝑖  is the measure of insulin effectiveness; 𝑋 is 

the effect of insulin action on remote compartments; 𝑓 is the 

fraction of carbohydrates in meal available for absorption from 

the gut; 𝑘𝑎𝑏𝑠  is a parameter specifying the rate of absorption of 

carbohydrates from the gut into the bloodstream; 𝑉𝐺  is the 

volume of plasma glucose distribution; 𝐺𝑔𝑢𝑡  is the mass of 

carbohydrates in the gut; and 𝐼 is the plasma insulin 

concentration. 

In summary, equations (1) and (2) modelled the glucose 

absorption from the food into the bloodstream and the effect of 

insulin released in the beta-cells on the remote compartment 

which leads to the rate of disappearance of glucose. Next, the 

modelling of insulin infusion and how it affects glucose 

utilization and plasma glucose regulation is presented. 

3.2 Modelling of Insulin infusion 

Diabetic patients depend on insulin, hence, designing a 

controller for regulation of glucose concentration for them 

requires modelling of insulin infusion. Insulin administration to 

human patients has been extensively studied with intent of 

modelling the pharmacokinetics of insulin drug so as to 

administer the drug within its pharmacodynamics. In the 

development of blood glucose controller, modelling of insulin 

is very important.  

Berger and Rodbard [15] insulin model serves as the base 

insulin model in this work. The model assumes that the 

absorption profile of insulin by the body is dose-dependent and 

its elimination from a central compartment follows a first-order 

kinetics. The Berger and Rodbardinsulin model modified by 

Østerberg is illustrated in Figure 2 and is given as: 

𝐼 =
𝑠𝑡𝑠−1𝑇50

𝑠

 𝑇50
𝑠 +𝑡𝑠 2

𝐼𝑑 − 𝑘𝑒𝐼    (4) 

Where𝐼 is the concentration of exogenous insulin available 

inthe plasma; 𝐼  is the rate of change of the concentration of 

exogenous insulin available inthe plasma; 𝑠 is the unit-less 

constant that describes the sigmoidicity (nonlinearity) observed 

in the time course of the insulin absorption, 𝐼𝑑  is the 

subcutaneous injected insulin dose; 𝑘𝑒  is the first-order 

elimination constant; and𝑇50is the absorption time. 

 

Figure 2: Summary of the mathematical model for glucose homeostasis 



International Journal of Computer Applications (0975 – 8887) 

Volume 184 – No.8, April 2022 

35 

The model includes two parameters which describes the time 

constant specifying the time required for 50% of the insulin 

dose to be absorbed (𝑇50):𝐼𝑑 , the subcutaneous injected insulin 

doseand 𝑎, the dose dependency of the absorption time. 

Equation (5) describes the absorption time in term of these two 

parameters. However, according to Østerberg et al. [16], the 

second parameter was found to be uncorrelated with the 

practical insulin dose. 

𝑇50 = 𝑎 ∙ 𝐼𝑑       (5) 

It can be easily verified that this model, equation (4), is much 

better than Bergman’s approach of modelling the insulin 

infusion rate in equation (3). Bergman modelled insulin 

infusion rate simply as a fractional difference between the basal 

level of plasma insulin and its distribution, without accounting 

for the pharmacokinetics of the insulin dose itself. Hence, 

equation (4) is preferred over equation (3).  

3.3 Modelling of Meal effect on Glucose 

Concentration 
The rate of appearance of glucose is modelled to describe the 

transition of glucose from meal through the stomach and 

intestine. By assuming that the stomach consists of two 

compartments (one for solid food and one for triturated 

phase)and thatthe gut has a single compartment, Dalla Man 

[18] presented a model of glucose rate of appearance which is 

employed in this work.The two compartments of the stomach 

which consists of the solid and liquid (triturated phase) is 

modelled as: 

𝑞𝑠𝑡𝑜 = 𝑞𝑠𝑡𝑜1 + 𝑞𝑠𝑡𝑜2     (6) 

where 𝑞𝑠𝑡𝑜1 represents the glucose in the solid compartment 

and 𝑞𝑠𝑡𝑜2represents the glucose appearance in the liquid 

compartment. These are given as: 

