
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 10, May 2023

35

Exploring Visualization and Development: Python vs R

in a Comparative Analysis

Deep Karan Singh
India Meteorological Department, MoES

Department of Computer Science & Systems
Engineering, Andhra University, Visakhapatnam

Nisha Rawat
Meteorological Office

INS Dega
Visakhapatnam

ABSTRACT

Visualization development has become increasingly important

in today's data-driven world. As more and more data are

generated across a wide range of industries, effective

visualization has become essential for understanding and

communicating insights and trends. Python and R are two of

the most popular programming languages for data analysis and

visualization, each with their own strengths and weaknesses

when it comes to developing visualizations. This piece of work

focuses on developing map visualizations using both Python

and R, with the aim of creating an aesthetically appealing

visualization for observations recorded by a Doppler Weather

Radar (DWR) and disseminating warnings based on those

recorded observations via color-coded maps. DWR provides

critical weather information services to stakeholders and plays

a crucial role in severe weather events, such as thunderstorms

or cyclones. The reflectivity information from a DWR is

utilized in this attempt to create color-coded maps, with users

able to lock the severity level obtained from the information of

the DWR and allocate it to a specific geographical district of

the state of Andhra Pradesh in India, through an interactive

graphical user interface (GUI). The software developed using

Python and R has been executed and tested at the Doppler

Weather Radar station at Visakhapatnam, where alerts are

being issued for further dissemination of warnings. This paper

highlights the differences between using two programming

languages for the same development and discusses the features

and benefits of each.

Keywords

Visualization development (Viz-Dev), Data Analysis, Doppler

Weather Radar (DWR), Python, R, Graphical User Interface

(GUI).

1. INTRODUCTION
Visualization development is an essential aspect of modern

research, enabling researchers to communicate complex data in

an accessible and engaging way. Visualization techniques have

been used in a wide range of fields, from biology to physics,

and have proven to be an effective means of conveying

information. By leveraging the power of visualization,

researchers can explore and analyze data in new and innovative

ways, allowing them to make meaningful discoveries and gain

new insights. Visualizations can take many forms, including

graphs, charts, maps, and diagrams, and can be used in a wide

range of research fields, including science, social science, and

humanities. The ability to create effective visualizations is

critical for researchers to effectively communicate their

findings and engage their audience. Python and R are two

popular programming languages that are widely used in the

development of visualizations for data analysis and

interpretation. These languages offer a wide range of libraries

and tools specifically designed for data visualization, making it

easier for researchers to create and customize visualizations

that are tailored to their specific research needs.

1.1 Python Programming
Python programming language has gained immense popularity

in recent years due to its versatility, flexibility, and ease of use.

One of the areas where Python has been particularly successful

is in the field of visualization development. Python has become

a preferred language for creating data visualizations and

interactive dashboards, thanks to its rich ecosystem of libraries

and tools. In this article, the role of Python programming

language in visualization development and how it has become

a go-to language for data scientists, analysts, and developers

has been explored. Python has a vast number of libraries that

make it easier to create visualizations. Libraries like Matplotlib,

Seaborn, Plotly, Bokeh, and Altair provide developers with the

tools to create interactive and dynamic visualizations that can

be embedded in web applications, desktop applications, or even

printed reports. These libraries allow developers to create

visualizations that are not only aesthetically pleasing but also

highly informative. Python's versatility also makes it ideal for

creating different types of visualizations, including static and

dynamic visualizations. Python provides several plotting

libraries that enable developers to create different types of

plots, such as line plots, scatter plots, bar plots, and histograms.

Python's visualization tools also allow for the creation of more

complex visualizations, such as heatmaps and 3D surface plots.

One of the most significant advantages of Python is its ability

to handle large datasets. Python provides various data

manipulation tools and techniques that make it easier to

preprocess data before visualization. Additionally, Python has

several tools that can be used for data exploration, such as

Jupyter Notebook, which allows developers to explore data and

create visualizations interactively. Another advantage of using

Python for visualization development is its ability to create

interactive visualizations. Python's libraries provide support for

creating interactive visualizations that can respond to user

inputs, including mouse clicks and hover events. This feature

allows users to explore data and gain insights in a more

engaging and interactive way.

