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ABSTRACT 
Researchers are working to integrate machine learn- ing (ML) 

and artificial intelligence (AI) tools to im- prove and develop 

clinical practice. Machine learn- ing is becoming more 

important in medical image analysis. One of the fundamental 

goals of health- care is to provide timely preventative measures 

by early disease diagnosis and prognosis. This is cer- tainly 

relevant for epilepsy, which is characterized by recurring and 

unpredictable episodes. If epilep- tic seizures can be detected 

in advance, patients can avoid the unfavourable repercussions. 

Seizure prog- nosis remains an unsolved problem despite 

decades of research. This is likely to continue partly due to a 

lack of information to resolve this issue .Promis- ing new 

advancements in the ML-based techniques have the ability to 

alter the situation in the detec- tion and prediction of ES. We 

present a complete re- view of cutting-edge ML techniques for 

early seizure prediction with the help of EEG signals. We will 

highlight research gaps and problems and give rec- 

ommendations for future initiatives. 
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1. INTRODUCTION 
Over the past 20 years, machine learning (ML), a cornerstone 

of artificial intelligence has undergone significant 

development. To reveal the hidden characteristics and 

underlying relationships of data, machine learning (ML) 

employs statistics and computer science (Awad & Khanna,   

2015) to create algorithms whose performance improves when 

exposed to relevant data rather than when given explicit 

instructions (Libbrecht & Noble, 2015). 

ML tasks can be divided into two categories: supervised and 

unsupervised (Mello & Ponti, 2018). The former uses 

prelabelled input data and try towards finding the classifier 

model using an approach that has been trained for unlabeled 

data classification. (A. Singh, Thakur, & Sharma, 2016). 

Unsupervised methods (e.g., dimensionality reduction and 

clustering algorithms), in contrast to the supervised technique, 

relate to the process of creating mathematical models after 

assessing the similarities between unlabeled inputs to find 

trends, subgroups, or outliers. (Celebi & Aydin, 2016). Semi 

supervised machine learning a bridges the gap among 

unsupervised and supervised learning by integrating a few 

labeled dataset with a significant number of unlabeled datasets 

to produce a classification system (or model function). It 

considerably enhances learn- ing accuracy to some extent. 

cite6. Reinforcement learning is a turning approach in 

dynamical systems (for example, evolving, time-varying 

systems, and power systems) that automatically learns optimal 

control techniques. (Sutton & Barto, 2018). 

Machine learning is being utilized widely in a wide range of 

industries, including voice recognition, image pattern 

classification, web browsing, spam mail filtering, autopilot, 

image classification, and textual translation. It is also being 

used more and more in a number of medical applications. In 

medicine, ML improves prognosis evaluation, disease 

identification, and prediction accuracy. Principled, automatic, 

and objective algorithms for complex, high-dimensional 

biological data are provided by ML (Rojas, Joya, & Catala, 

2015). For example, ML outperforms the use of traditional 

feature selection methods in gene selection. Similar advances 

have been made in epilepsy, owing to continuous regard to data 

gathering, storage, and processing. 

Epilepsy is a widely recognized chronic, noncom- municable 

condition that affects 3% to 15% of organ transplant patients 

and 60-70 million people globally. (Stelzle et al., 2021).An 

epileptic seizure is a sud- den disruption in the electrical 

processes of the brain, characterised by excessive bursts of 

neuronal activity within the cerebral cortex and impacting the 

entire body. (Sazgar & Young, 2019). As per World Health 

Organization (WHO), 70 million people worldwide suffer from 

epilepsy, and epilepsy ranks fourth in the most common brain 

diseases, trailing only stroke, Alzheimer’s disease and migraine 

(England, Liver- man, Schultz, & Strawbridge, 2012). The 

pathophys- iology of epileptic seizures involves aberrant 

neuronal discharge, which shows as high electrical pulses on an 

EEG. To clarify, we consider seizure to be a tran- sient brain 

disorder caused by increased synchronous neural activity, and 

the sites of epileptic attacks are called epileptic foci. 

