
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 1, April 2023

14

Improving MSAProbs Algorithm performance and

Parallel Computing using GPU

Sally Zaki El-hadary
Faculty of Computer and

Information

Menofya University

Sara A. Shehab
Faculty of computers and artificial

intelligence
Sadat City

Hatem Said Ahmed
Faculty of Computer and

Information
Menofya University

ABSTRACT

MSA Probs is a parallel algorithm developed to align multiple

sequence alignment using a central processing unit (CPU).

Whereas the CPU has some limitations, such as the inability to

parallelize tasks in the processor (latency-oriented). To

overcome these limitations, this paper proposes an improved

version of MSA Probs that is compatible with a graphical

Processing Unit (GPU). This idea helps in enhancing the

performance of our algorithm (MSAprobs). To parallelize the

sequential algorithm, Compute Unified Device Architecture

(CUDA) or OpenCL is commonly used on GPUs. The

NIVIDIA API is used to investigate the GPU's computing

power. The results of using CPU only in MSAprobs versus the

CPU and GPU are compared using two data sets from the Bali

Base and OX Bench. The evaluation of the CPU and GPU is

done using Threads 1,2 and 4. The results showed that by

combining CPU and GPU, performance is improved and

execution time is reduced.

Keywords

Multiple sequence alignment, parallel processing, Latency

Oriented, GPU, CPU

1. INTRODUCTION
MSA, or multiple sequence alignment, is crucial for

bioinformatics in general. It helps a lot in bioinformatics

studies. MSA has evolved into one of the essential tools for

bioinformatics. It comes as a first step in the analysis that is

crucial in many fields, including the explanation of the life tree,

epidemiology and virulence investigations, medication

development, and human genetics. the results of the MSA

provide biologists with helpful data on a variety of topics.

Sequence alignments in general are important in computational

biology. For instance which parts of a gene are mutable can be

observed and learn about the evolution of the organism (or its

derived protein). Allowing for the substitution of one residue

for another without changing function allows us to investigate

homologous genes, find paralogs, and find orthologous genes

that are evolutionarily related [10].. Multiple Sequence

Alignment (MSA) methods are a group of computational

techniques that, under specific circumstances, align sequences

that are related to evolution while taking into consideration

events like mutations, insertions, deletions, and rearrangements

[11]. MSA algorithms are essentially algorithms designed to

find patterns in DNA, RNA, and protein sequences. The precise

approach to achieve optimal pair-wise alignment, which is used

to locate MSAs, is dynamic programming (DP).

There are a number of heuristic techniques, Consequently,

methods for progressive alignment, such as ClustalW [5], T-

Coffee (Tree-based Consistency Objective Function for

Alignment Evaluation) [6], MAFFT (Multiple Alignment using

Fast Fourier Transform) [7], DIALIGN ((DNA or protein)

alignment program) [8], and PRALINE (Profile Alignment)

[9], have been suggested to speed up the generation of MSAs.

However, the MSAs calculated by these methods do not meet

the demands of biologists. Being MSAProbs based-on pair

Hidden Markov Models make it from the most accurate MSA

tool. Input of MSAProbs is molecular data (big data) that means

that it takes long-time in running, so distance computation is

one of the disadvantages of MSAProbs, it necessitates fast

computation, here in our paper an idea of mixing the power of

MSAProbs(accuracy)with the mechanism of GPU

(parallelism) is cleared here.The contribution is to overcome

the poor performance due to program latency.

This paper is organized as follows:- Section 2 Related work,

Section 3 describes the Proposed Work, Section 4 discuss the

experimental results and the paper is concluded in section 5.

2. RELATED WORK
Dynamic programming is the base of many multiple sequence

alignment schemes. Using this approach, the problem at hand

is divided into overlapping subproblems that are resolved

separately before being combined to offer a total of two

solutions. Multiple sequence alignments make the assumption

that the matched sequences are homologous [1]. Despite the

fact that there are several algorithms for the process of multiple

sequence alignment, the accurate and fast calculation of very

precise multiple alignments are still a challenge. Despite being

the Clustal and T-Coffee (Tree-Based Consistency Objective

Function for Alignment Evaluation) methods have historically

been the most extensively utilised algorithm for multiple

sequence alignments have also been shown to be slow [4].