𝑞 𝑠𝑡𝑜1 = 𝑢 − 𝑘𝑒𝑚𝑝 𝑞𝑠𝑡𝑜1     (7) 

𝑞 𝑠𝑡𝑜2 = 𝑘𝑒𝑚𝑝 (𝑞𝑠𝑡𝑜1 − 𝑞𝑠𝑡𝑜2)     (8) 

Similarly, the rate of appearance of glucose in the intestine is 

given as 

𝐺 𝑔𝑢𝑡 = 𝑘𝑒𝑚𝑝 𝑞𝑠𝑡𝑜2 − 𝑘𝑎𝑏𝑠𝐺𝑔𝑢𝑡     (9) 

𝐺𝑔𝑢𝑡 = 𝐷 𝛽𝑒−𝑘𝑎𝑏𝑠 𝑡 −  𝛽 + 𝛾𝑡 𝑒−𝑘𝑒𝑚𝑝 𝑡                 (10) 

where 

𝛽 =  
𝑘𝑒𝑚𝑝

2

 𝑘𝑒𝑚𝑝 −𝑘𝑎𝑏𝑠  
2                   (11) 

and 

𝛾 =  
𝑘𝑒𝑚𝑝

2

 𝑘𝑒𝑚𝑝 −𝑘𝑎𝑏𝑠  
                   (12) 

The parameters are defined as follows. 𝑢 is the meal input, 

usually modelled as time-impulse function; D is the mass of 

carbohydrate in the meal;  𝑘𝑒𝑚𝑝  is a constant specifying the rate 

of gastric emptying; similarly, 𝑘𝑎𝑏𝑠  is the rate of absorption of 

carbohydrate from the gut. 

Most research works based on Bergman Minimal model and its 

variants modelled food intake as a disturbance to the system. 

However, in this work, meal serves as input to the system.This 

is close to real-life situation where meal and insulin are inputs 

to the gluco-regulation system for diabetic patients. Hence, in 

this work, 𝑢, the meal input, is modelled as food and snacks, 

given as: 

𝑢 =  
𝐷𝑒𝐷𝑡 sin 𝜔𝑡 + 𝜙 , 𝑓𝑜𝑜𝑑

𝐷

5
sin  

1

2
𝜔𝑡 , 𝑠𝑛𝑎𝑐𝑘𝑠

                  (13) 

where 𝐷 is the mass of carbohydrate in the meal, 𝜔 is the 

frequency and 𝜙 is the phase angle. In summary, the developed 

mathematical model is presented using state space approach as 

given by equations (14) and (15). 

4. DEVELOPMENT OF VIRTUAL 

PATIENT AND SIMULATION 
The development of virtual diabetic patients and the simulation 

of his day-to-day activities are presented in this section. The 

aim is to see how the controllers are able to regulate the glucose 

spikes caused by food ingestion. 

The equations (14) and (15) represent the patient in the state-

space domain. All states were initialized according to values 

reported in the literature [19]. The initialization is given in 

Table 1. 

Table 1. Initial values of the model variables 

Model state Symbol Initial value 

Blood glucose (mg/dl) 𝐺 76.2159 

Insulin in the remote 

compartment 
𝑋 33.3333 

Plasma Insulin 𝐼 33.3333 

Rate of glucose appearance in 

solid phase 
𝑞𝑠𝑡𝑜1 16.6667 

Rate of glucose appearance in 

liquid phase 
𝑞𝑠𝑡𝑜2 16.6667 

Glucose concentration in the gut 𝐺𝑔𝑢𝑡  250.0000 

 

The simulation runs on a twenty-four-hour basis starting from 

12:00 midnight. The virtual patient is assumed to fast 

overnight, since the human patient will be sleeping by then, no 

glucose is ingested into the body. Next, the virtual patient is 

assumed to wake up by 7:00am, took breakfast by 8:00am and 

snacks by 12:00 noon. The lunch is served by 2:00pm, by 

3:00pm the virtual patient went for sporting activities which 

depletes the blood glucose level. Finally, the dinner is served 

by 7:00pm, and some snacks by 10pm before going to bed. 