Recognizing and quantifying epileptogenic foci is essential for 

epilepsy diagno- sis. However, anti-epileptic drugs can 

effectively con- trol seizures in approximately 70% of patients 

with epilepsy (Eadie, 2012) the remaining 30% of patient 

populations have failed in controlling seizures, result- ing in 

drug-resistant epileptic seizures or intractable epilepsy. 

Intractable epilepsy is associated with a high mortality risk as 

well as poor prognosis, necessi- tating surgical intervention 

(Fisher et al., 2014). Fol- lowing a brief overview of common 

machine learning algorithms, this work highlights recent 

applications in automated detection and diagnosis, evaluation 

of imaging as well as clinical information, epilepsy local- 

ization, and medical and surgical outcome prediction to 

demonstrate the broad utility of machine learning techniques in 

epilepsy. 

 

2. EPILEPSY DIAGNOSIS 
Machine learning models are used by researchers to describe 

possible epileptic subjects to highlight the features which can 

help doctors and enhance the di- agnostic workflow. However 

, such activities were designed to save labor for highly qualified 
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physicians. Algorithms with high sensitivity, on the other hand, 

increase the likelihood of detecting potential ’invisi- ble’ 

regions that human experts may overlook. 

To classify patients and health controls, old- fashioned machine 

learning methods were widely used (Cantor-Rivera, Khan, 

Goubran, Mirsattari, & Pe- ters, 2015; J. Wang, Li, Wang, & 

Huang, 2018; JIANG, LIU, GAO, & MIAO, 2017; Del Gaizo 

et al., 

2017; Liedlgruber et al., 2019; Höller et al., 2020). It may also 

discover the most contributing factors as- sociated with a given 

disease during the procedure. Several manual features were 

relied on in some studies due to prior knowledge. SVM, for 

example, was used to identify patients with tonic-clonic 

epilepsy from the normal group using 2 hand-crafted MRI 

variables ( fALFF from fMRI and Gray Matter Volume from 

T1). On PET images, similar conventional methods have been 

used. Multi-linear PCA was used to ex- tract features from the 

hemisphere symmetry tensor, and SVM was used to classify 

abnormal and normal images (JIANG et al., 2017). 

3. EPILEPSY PROGNOSIS 
Computer-aided prognosis tasks are critical for di- recting 

clinicians to the most appropriate treatment. Clinical indicators 

that include the epidemiology- based mortality rating in the 

Engel classification and the status epilepticus are commonly 

used to assess epilepsy prognosis. On the basis of patient’s 

brain scans, ML models can be built to anticipate treat- ment 

results, providing those information before time that is useful 

for treatment. The classification task of classifying the 

postoperative state is commonly re- ferred to as prognosis 

prediction (i.e, no seizures or persistent seizures). 

However, End-to-end DNNs have been used to determine the 

most probable treatment out- come in addition to classic 

machine learning methods(Gleichgerrcht et al., 2018; Samson, 

2018; B. C. Munsell et al., 2015). 

4. ML APPROACHES 
Scientists have been attempting to overcome the problems in 

diagnosing and forecasting epilepsy. The investigation of EEG 

recordings was the primary priority of the ES prediction study 

since EEG are a significant source for analysing activity in the 

brain before, during, and after an epileptic seizure. EEG data 

are contaminated by eye movements, blinks, cardiac signals, 

and muscular noise. Several filtering and noise cancellation 

techniques are used to reduce the effects of these multiple noise 

sources and distortion (Mannan, Kamran, & Jeong, 2018). 

An algorithm that can automatically recognize epileptiform 

discharges, for instance, may be trained using annotated EEG 

data.     This can be done by using Supervised Machine 

Learning technique. Whereas an unsupervised algorithm may 

find poten- tial epileptiform discharges by spotting anomalies 

in background EEG recording. Either way, the algo- rithm 

itself, with no need for domain knowledge, or a human expert, 

identify informative input features through a process known as 

feature selection, which is then processed by using a mapping 

function to provide output predictions from such features (Deo, 

2015). 