According to CLUSTAL algorithm, if

sequences share only one region of homology; this region is

aligned and the rest of the sequences is ignored. Although the

Mafft technique, which has gained popularity recently, uses an

iterative refinement method to provide a quick alignment

algorithm, it has popularity at subset alignments only(semi-

local). The fuel-efficient progressive alignment method

MUSCLE (Multiple Sequence Comparison by Log

Expectation) is used to align a large number of nucleic acid and

protein sequences not the small. The well-known technique

Probcons provides sequence alignment using Hidden Markov

Models (HMMs Probalign), which employs a partition function

strategy. PRANK is a phylogeny-aware alignment technique

that distinguishes between alignment spaces created by insert

and delete operations using phylogenetic knowledge. In order

to find conserved functional areas in sequences that share only

local homologies but are otherwise unrelated, DIALIGN

algorithms construct multiple alignments from local pairwise

sequence similarities. PicXAA, anon progressive, greedy

technique that emphasizes local similarities, employs regions

of high local similarity to create the initial alignment that may

then be repeatedly refined. Although there are a lot of

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 1, April 2023

15

algorithms for multiple sequence alignments, each of them has

an advantage and teers of disadvantages, the final algorithm

should be Solvable, Scalable, Accessible, Independent and

meaningful algorithm, ideal algorithm, and that is so difficult.

To find this algorithm we can combine with a parallelized MSA

algorithm for protein sequences based on progressive

alignment such as MSAProbs with CUDA (Parallel Processing

GPU technique) and this is the proposed algorithm. For use on

multicore CPUs, the progressive alignment algorithm

MSAProbs has been multithreaded and parallelized. A

progressive alignment method for computing multiple protein

sequence alignments is called MSAProbs. It functions as

follows:

1. Using a pair-HMM and a partition function to compute all

pairwise posterior probability matrices.

2. Using the posterior probability matrices to compute a

pairwise distance matrix.

3. Using the pairwise distance matrix to build a guide tree and

determine the sequence weights.

4. Giving each pairwise posterior probability matrix a

weighted probabilistic consistency transformation.

utilising the altered posterior probability matrices to calculate a

progressive alignment along the guide tree. As a stage's post-

processing step, an additional iterative refinement is carried out

to further increase alignment precision. The algorithm that has

been mentioned up is the traditional one. The new approach

rely on combining traditional algorithm with CUDA.so lets

answer the question (what CUDA?).

2.1 CUDA overview
(Compute Unified Device Architecture) is what CUDA stands

for. It can be described as an NVIDIA parallel computer

architecture. Being the use of GPUs difficult it was necessary

to use CUDA for non-graphics applications. CUDA support

synchronization, atomic operations, and eased memory access

by revealing a general- purpose parallel programming

paradigm in a multithreaded system (see Fig.1).

Fig 1: CUDA Workflow that illustrate the process of

CUDA

3. Proposed Work
This paper proposed a Parallel version of MSAProbs algorithm,

this version depends on merging traditional MSAProbs

algorithm with GPU. The proposed algorithm divides the data

sets between available cores using CDUA. The goal is to

enhance the weak point of traditional MSAProbs algorithm

(execution time) with Maintaining the rest of the features

(including performance).

The CPU side will allocate data to the GPU after reading the

input sequence which will be in fasta formate and it can be got

from benchmark dataset tables (OX-bench and BaliBase). The

alignment of MSA Sequences using a hidden Markov model

which employs a partition function strategy and this make it

very accurate, now is the time for guide tree Now Data will be

copied from the GPU side to the CPU for printing the outcome.

The alignment will be printed to the file if all data has been

computed, which may be verified at the end. See fig2 for the

proposed work:

Fig2: Proposed Work

3.1 Model in Programming Mode
It is a single program multiple-data, and it is programming

model that the GPU follow in which many items are handled

concurrently by the same code. Elements of processing first

read data(threads) from a shared global memory (the "pool"

process) then be written back to (The "scatter" procedure). The

global shared memory is divided into three random locations.