The scenario simulated here is common to average human 

being. Basically, on average, people take breakfast, snacks, 

lunch, dinner and dessert; all these activities increase glucose 

level. Conversely, people engage in activities that result in the 

depletion of glucose concentration.Such activities have been 

simulated as exercise.  

5. DESIGN OF CONTROLLERS 

In this section, the methods of regulating or stabilizing the plant 

using different controllers are discussed. The design of these 

controllers is presented. 

 

 
 
 
 
 
 
 

𝐺 

𝑋 

𝐼 

𝑞 𝑠𝑡𝑜1

𝑞 𝑠𝑡𝑜2

𝐺 𝑔𝑢𝑡  
 
 
 
 
 
 

=

 
 
 
 
 
 
 −𝑝1 1 − 𝐺𝑏 −𝑆𝑖𝐺 0 0 0

𝑓𝑘𝑎𝑏𝑠

𝑉𝑔

0 −𝑝2 −𝑝2 0 0 0
0 0 −𝑘𝑒 0 0 0
0 0 0 −𝑘𝑒𝑚𝑝 0 0

0 0 0 𝑘𝑒𝑚𝑝 −𝑘𝑒𝑚𝑝 0

0 0 0 0 𝑘𝑒𝑚𝑝 −𝑘𝑎𝑏𝑠  
 
 
 
 
 
 

 
 
 
 
 
 

𝐺
𝑋
𝐼

𝑞𝑠𝑡𝑜1

𝑞𝑠𝑡𝑜2

𝐺𝑔𝑢𝑡  
 
 
 
 
 

+

 
 
 
 
 
 
 0

𝑓

𝑉𝑔

0 0
1 0
1 0
0 0
0 0 

 
 
 
 
 
 

 𝐼 𝑢         (14)
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𝑦 =  1 0 0 0 0 0 

 
 
 
 
 
 

𝐺
𝑋
𝐼

𝑞𝑠𝑡𝑜1

𝑞𝑠𝑡𝑜2

𝐺𝑔𝑢𝑡  
 
 
 
 
 

+ [0 0]  
𝐼
𝑢
               (15) 

5.1 PID Controller  

The PID controllers contains three parameters: the 

proportional, the integral, and the derivative parameters. 

These parameters manipulate the system error in typical 

manners. These parameters can be used individually or 

collectively and in different combination. PID can be 

connected in series or parallel, this forms the structure of the 

PID controller [20] and is described as: 

𝑢 𝑡 = 𝐾𝑐  𝑒 𝑡 + 
1

𝑇𝑖
 𝑒 𝑡 𝑑𝑡
𝑡

0
+ 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
               (16) 

Where𝐾𝑐  is the controller gain, 𝑇𝑖  is the integral time and 𝑇𝑑  

is the derivative time. These parameters can be related to the 

PID parameters as 

𝐾𝑝 = 𝐾𝑐                   (17) 

𝐾𝑖 =  
𝐾𝑐

𝑇𝑖
                  (18) 

𝐾𝑑 = 𝐾𝑐𝑇𝑑                  (19) 

Hence, each parameter can be tuned independently of the 

other and their combined effect can be summed up to produce 

the total controller action on the plant. 

5.2 Sliding Mode Control  

One of the major problems every control engineer face is the 

inability to accurately model the plant – there is always a 

discrepancy between the actual plant and the way it is 

modelled for controller design. The factors that contribute to 

these discrepancies include inaccurate plant parameter 

estimation, unmodelled plant dynamics and unknown external 

disturbances. Typically, all these factors can be accounted for 

by employing robust control methods. One of such robust 

control methodin the literature is the Sliding Mode Control 

(SMC) technique. 