 
 
Figure 1: The conventional machine learning method. It is divided into two stages: machine learning and feature engineering. 

4.1 Conventional machine learning 

approach 
Two steps make up the traditional machine learning approach: 

manually feature engineering and machine learning (Fig. 1.). 

The hand-crafted features are ex- tracted from brain pictures 

during the feature engi- neering stage. The machine learning 

step then feeds these data into a machine learning model for a 

spe- cific goal, like regression (B. Munsell et al., 2019) or 

classification (Alaverdyan, Jung, Bouet, & Lartizien, 2020) (to 

determine whether the brain is normal or impaired).The 

machine learning algorithm employed in this methodology is 

often a simple classifier rather than a deep neural network. 

In traditional machine learning models, feature en- gineering is 

an essential step. Using distinguishing characteristics extracted 

from medical pictures can successfully minimise data 

dimension and avoid model overfitting. Because we want to 

save as much information as possible in the original medical 

images, the extracted features are frequently very re- dundant. 

Following the feature engineering, the features of sig- nificance 

will be incorporated into ML models for use in real-world 

applications. It should be noted that standard machine learning 

methods, such as support vector machine and linear 

discrimination analysis are highly reliant on the collected 

features. 

Linear discrimination analysis (LDA) is a popular su- pervised 

method for feature extraction, data dimen- sionality reduction, 

and pattern discovery. 

The initial SVM seeks a hyperplane in the di- mensional space 

to split samples into two classes (Cortes & Vapnik, 1995). It 

was designed for two- class classification at first, but was later 
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enlarged to multi-class classification. Also, SVR (support 

vector regression)(Smola & Schölkopf, 2004) has been em- 

ployed to resolve regression problems. 

5. LITERATURE REVIEW 
In this work, several writers have previously evaluated the 

seizure detection techniques and strategies. A brief analysis of 

various strategies for seizure detection based on signal 

characteristics is provided below. 

Two strategies are offered by Jaiswal et al. (Jaiswal & Banka, 

2018) : "cross sub pattern" and "sub pattern Principal 

Component Analysis ("SubXPCA" and "SpPCA") utilising 

SVM method.The proposed techniques’ conclusions were 

100% accurate, and their average was greater than other 

methods such as "Naive Bayes", Support Vector Machine" and 

" k- nearest neighbour".The authors of (Jaiswal & Banka, 2018) 

developed a method for predicting epilep- tic seizures by 

categorising EEG data into seizure and non-seizure 

signals.Using an Local Binary Pat- tern that utilizes key point 

computations, EEG data may be categorized into seizure and 

non-seizure cat- egories (Tiwari et al., 2016). 

The first stage of EEG data processing is key point localization, 

followed by key point-based LBP calcu- lation and finally by 

histogram feature. 

In Abualsaud et al. (Abualsaud et al., 2015), the ensemble 

classifier was used to test its efficacy on in- complete EEG data. 

The ensemble classifier outper- formed other trials, achieving 

90% accuracy in com- parison to 85%, 85.9%, and 89.5% in 

the other stud- ies. 

Three learning strategies were employed by the au- thors in 

(Satapathy et al., 2017b) SVM, "multino- mial logistic 

regression," and "logistic model trees" (LMTs). In terms of 

accuracy, the findings demon- strated that LMT classifier 

outscored the others. Us- ing the epilepsy data, several 

approaches such as SVM, RVM, fractal dimension and neural 

networks were also applied (Lima et al., 2016). 

Further techniques included k-means, random for- est, and 

Gaussian mixture models (Senders et al., 2018) and the SVM 

method was efficient in solving binary classification problems. 