1.2 R programming
R programming is a powerful tool for developing data

visualizations, including map visualizations. With its robust

data analysis capabilities and wide range of visualization

libraries, R makes it easy to create dynamic and informative

maps that can be used for a variety of purposes. One of the key

benefits of using R for visualization development is its

flexibility. R provides a wide range of packages that enable

users to create visualizations in a variety of formats, including

bar charts, scatterplots, heatmaps, and more. Additionally, R

allows for the creation of custom visualizations that can be

tailored to specific needs or datasets. When it comes to map

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 10, May 2023

36

visualizations, R really shines. With packages like ggplot2 and

leaflet, users can create dynamic and interactive maps that

allow for exploration and analysis of geographic data. These

maps can be customized with a variety of features, including

markers, labels, and interactive layers that can be toggled on

and off. In addition to its flexibility and map visualization

capabilities, R also excels in data preparation and analysis.

With packages like dplyr and tidyr, users can easily clean,

transform, and manipulate their data to prepare it for

visualization. This makes it possible to create maps that are not

only visually appealing, but also accurate and informative.

1.3 Graphical User Interface
A graphical user interface (GUI) is a type of user interface that

allows users to interact with electronic devices through visual

elements such as icons, buttons, menus, and windows. GUIs are

designed to be easy to use and intuitive, enabling users to

perform tasks quickly and efficiently. The use of graphical user

interfaces has become widespread in modern computing, from

desktop and mobile operating systems to web applications and

video games. The design and implementation of effective GUIs

require careful consideration of user needs and behavior, as

well as technical constraints and capabilities. One of the key

benefits of GUIs is their visual appeal and ease of use. Users

can quickly understand how to navigate a GUI and perform

tasks without needing to learn complex commands or

programming languages. GUIs also provide feedback to users

through visual cues, such as changing the color of a button

when it is clicked or displaying a progress bar during a long-

running task. Graphical user interfaces can be designed in many

different ways, depending on the device or application they are

intended for. For example, a desktop operating system may use

a window-based interface, while a mobile app may use a tabbed

or swipe-based interface. Web applications may use a

combination of menus and forms to allow users to enter and

retrieve data. One common feature of GUIs is the use of icons,

which represent applications, files, and other objects. Icons can

be designed to be recognizable and intuitive, such as using a

magnifying glass icon to represent a search function or a trash

can icon to represent deleting a file. Icons can also be

customized by users, allowing them to personalize their

interface and make it easier to find commonly used applications

or files. Another important aspect of graphical user interfaces

is the use of menus and toolbars, which provide access to a

range of functions and features. Menus can be hierarchical,

allowing users to drill down into sub-menus to access more

specific options. Toolbars can provide quick access to

commonly used functions, such as copy, paste, and undo. GUIs

can also incorporate input devices such as keyboards, mice,

touchscreens, and voice recognition. These devices can be used

to enter text, select options, and perform other tasks. For

example, a touchscreen interface may allow users to swipe,

pinch, or tap to navigate through an application or enter data.

The design and implementation of effective graphical user

interfaces requires a combination of technical expertise and

user-centered design principles.

1.4 Doppler Weather Radar
Doppler weather radar is a technology used to detect and track

precipitation and other atmospheric phenomena, such as

thunderstorms, hurricanes, and tornadoes. It is a powerful tool

that provides meteorologists and other weather professionals

with critical information about the movement and intensity of

weather patterns. Doppler weather radar works by emitting

high-frequency radio waves that bounce off objects in the

atmosphere, such as raindrops or hailstones. The radar then

analyzes the reflected waves to determine the distance,

velocity, and direction of the moving objects. One of the key

benefits of Doppler weather radar is its ability to detect and

track the movement of storms and other weather patterns in

real-time. This allows meteorologists to issue timely warnings

and alerts to the public, helping to minimize the risk of property

damage and loss of life. Doppler weather radar can also provide

detailed information about the size and intensity of

precipitation, allowing meteorologists to accurately predict the

amount of rainfall or snowfall that a particular area is likely to

experience. This information can be used to help local

authorities prepare for potential flooding or other weather-

related emergencies. In addition to its use in weather

forecasting, Doppler weather radar is also used in aviation,

military, and scientific applications. For example, it can be used

to detect and track aircraft, missiles, and other objects in the

sky, as well as to study the movement and behavior of birds and

other wildlife.