SMC is a nonlinear robust control technique which shows 

remarkable properties of accuracy, robustness to disturbances, 

easy of tuning, and ease of implementation. It is designed to 

drive a plant’s state onto a particular surface in the state space 

called sliding surface where the error basically slides on the 

𝑒 = 0 surface. Once the states are driven to this surface, then 

the control action is such as to keep the states on the close 

neighbourhood of the sliding surface.  

Recall that the plant here is a biological system representing 

the glucose regulation. This system is subjected to significant 

parameter uncertainties which varies from individual to 

individual. Furthermore, modelling of this system is still an 

active research area which means, the plant is subjected to 

substantial unmodelled plant dynamics. Lastly, the insulin 

action, the gastrointestinal action and the effects of insulin on 

the remote compartments are not linear. These show that the 

plant under consideration is similar to the ones SMC is 

particularly designed for.  

SMC controller design involves the design of a sliding surface 

that satisfies control objective and the selection of a control 

law that ensures the switching surface is attractive to the 

system states, hence keeping the states close to the sliding 

surface.The sliding surface is the surface where perfect 

tracking is achieved;where 𝑒 = 0. However, this is a function 

of the error and a number of its derivatives. That is: 

𝜎 = 𝜎(𝑒, 𝑒 , 𝑒 , … , 𝑒𝑘)                (20) 

Where 𝜎 is called the sliding surface.  

Equation (20) means that 𝜎 must be vanishing to give rise to a 

stable differential equation which forces error, 𝑒 to zero. 

Typically, according to Shtessel et al.[21],  𝜎 can be the sum 

of the error and its derivatives. 𝜎 is given by either equation 

(21) or equation (22) or generally as in equation (23). 

𝜎 =  𝑒 + 𝑐0𝑒                 (21) 

𝜎 =  𝑒 + 𝑐1𝑒 + 𝑐0𝑒                                (22) 

𝜎 = 𝑒𝑘 +  𝑐𝑖𝑒
𝑖𝑘−1

𝑖=0                 (23) 

Where 𝑘 is the number of derivatives and 𝑐𝑖  is the coefficient 

of the derivatives. 

Geometrically, 𝜎 = 0 corresponds to the surface of minimum 

error space. Hence, the state space, system specifications and 

the control law are forced onto this sliding surface. In this 

work, the sliding surface is selected to satisfy 

𝜎 =   
𝑑

𝑑𝑡
+ 𝑝 

𝑘
𝑒                 (24) 

Where 𝑝 is a positive parameter selected to reduce the system 

dynamic when in the sliding mode; its effect is not as 

significant compared to 𝑘 which specifies the relative degree 

of flexibility of the surface. 𝑘 = 2which defines a quadratic 

surface is selected.Hence, equation (21) becomes 

𝜎 = 𝑒 + 2𝑝𝑒 + 𝑝2𝑒                               (25) 

This surface presents a convex surface, with a unique 

minimum point. The next phase is to design a control law that 

drives and keep the system states on this sliding surface. 

The control law is designed such that 𝜎 is driven to zero in 

finite time by the control input. The control law is based on 

state feedback given as: 

𝑢 = −𝐾𝜒                                 (26) 

where 𝜒 is the state vector on the sliding surface. Hence, the 

control law can be re-written as: 

𝑢 = −𝑈𝑠𝑖𝑔𝑛(𝜎)                 (27) 

However, since the control signal is discontinuous along the 

sliding surface at 𝜎 =  0, 𝜎 is replaced with a sign function 

and the control equation is derived as shown in equation (27). 

Where 

𝑢 =   
−𝑈          𝜎 > 0

𝑈             𝜎 < 0
                 (28) 

U is the control gain which is large enough to drive the error 

to zero.The chattering effect associated with SMC can be 

reduced by replacing the sign function in equation (27) with a 

sigmoid function as shown in equation (29) or by using the 

super twisting SMC algorithm presented as shown in equation 

(30). 