This is the same code that the SIMD execution model's threads

use. Co-processing mode is considered as execution mood of

CUDA programs. There are two sections to the application:

Sequential parts and Compute-intensive, parallel parts.

Execution of application’s Sequential parts can be done on the

CPU (host) that is in charge of memory transfers, data

management, and GPU execution setup. Implementation of

kernel is done by SMs (streaming multiprocessors) and it has

many light-weight threads that are running on the processing

units. Because this thread's execution is organized, no matter

how many parallel processors are used, the kernel scales well.

Since GPUs have efficient thread management, programmers

can expose much more parallelism than what is possible with

hardware execution resources, at little to no cost.

Any size GPU with increased parallelism on GPUs with

increased processor core and thread counts can be used to

execute compiled CUDA program [5]. How much threads in a

block, and how many grid blocks by altering the kernel's

execution settings should be known.

Each block has a distinct identifier within a grid, and each

thread has a distinct thread index within the block. Through

special, built-in variables, threads can access those identifiers

and dimensionality. As a rule, for processing multidimensional

data, to simplify memory addressing and to branch decisions,

every thread uses its own indices.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 1, April 2023

16

3.2 Memory Hierarchy
To achieve fast, parallel execution CUDA offers specific

memory structure. Threads can access registers, local memory,

shared memory, constant memory, texture memory, and global

memory. All threads have access to sluggish, global device

memory (DRAM). Data could be temporarily stored and reused

in smaller memory Data could be temporarily stored and reused

in smaller memory.as access to global memory is slow. The

cost of accessing local memory is equal to that of accessing

global memory [7]per- block shared memory is where block's

threads could share data from. It is the responsibility of the

programmer to move data into and out of the shared memory.

4. EXPERMINTAL RESULTS
Although writing a valid CUDA application that runs on any

CUDA device is not difficult, it is true that performance varies

significantly depending on the resource limitations of the

specific device architecture.

4.1 Thread Scheduling and Execution

Thread blocks is what to call. Threads are executed in thread

batches and that is done in a logic manner. Physically, on

another side, wraps indicate to every thread block that runs on

an SM in blocks of 32 threads. Blocks of thread can use their

indices to partition it into wraps. Consecutive threads want it to

remain in the same warp can be considered. Because the threads

in a block can be executed in any sequence relative to one

another, synchronization may be necessary to prevent race

situations. global memory accesses and floating- point

operations is a long latency operation to reduce latency, we can

employ warps as an execution optimization method and this

is done by all threads when selected for execution. when every

thread in a warp takes the same route, SIMD style (Single

instruction, multiple data) of execution works well. However,

when threads within a warp diverge, there, a problem arises.

since threads are allowed to follow different execution paths,

all threads in a warp have their respective control pathways

executed in a sequential manner and thus performance penalty

what the programmer should do. Compared to using the

hierarchy's other memory, global memory access is slow. We

should consider that when GPU applications process

enormous amounts of data, careful global memory accesses

must be made to utilize the maximum bandwidth available on

the GPUs. GPU memory is organized in banks to achieve high

bandwidth utilization. Number of banks on NVIDIA Tesla

GPU architecture is 16. one memory request per cycle can be

served by each bank. Consecutive memory locations to allow

simultaneous accesses should be locating. Peak bandwidth

utilization, when we access global memory can be achieved.

The next step is to combine memory accesses into a single

memory transaction, enabling fast data delivery and memory

coalescing refers to this. How can we set up memory accesses?

They don't interfere with those helpful patterns? This query

should be addressed by programmers.

4.2 Shared Memory
achieving The GPUs' great performance requires several

calculations in between two global memories are being

accessed. Threads cooperation between blocks in shared

memory, makes reuse of data is better and helps in improving

arithmetic intensity also. Ordinarily data set should be

partitioned into subsets to fit in the shared memory. Subsets are

loaded by thread block computation on the elements after

moving data from shared memory to the global memory.

Temporary data in shared memory can be stored.