2. LITERATURE REVIEW
Visualization and development tools play a crucial role in the

field of data science, aiding in data exploration, analysis, and

presentation. Among the popular programming languages used

for these tasks are Python and R. This literature review aims to

provide a comparative analysis of Python and R as visualization

and development tools based on the findings of several relevant

studies. The study conducted by [1] Brittain et al. (2018)

focuses on comparing the performance of Python, R, and SAS

in the context of data analysis. It provides insights into the

strengths and weaknesses of each language, shedding light on

their capabilities and efficiency for data-related tasks. [2]

Millman and Aivazis (2011) discuss the relevance of Python as

a powerful tool for scientists and engineers. The article

highlights Python's versatility, ease of use, and extensive

libraries for scientific computing, making it an attractive option

for data visualization and analysis. In their study, [3] Ozgur et

al. (2017) compare MatLab, Python, and R, emphasizing their

capabilities in data science applications. The article provides

insights into the different features, libraries, and development

environments offered by each language, helping researchers

and practitioners make informed decisions. [4] Zhang et al.

(2011) explore the application of Python and ArcGIS software

in remote sensing data management. This study showcases

Python's effectiveness in handling geospatial data and

demonstrates its potential for visualization and analysis in the

field of remote sensing. [5] Singh (2017) presents a compelling

argument for learning both R and Python. The article highlights

the unique strengths and applications of each language,

suggesting that a combination of the two can enhance data

analysis capabilities and expand the range of tools available to

data scientists. [6] McKinney (2013) provides an introduction

to Python for data analysis, emphasizing its role in processing

and visualizing data. The book offers practical examples and

insights into using Python's data manipulation libraries, such as

pandas, making it a valuable resource for understanding

Python's capabilities in the context of data analysis. The

reviewed literature provides valuable insights into the

comparative analysis of Python and R as visualization and

development tools. These studies highlight the unique features,

performance, and libraries offered by each language, allowing

data scientists and researchers to make informed choices based

on their specific requirements. While Python stands out for its

versatility and extensive libraries for scientific computing, R

offers a comprehensive suite.

3. DEVELOPMENT ANALYSIS
The research paper aims to conduct a comprehensive

comparison between the programming languages Python and

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 10, May 2023

37

R, specifically in the context of a practical use-case. The use-

case involves the input and analysis of weather observations

obtained from a Doppler Weather Radar, with the ultimate goal

of disseminating weather warnings to users. In order to achieve

this, the authors have developed code in both Python and R,

which provide a similar interface and accomplish the same task.

The initial step in both code implementations is to read the

shapefile for the Andhra Pradesh state in India, as depicted in

Figure 1. This shapefile represents the geographic boundaries

of the 26 districts within the state. The duty officers responsible

for monitoring weather conditions utilize the observations

recorded by the Doppler Weather Radar located in

Visakhapatnam. These observations are used to allocate

weather severity to the various districts within Andhra Pradesh.

This allocation is facilitated through the utilization of a

graphical user interface (GUI) that employs color-coding.

Fig 1: District shapefile for the state of Andhra Pradesh in

India

The GUI includes a canvas where a plot is displayed, which is

updated with the date and time of the recorded observation.

Additionally, an alert warning is generated and disseminated to

the relevant parties based on the severity of the weather

conditions detected by the radar.

3.1 Use of Doppler Weather Radars
Doppler Weather Radars in India are under the administrative

and operational control of India Meteorological Department.

These DWRs generate volumetric scan data employing two

operational scan strategies: IMD-B and IMD-C. IMD-C is a

long-range scan covering 500 km with two elevations, while

IMD-B is a short-range scan encompassing 250 km with ten

elevation scans ranging from 0.2° to 21.0°. The volumetric raw

data obtained from IMD-B scans, represented in antenna

coordinates of slant range, elevation angle, and azimuth angle

from true North, serves as input for the system.

The most widely-used product from a DWR available is the

MAX_Z (Maximum Reflectivity) which takes a polar volume

raw data set, converts it to a cartesian volume, generates three

partial images and combines them to the displayed image. The

MAX_Z image generated by DWR at Visakhapatnam can be

seen in Figure 2.

Fig 2: MAX_Z imagery generated by DWR

Visakhapatnam (Source: IMD)

The partial images inside the MAX_Z are the three projections

or views available to the interpreter giving different

information:

• A top view of the highest measured values in Z-direction

This image shows the highest measured value for each vertical

column.

• A north-south view of the highest measured values in Y-

direction

This image is appended above the top view and shows the

highest measured value for each horizontal line seen from north

to south.

• An east-west view of the highest measured values in X-

direction

This image is appended to the right of the top view and shows

the highest measured value for each horizontal line seen from

east to west.