𝑢 =  − 𝑈𝑠𝑎𝑡 𝜎 =  
𝜎

 𝜎 + 𝜀
                               (29) 

𝑢 =  − 𝜆  𝜎 𝑠𝑖𝑔𝑛 𝜎 + 𝑣                (30) 

Where 

𝑣 =  −𝑊𝑠𝑖𝑔𝑛 𝜎                  (31) 

𝜆 =   𝑈                   (32) 

𝑊 =  1.1𝑈                 (33) 
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5.3 Model Predictive Control  
The design objective of MPC presented here is similar to all 

other controllers considered in this project work which is to 

perform an accurate reference tracking. To do this, MPC is 

used to compute the trajectory of the future manipulated 

variable (or control action), 𝑢 is to optimize the future 

behaviour of the plant 𝑦 within a limited time window. 

The optimization objective is to find the best control 

parameter vector 𝛿𝑈 that brings the predicted output as close 

to the desired set-point as possible within a prediction 

horizon. Given the set-point signal 𝑟(𝑘𝑖) at sample time 𝑘𝑖  
within a prediction horizon, the vector of set-point is defined 

as 

𝑅𝑠 =

 
 
 
 
 
𝑟 𝑘𝑖 + 1  𝑘𝑖 

𝑇

𝑟 𝑘𝑖 + 2  𝑘𝑖 
𝑇

⋮

𝑟 𝑘𝑖 + 𝑁𝑝  𝑘𝑖 
𝑇
 
 
 
 
 

.                (34) 

Then the optimization cost function can be defined to reflect 

the control objective as 

𝐽 =  𝑅𝑆 − 𝑌 𝑇 𝑅𝑆 − 𝑌 + 𝛿𝑈𝑇𝑅 𝛿𝑈               (35) 

The first term is the quadratic error function linked to the 

objective of minimizing the error between the predicted 

output and the desired set-point while the second term is a 

penalty function that reflects the constrains placed on the size 

of 𝛿𝑈 where 𝑅  is a diagonal matrix used to tune the penalty 

function. 𝑌 is given as: 

𝑌 = Ψ𝑥 𝑘𝑖 + Φ𝛿𝑈                (36) 

Where 

Ψ =

 
 
 
 
 
𝐶𝐴
𝐶𝐴2

𝐶𝐴3

⋮
𝐶𝐴𝑁𝑝  

 
 
 
 

                 (37) 

and 

Φ =

 
 
 
 
 

𝐶𝐵 0 0 … 0
𝐶𝐴𝐵 𝐶𝐵 0 … 0
𝐶𝐴2𝐵 𝐶𝐴𝐵 𝐶𝐵 … 0

⋮ ⋮ ⋮ ⋱ ⋮
𝐶𝐴𝑁𝑝−1𝐵 𝐶𝐴𝑁𝑝−2 𝐵 𝐶𝐴𝑁𝑝−3𝐵 … 𝐶𝐴𝑁𝑝−𝑁𝑐−1𝐵 

 
 
 
 

    (38) 

 

The optimal 𝛿𝑈 that minimizes the cost function 𝐽 is 

estimated as follows. First, substitute for 𝑌 in equation (34) to 

give  𝐽 as: 

𝐽 =  𝑅𝑆 −Ψ𝑥 𝑘𝑖  
𝑇
 𝑅𝑆 −Ψ𝑥 𝑘𝑖   

−2𝛿𝑈𝑇Φ𝑇 𝑅𝑆 −Ψ𝑥 𝑘𝑖                 (39) 

+𝛿𝑈𝑇 Φ𝑇Φ + 𝑅  𝛿𝑈   

Taking the partial derivative of cost function 𝐽 with respect to 

control vector 𝛿𝑈 yields  

𝑈
𝜕𝐽

𝜕𝛿𝑈
= −2Φ𝑇 𝑅𝑆 −Ψ𝑥 𝑘𝑖  + 2 Φ𝑇Φ + 𝑅  𝛿𝑈            (40) 

The necessary condition for minimal 𝐽 is obtained at  
𝜕𝐽

𝜕𝛿𝑈
= 0 

from which 𝛿𝑈 can be solvedis given as: 