Results from shared memory to global memory are written by

thread block. In order to take advantage of memory coalescing,

data should be loaded and stored coherently.

4.3 Resource Limitation
Every streaming multiprocessor in the GPU has a limited

number of execution resources, such as shared memory,

registers, thread block slots, and thread slots. These all threads

should be dynamically partitioned among threads during the

execution. You have two options first, you can handle fewer

threads that use plenty of registers, Alternatively, several

threads that just need a few registers. Although dynamic

resource partitioning gives programmers and compilers more

flexibility, it results in underutilization of resources, which

lowers performance.

4.4 Streams
Through the use of the kernel, massive data parallelism also

offers another way for tasks to overlap. The principle of

streams, which is revealed by CUDA, presents a form of task-

parallelism between the CPU and the GPU [8]. CPU and GPU

memory copies and kernel execution are concurrent and that

can help in accelerating GPU applications.This can be

considered one of the tasks of streams [8] and [9].

Steps of MSAProbs:

1. calculate all pairwise posterior probability matrices and this

is done by using a partition function and a pair-HMM

together

2. Use pairwise posterior probability matrices to calculate a

pairwise sequence distance matrix from

3. From the pairwise sequence distance matrix, create a guide

tree.

4. Perform aweighted pairwise posterior probability matrices

are transformed using the probabilistic consistency

method.;

5. Using the altered posterior probability matrices, a profile-

profile pro-gressive global alignment along the guide tree

is computed.

4.5 Platform

The tests that were executed are run on a platform with a

heterogeneous CPU and GPU and 4 GB of RAM, an 64-bit

operating system,x-64 based processor and an NVIDIA

GeForce GT 525M graphic card. Windows 10 pro is installed

and CUDA Toolkit CUDA 11.6 is used to build the software.

There are two cores in the CPU. The precise requirements for

an NVIDIA GeForce GT 525M is shown in Table 1.

Table 1 Specification of NVIDIA GetForce

cuda version 11.6

GPU Compute

Capability
2.1

cuda cores 96

gpu clock rate 600 MHz

Processor clock: 1200 MHz

Total amount of global

memory
1536 MB

memory bandwidth 28.8 GB/s

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 1, April 2023

17

Open CL support: 1.1

OpenGL support: 4.2

Pixel fill rate: 2.4

Gigapixels/s

Texture fill rate: 9.6

Gigatexels/s

Maximum digital

resolution:

2560 x 1600

Maximum VGA

resolution:

536

4.6 Dataset Used
In this paper two main data set used Bali-Base data set with

roughly more than 100 sequence. Ox-bench are also used with

maximum number of sequences.

A. Impact of MSA-Prob Running Time Using CPU only

and CPU+GPU (Bali-Base Data Set):-

Table 2 lists the execution time of the MSA-Probs package over

thread 1,2 Using CPU Only for Bali-Base and thread 1,2 and 4

using CPU+GPU.

Table 2 Execution Time of MSA-probs using CPU only

and CPU+GPU

 CPU+GPU CPU Only

Bali-

Base

Thread

1

Thread

2

Thread

4

Thread

1

Thread

2

BBS11

018
4322.67 4441.25 4794.32 5486.63 5877.67

BBS12

034
174.246 190.258 215.485 273.87 413.27

BB200

04
178619 180997 186576 207140 222706

BB300

13
447231 456704 468439 530344 546485

BB400

02
141271 144007 149203 166232 181839

BB500

12
154421 157322 163696 182102 193533

B. Impact of MSA-Prob Running Time Using CPU only

and CPU+GPU (OX_BENCH Data Set):-

The graph of these result over the Bali-base and OX- bench

Data sets shown in fig.3

5. CONCLUSION

At MSAprobs algorithm we find that the pairwise posterior

probability matrix computation and the weighted probabilistic

consistency transformation is the most time-consuming parts.