Table 1 Rainfall categorization with radar reflectivity

S No Rainfall category dBZ Rain intensity

1 Mist to light 15 - 30 0.2 – 2 mm

2 Moderate 30 - 40 2 – 10 mm

3 Heavy 40 - 46 10 – 30 mm

4 Very heavy 46 - 50 30 – 50 mm

5 Intense 50 - 56 50 – 100 mm

6
Extreme

(including hail)
 > 56 Over 100 mm

(Table source: Marshall-Palmer relation)

In the present work, the operators need to feed the values

manually in the GUI prepared for the software. The operator

can hover the cursor over the generated product in the server of

the radar and would get the value and location of the reflectivity

observed. Based on the feeding of the value of the radar-derived

reflectivity in the software GUI, the plot can be updated by the

user and dissemination of warnings can take place. The severity

values to be assigned to a particular district is as per the Table

1.

3.2 Python use-case
The Python development results in the creation of a graphical

user interface (GUI) that features a plot displayed on the canvas

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 10, May 2023

38

on the right-hand side. The left-hand side of the GUI allows

users to select multiple options via a sidebar panel. The plot on

the right-hand side shows the shapefile of Andhra Pradesh, with

acronyms representing the district names located at the

geometric centroid of the respective district. The GUI is built

using tkinter, and a visual representation of it can be viewed in

Fig 3.

Fig 3: GUI developed using tkinter in python

The left-hand side bar panel of the GUI contains a drop-down

menu, which when clicked, displays a list of the 26 districts of

Andhra Pradesh based on the contents of the shapefile. The

default selected district is displayed on the bar, and users can

select any of the 26 districts to which severity allocations need

to be made. The user is then required to select the severity level

to be allocated to the previously selected district. On clicking

the next available Lock button, the selected severity level will

be assigned to the district. The user can select multiple

severities and lock them as required. Next, the user can select

the time in UTC (HH:MM format) and date from the calendar

provided on the left-hand side bar panel. On clicking the submit

button, the selected time and date are displayed on the plot

above the map. Clicking the Download button downloads the

last updated plot on the canvas as a png file. The reset button,

when clicked, erases all the allocated color-coded severities to

the districts and presents the map afresh to the user. The last-

updated plot can be sent as an attachment in an e-mail by

selecting the target e-mail address from the drop-down menu

and clicking on the e-mail button.

At the bottom of the side-bar panel in GUI is a text box that

enables users to input any e-mail address. Upon clicking the

Add button, the entered e-mail address is added to the drop-

down list of e-mail addresses. A visual representation of the

randomly allocated severity levels to different districts can be

viewed in Fig 4. The allocations depicted in Fig 4 can be

downloaded as a png file with the selected date and time from

the GUI mentioned in the plot. The plot also features an index

with color-coded rainfall warnings, which makes interpretation

easier.

Fig 4: Downloaded PNG file

The breakdown of the Python code is as follows:

1. Importing Required Libraries: The script starts by

importing the necessary libraries, including geopandas, pandas,

matplotlib, smtplib, email-related modules, PIL (Python

Imaging Library), io, imageio, tkinter, and other libraries

required for the functionality.

2. Defining Color Scheme: The script defines color variables

for the GUI interface.

3. Reading Shapefile: The script reads a shapefile containing

the district boundaries of Andhra Pradesh from a specified path

using the geopandas library.

4. Mapping District Names to Acronyms: A dictionary

named "district_codes" is created to map district names to

acronyms.

5. Creating Severity Colors: A dictionary named

"selected_severity_colors" is created to map severity levels to

colors.

6. Initializing GUI: The script initializes a Tkinter window and

sets its properties such as the title and background color.

7. Creating Dropdown Menus and Calendar Widget:

Dropdown menus for district selection and severity selection

are created using the OptionMenu widget. Additionally, a

Calendar widget from the tkcalendar library is placed in the

GUI for selecting a date.

8. Selecting Time: Combobox widgets are created for selecting

the hour and minute in UTC time format.

9. Submit Function: The submit function is defined to retrieve

the selected date and time values and update the plot

accordingly.

10. Lock Button: A lock button is created, which triggers the

update_map function when clicked.

11. Update Map Function: The update_map function is

responsible for updating the map based on the selected district

and severity.

12. Download Plot Function: The download_plot function is

defined to save the current plot as a PNG file.

13. Recipient Email Addresses: A list named "recipients" is

created to store recipient email addresses.