𝛿𝑈 =  Φ𝑇Φ + 𝑅  −1Φ𝑇 𝑅𝑆 −Ψ𝑥 𝑘𝑖                                (41) 

 Φ𝑇Φ + 𝑅  −1 = 𝓗 is called the Hessian matrix in most 

optimization textbooks. Hence,  

𝛿𝑈 = 𝓗Φ𝑇 𝑅𝑆 −Ψ𝑥 𝑘𝑖                  (42) 

This gives the optimal 𝛿𝑈 that minimizes the cost function 𝐽 
provided that the Hessian matrix 𝓗exists. MPC heavily 

depends on state variable 𝑥(𝑘𝑖) sampled at instant 𝑘𝑖  which 

can be measured or estimated via a state observer. The state 

estimation is constructed such that the error is used to improve 

the estimate at every time instant as in equation (43). 

𝑥  𝑘𝑖 + 1 = 𝐴𝑥  𝑘𝑖 + 𝐵𝛿𝑢 𝑘𝑖 + 𝜅 𝑦 𝑘𝑖 − 𝐶𝑥  𝑘𝑖       (43) 

The term 𝜅 𝑦 𝑘𝑖 − 𝐶𝑥  𝑘𝑖   is the correction term where 𝜅 is 

the observer gain which can be calculated recursively using 

Kalman filter. If the iteration index is 𝑖, 𝑤𝑕𝑒𝑟𝑒 𝑖 = 0, 1, 2, …, 
the observer gain is given as 

𝜅 = 𝐴𝑃 𝑖 𝐶𝑇 Σ + 𝐶𝑃 𝑖 𝐶𝑇 −1               (44) 

𝑃 𝑖 + 1 = 𝐴 𝑃 𝑖 − 𝑃 𝑖 𝐶𝑇 Σ + 𝐶𝑃 𝑖 𝐶𝑇 −1𝐶𝑃(𝑖) 𝐴𝑇 + Ω
                  (45) 

Where Σ and Ω are the covariance matrices of the noise signal 

𝜂(𝑘) and disturbance 𝜉 (𝑘). 

Since our plant is completely observable, detectable and 

stabilizable, then the designed Kalman Filter satisfies the 

Algebraic Riccati-Equation:  

𝑃 ∞ = Ω + 𝐴 𝑃 ∞ 
− 𝑃 ∞ 𝐶𝑇 Σ + 𝑃 ∞ 𝐶𝑇 −1𝐶𝑃 ∞  𝐴𝑇  

                  (46) 

and  

𝜅(∞) = 𝐴𝑃 ∞ 𝐶𝑇 Σ + 𝐶𝑃 ∞ 𝐶𝑇 −1               (47) 

The eigenvalues of 𝐴 − 𝜅 ∞ 𝐶 are inside the unit circle. They 

are stable.  

Using the receding horizon control strategy, the 

implementation algorithm is presented in Algorithm 1. 

ALGORITHM 1: MPC IMPLEMENTATION  

 Input: control input 𝑢(𝑡 + 𝑘) 

 Output: predictive output 𝑦  𝑡 + 1  
1 Initialise the control system 

𝛿𝑢 0 ← 0 

𝑥  0 ← 0 

𝑦 0 ← 0 

2 Calculate the state estimate 𝑥 (𝑘 + 1). 

3 Calculate the control signal  

𝑢𝑝 𝑘 + 1 = 𝑢 + 𝛿𝑢(𝑘) 

Where 𝑢  is the measured input and 𝑢𝑝  is the  

control input  

4 Apply the receding horizon control law by 

 applying only the current control action 

𝑢𝑝(1: 𝑝) to the process. 