In this case, we recommend the use of multiple threads on

multi-core CPUs to accelerate the execution, considering the

relatively good parallel scalability of our program. This paper

proposed a parallel version of MSAProbs Algorithm using

GPU computing technique especially CUDA. In the past

MSAprobs was depend on CPU only in this paper the MSA-

Probs is evaluated using both CPU and GPU. In MSA-CUDA

, a dynamic scheduling parallelization has been proposed to

parallelize the profile–profile progressive alignment stage and

that result in improvement in speed.We intend to create an out-

of-core pairwise probability.

6. REFERENCES
[1] Yongchao Liu 1, Bertil Schmidt, Douglas L

Maskell,”MSAProbs: multiple sequence alignment based

on pair hidden Markov models and partition function

posterior probabilities.n”,2010.

[2] Budd, Aidan , "Multiple sequence alignment exercises and

demonstrations". European Molecular Biology

Laboratory. Archived from the original on 5 March 2012.

[3] Yongchao Liu and Bertil Schmidt ,”Multiple Protein

Sequence Alignment with MSAProbs”,2014.

[4] Silberstein, Mark; Schuster, Assaf; Geiger, Dan; Patney,

Anjul; Owens, John D. , "Efficient computation of sum-

products on GPUs through software-managed cache"

,2008.

[5] Nickolls, J., Dally, W.J., GPU Computing era“, IEEE

Micro, vol. 30, No. 2, 2010., pp. 56–69.

[6] Abi-Chahla, Fedy , "Nvidia's CUDA: The End of the

CPU?". Tom's Hardware. Retrieved May 17, 2015.

[7] “Nvidia CUDA C Best Practices Guide“, version 4.0,

NVIDIA Corporaton, 2011.

[8] Sanders, J., Kandrot, E.,”CUDA by Example: An

ntroduction to General-Purpose GPU Programming“,

Addison-Wesley, 2010.

[9] “ NVIDIA CUDA C Programming Guide“, v rsion 4.0,

MSA-Probs Balibase

200000

150000

100000

50000

0

_10s10 _10t10 _10t11 _10t13 _12s19 _12s45

Thread1

Thread4

Thread2

Thread1 CPU

only
ThreadCPU
only

https://pubmed.ncbi.nlm.nih.gov/?term=Liu%2BY&cauthor_id=20576627
https://pubmed.ncbi.nlm.nih.gov/20576627/#affiliation-1
https://pubmed.ncbi.nlm.nih.gov/?term=Schmidt%2BB&cauthor_id=20576627
https://pubmed.ncbi.nlm.nih.gov/?term=Maskell%2BDL&cauthor_id=20576627
https://pubmed.ncbi.nlm.nih.gov/?term=Maskell%2BDL&cauthor_id=20576627
http://www.embl.de/~seqanal/courses/commonCourseContent/commonMsaExercises.html
https://en.wikipedia.org/wiki/Assaf_Schuster
https://escholarship.org/content/qt8js4v3f7/qt8js4v3f7.pdf?t=ptt3te
https://escholarship.org/content/qt8js4v3f7/qt8js4v3f7.pdf?t=ptt3te
https://escholarship.org/content/qt8js4v3f7/qt8js4v3f7.pdf?t=ptt3te
https://escholarship.org/content/qt8js4v3f7/qt8js4v3f7.pdf?t=ptt3te

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 1, April 2023

18

NVIDIA Corporaton, 2011.

[10] An Overview of Multiple Sequence Alignment Systems

Article February 2009 Fahad Saeed & Ashfaq A.

Khokhar.

[11] Multiple sequence alignment modeling: methods and

applications November 2015 Briefings in

Bioinformatics 2015(6) Carsten Kemena , Jia-Ming

Chang, Cedrik Magis&Maria Chatzou

IJCATM : www.ijcaonline.org

https://www.researchgate.net/journal/Briefings-in-Bioinformatics-1477-4054
https://www.researchgate.net/journal/Briefings-in-Bioinformatics-1477-4054
https://www.researchgate.net/scientific-contributions/Carsten-Kemena-15851283
https://www.researchgate.net/profile/Jia-Ming-Chang-2
https://www.researchgate.net/profile/Jia-Ming-Chang-2
https://www.researchgate.net/profile/Cedrik-Magis
https://www.researchgate.net/scientific-contributions/Maria-Chatzou-2050473859