14. Adding and Removing Recipients: Functions

add_recipient and remove_recipient are defined to add or

remove email addresses from the recipients list.

15. Emailing Plot: The send_email function is defined to send

an email with the plot attached as a PDF.

16. Reset Function: The reset function is defined to reset the

GUI components and plot to their initial state.

17. Call to Update Map: The update_map function is called

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 10, May 2023

39

initially to update the map with the default district and severity.

18. Embedding Plot in Tkinter: A Tkinter canvas object is

created to embed the plot in the GUI.

19. Setting GUI Properties: The background color of the

window is set, and the window is maximized.

20. Tkinter Main Loop: The script enters the Tkinter main

loop to start the GUI application.

3.3 Use-case involving R
The development using R has been designed to resemble the

development using Python as closely as possible, as depicted in

Fig 5. The user interface in R shares similarities with that in

Python, with the plot displayed on the canvas on the right-hand

side and various options available to the user on the left-hand

side bar panel. The plot on the right displays the 26 districts of

Andhra Pradesh in India, accompanied by the acronyms for

district names positioned at the centroid of the geographic

coordinates. The first option on the left-hand side bar panel

enables the user to select a particular district from the drop-

down menu, which presents a list of the 26 districts of Andhra

Pradesh. Once the district has been selected, the user can assign

a severity level to it from the drop-down menu. Upon clicking

the Lock button, the assigned severity will be displayed in

color-coded format on the district. The user can repeat this

process of selecting a district and assigning severity level

multiple times as needed.

Fig 5: GUI developed using shiny app in R

After locking the severities to the districts, the user can select

the date and time, which will be displayed at the top of the plot

as the observation time. Clicking on the date field displays a

calendar for the user to make a selection. The user can then

select the time in HH:MM format. If the time is not selected,

the system date will be used, and the time will default to 00:00

UTC. Clicking the Download Map button downloads the last-

updated plot as a PNG file to a folder of the user's choice.

Clicking the RESET button erases all the user's allocations

made till that point. The user can then select a target e-mail

address from a drop-down list to which the last-updated plot

will be sent as an attachment in PNG format on clicking the

EMAIL button. The last widget on the interface allows the user

to add or delete an e-mail address from the drop-down list. The

user can enter the e-mail address to be added in the last text box

and click the ADD button. If any e-mail address needs to be

removed from the list, the user can select the address and click

the REMOVE EMAIL button.

As shown in Fig 6, as the user assigns severities to districts, a

legend appears at the bottom of the map, displaying the

interpretation of color-coding for easy understanding.

Fig 6: Downloaded PNG file from Shiny App

The following is the breakdown of the R code:

1. The necessary R packages are imported.

2. The shapefile containing the district boundaries is read

using the st_read function from the sf package.

3. A named vector of district acronym values is defined.

4. A named vector of severity values and colors is defined.

5. The UI (User Interface) for the Shiny app is defined using

the fluidPage function from the shiny package.

6. The server logic is defined using the server function.

• Reactive values and reactive expressions are used to

store and update the user-selected severity

allocations and the last generated plot.

• Various Shiny input controls (select inputs, action

buttons, date input, time input) are defined in the

sidebar panel of the UI.

• Event observers are set up to respond to user

interactions with the input controls and perform

corresponding actions (e.g., updating severity

allocations, resetting the allocations, sending an

email with the plot).

• The severity allocations are merged with the district

data and used to generate the map plot using ggplot2.

• The generated plot is displayed in the main panel of

the UI.

• The user can download the plot as a PNG file by

clicking the "Download Map" button.

• The user can add or remove email addresses for

recipients of the plot by typing them in the text input

fields and clicking the corresponding buttons.

• The user can send an email with the plot as an

attachment to the selected recipient email address by

clicking the "Email" button.

7. The Shiny app is run using the shinyApp function, which

takes the defined UI and server logic as arguments.

4. RESULT
In this study, the usage of popular programming languages

Python and R for map visualization has been compared.

Through analysis, several advantages and disadvantages

associated with each language have been observed. One

notable distinction between Python and R lies in the availability

of libraries for working with maps. Python offers a wide range

of robust mapping libraries, including Folium, GeoPandas, and

Basemap, which provide user-friendly tools for creating maps

and manipulating geographic data. R also provides mapping

libraries such as ggmap and leaflet, but Python's libraries are

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 10, May 2023

40

generally more versatile and easier to use. Another significant

difference is the syntax used to create maps in each language.