5 Calculate 𝛿𝑈 

6 Calculate 𝛿𝑢 𝑘 + 1 = 𝛿𝑈 1: 𝑝  i.e.using 

 receding control scheme 

7 Estimate the error and update 𝑦(𝑘 + 1) 

8 Gotostep 2 

9 end 

 

6. RESULTS AND DISCUSSION OF 

RESULTS 
The mathematical model and controller design presented in 

the previous sectionswere implemented in MATLAB and 

Simulink. Simulink was used for the implementation of the 

mathematical model and controllers while MATLAB was 

used for backend functions, result generation, and plotting of 

graphs. The simulation results for various controllers are 

presented and compared in this section. 
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The PID controller was deployed to the virtual patient and 

simulated in a 24-hours scenario, the result is shown in Figure 

3. The PID controller successfully regulated the blood glucose 

within the save region despite the heavy meal intake and 

strenuous exercise but at the expense of high dose of insulin 

injection at the moment of meal intake.  

 
Figure 3: Simulation Result of the PID controller on the 

Virtual Patient 

The SMC controller first identified the sliding mode of a 

system and then chose its control action so as to keep the 

system’s state within the sliding region. The result of the 

SMC controller on the virtual patient is presented in Figure 4. 

While SMC does not stay on the 80g/mol set-point line like 

the PID, it minimised the glucose swing during the 

postprandial season. This was beautifully executed with 

minimal use of insulin injection compared to the PID. 

 
Figure 4: Simulation Result of the SMC controller on the 

Virtual Patient 

The result of the MPC controller on the virtual patient over 

the 24-hours simulation is presented in Figure 5. The MPC 

controller was able to manage the postprandial disturbances 

with very little glucose swing. The MPC successfully 

achieved normoglycaemia, although with a higher amount of 

insulin injection compared to the SMC. 

The three controllers are comparable in the way they handled 

the amount of insulin needed to achieve normoglycaemia and 

the glucose swing during the postprandial seasons. 

 
Figure 5: Simulation Result of MPC controller on the 

Virtual Patient 

Figure 6 shows the comparison of glucose swing during the 

postprandial seasons of 8 am, 2pm, and 8pm when meals were 

served and when heavy work is done. As shown in Figure 6, 

the MPC achieved the minimal swing followed by the SMC 

with the PID controller starving the patient of glucose before 

asymptoticallysettling around the set-point. The MPC is quite 

stable to postprandial disturbances, due to the way it handles 

insulin injection as shown in Figure 7. 

 
Figure 6: Comparison of Glucose swing during the 

postprandial seasons 

Figure 7 shows the comparison of how each controller 

managed the amount of insulin injected into the virtual 

patients. This carries the cost implication of achieving the 

normoglycaemic glucose level. From Figure 5,the SMC 

injected 5-6U/min every 15min, this resulted in a reduced 

amount of injection needed to cancel out the postprandial 

effect.Both PID and MPC, on the other hand, injected the 3 

U/min basal insulin and a large amount of insulin to cancel 

out the postprandial effect.At some point in the simulation, 

both the PID and the MPC could inject more than 10U/min 

insulin.However, this effect was reduced by enforcing a hard 

constrain on the controllers. Lastly, while the MPC gave a 

high insulin injection once, the PID persisted on this high 

dose for a considerable time (typically 30min). This resulted 

in the glucose level shooting below the desired set-point. 
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Figure 7: Comparison of the amount of insulin injected to 

the virtual patient to achieve normal glucose range 

The results of the three popular controller designs have been 

presented. Intuitive results can be gleaned from the graphical 

illustration of the simulation which can be beneficial to 

Control Engineers, Biomedical Engineers, Medical 

practitioners, and the patients’ caregivers. 

7. CONCLUSION 
Three controllers were compared, each with different actions 

and desired responses. The PID is a reactive controller which 

takes sufficient time to reach the desired set-point but could 

keep the patient within the normoglycaemic range. The MPC 

achieved the minimal postprandial glucose swing but with 

high insulin action. However, the SMC took a different 

approach, it cleverly raised the basal insulin dose which 

minimized the amount of insulin needed to keep the patient 

within the normoglycaemic region during postprandial 

glucose spikes. 

In recent times, artificial intelligence-based controllers are 

being introduced to blood glucose regulation such as 

reinforcement learning (RL) algorithm. In future research, the 

testbed can be used to compare the RL controller with the 

PID, the MPC and the SMC.  
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