Python utilizes object-oriented programming techniques,

allowing maps to be created as objects with customizable

methods and attributes. In contrast, R typically uses functions

and parameters to generate maps, resulting in more concise but

potentially more complex code.

Python is often paired with libraries like Pandas and NumPy

for data manipulation, enabling seamless integration of map

visualizations into larger data analysis workflows. On the other

hand, R has its own built-in data manipulation functions,

making it easier to handle data within the language.

Additionally, R has a strong foundation in statistical analysis

and modeling, providing numerous built-in functions that are

not available in Python.

Table 2 Comparing the application of Python and R

Aspect Python R

Availability

of Libraries

Folium, GeoPandas,

Basemap
ggmap, leaflet

Mapping

Syntax

Object-oriented

programming

techniques

Functions and

parameters

Data

Manipulatio

n

Seamless

integration with

Pandas and NumPy

Built-in data

manipulation

functions

Statistical

Analysis

Limited built-in

functions for

statistical analysis

Strong foundation

in statistical

analysis and

modeling

Lines of

Code

More lines of code

required for the task

Fewer lines of code

required for the task

Executable

Files

PyInstaller tool for

creating bundled

executables

Script execution

with library loading

and .R extension

The study also compared the number of lines of code required

to achieve the desired task. Interestingly, the authors found that

Python required more lines of code compared to R in this

particular development. While Python is generally known for

its clean syntax and concise code, the specific requirements of

the task resulted in a greater number of lines for Python. This

highlights the importance of considering the specific context

and requirements when evaluating the code length in different

languages. Figure 7 shows the lines of code required by both

the languages.

Furthermore, the approach to generating an executable file

differs between Python and R. Python offers the PyInstaller

tool, which allows bundling a Python application and its

dependencies into a single executable file. In contrast, the

authors utilized a script in R that loaded the required libraries

and executed the desired functions, saving it with a .R

extension to generate an executable. Overall, Python provides

more convenience in creating and sharing executables without

exposing the source code.

Fig 7 Comparisons of lines of code

5. CONCLUSION
This research provides valuable insights into the usage of

Python and R for map visualization, highlighting their

respective advantages and disadvantages. The study

demonstrates that Python excels in terms of its extensive

mapping libraries, versatility, and ease of integration with data

manipulation tools. However, R has its own strengths,

particularly in statistical analysis and modeling, and can offer

more concise code in certain scenarios. Looking ahead, there

are several areas of future work to be considered. Firstly,

expanding the comparison to include other programming

languages commonly used for map visualization, such as

JavaScript or Julia, would provide a broader perspective.

Additionally, evaluating the performance of Python and R in

handling larger datasets and real-time data streams would be

beneficial, as this study focused on a specific use-case.

Furthermore, exploring the potential for optimizing code length

and execution time in both languages could enhance the

efficiency of map visualization tasks. This research presented a

comprehensive comparison of Python and R for map

visualization, highlighting their strengths and weaknesses. It

ultimately emphasizes the importance of considering the

specific requirements and context of a project when choosing

between these two powerful and popular programming

languages to achieve greater efficiency and optimality. The

future scope of work includes further exploration of alternative

programming languages, scalability testing, and code

optimization strategies.

6. REFERENCES
[1] Jim Brittain, Mariana Cendon, Jennifer Nizzi, John Pleis.

“Data Scientist’s Analysis Toolbox: Comparison of

Python, R, and SAS Performance.”SMU Data Science

Review. SMU Data Center, 2018.

[2] J.K.Millman & M. Aiyazis, "Python for Scientists and

Engineers" Computing in Science & Engineering, vol. 13,

no. 12, pp. 9-12, 2011.

[3] Ceyhun Ozgur, Taylor Colliau, Grace Rogers, Zachariah

Hughes,Elyse “Bennie” Myer-Tyson.” MatLab vs. Python

vs. R.” Journal of Data Science 15,355-372.2017.

[4] Zhang, Jing, Hongxia Luo, and Xueqing Zhang.

"Application of python language and arcgis software in

RS data management." 2011 International Conference on

Remote Sensing, Environment and Transportation

Engineering. IEEE, 2011.

[5] Suryansh Singh. “R vs Python, Why you should learn

both?”Quadratyx Power of Insight.2017.

[6] W. McKinney, "Chapter 1- Preliminaries," in Python for

Data Analysis, Sebastopol, O'Reilly Media, 2013, p. 3.

IJCATM : www.ijcaonline.org