A brand-new device known as "Computerized Au- tomated 

Detection of Focal Epileptic Seizure" (CAD- FES) was 

presented by Raghu et al. in their study (Raghu & Sriraam, 

2018) and the major aim was preprocessing of EEG data for 

identification of fo- cal and non-focal epileptic episodes. The 

authors first extracted 28 characteristics from the data set, using 

"Neighborhood Component Analysis" (NCA) to maximize the 

number of features, and then uti- lized SVM, KNN, Random 

Forest and the AdaBoost classifier for evaluating algorithm 

performance. The outcome showed that SVM had the highest 

accuracy of 95.9%. 

Tharayil et al. (Tharayil et al., 2017) created a sys- tem to 

predict epilepsy in both adult and paediatric patients 

simultaneously. 

This technique, the linear mixed model, was ap- plied to 

approximately 1.2 million reported seizures. The primary 

conclusion was that all developed mod- els worked better on 

adult than on children. The au- thors offered numerous 

hypotheses, including differ- ences in seizure patterns between 

children and adult and a lack of data on underreported seizures 

in chil- dren. Early detection of epileptic seizure can help the 

patient avoid detrimental effects on the human brain. Usman et 

al. (Usman et al., 2017a) em- ployed the technique of 

preprocessing data to reduce 23 EEG signal channels to one in 

order to increase the SNR (signal to noise ratio), and then EMD 

(em- 

 
Table 1: Recently applied ML techniques for seizure detection with their corresponding performances 

 

S.NO YEAR AUTHOR ML 

ALGO- 

RITHM 

DATASET 

SOURCE 

FEATURE 

ANALY- 

SIS 

NUMBER ACCURACYLIMITATIONS 

OF SAM- (%) 

PLES/SUBSETS 

1 2015 Abualsaud 

and Mah- 

muddin 

(Abualsaud 

et al., 

2015) 

Ensemble 

classifer 

_ (NSC) 4096 90 _ 

Noise- 

aware 

Signal 

Combina- 

tion 

2 2015 Bandarabadi Support et

 Vector 

al.(BandarabMadaichines et 

al., 

2015a) 

EPILEPSIAESpectral 

power, 

Ampli- 

tude 

distribu- 

tion 

his- 

togram 

24 73.98 _ 

3 2015 Lecun et Res-CNN 

al. 

(LeCun 

et al., 

2015) 

BONN Conventional 

- feature 

extrac- 

tion 

method 

_ 95.70 _ 
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4 2015 Logesparan ANN, 

et al.  SVM 

(Logesparan et 

al., 2015) 

CHB- Line 

MIT  length 

feature 

analysis 

_ 52 Accuracy(Low) 

5 2015 Talathi GRU, 

and RNN 

Vartak 

(Talathi 

& 

Vartak, 

2015) 

_ RNNs _ 94 High 

(time 

complex- 

ity) 

6 2015 Bandarabadi SVM et 

al. 

(Bandarabadi 

et al., 2015b) 

_  Relative 

Spectral 

Power 

Features 

24 73.98 _ 

7 2015 Amin et KNN, 

al. SVM, 

(Amin et Naıve 

al., 2015) bayes, 

EPILEPSY _ 

 
 

5 

_ 98.75 _ 

  MLP     

8 2015 Donos et Random 

al.  forest 

(Donos et 

al., 2015) 

EPILEPSY Frequency, 

Time 

_ 93.8 Spec not 

men- 

tioned 

9 2015 Zhang et SVM, BCI Lab SE and _ 95.58 High 

 

18 2016 Sabrina 

et al. 

(Belhadj 

et al., 

2016) 

PHA–unsupervCiseHdB- 

MIT 

 Intrinsic 

mode 

functions, 

Euclidean 

distance, 

Bhat- 

tacharya 

distance 

22 98.84 _ 

19 2016 Orellana et 

al. 

(Orellana 

& 

Cerqueira, 

2016) 

Random CHB- 

forest MIT 

 PCA, 

STF, 

moving 

maximum 

_ 97 _ 



International Journal of Computer Applications (0975 – 8887) 

Volume 185 – No.15, June 2023 

14 
 

20 2016 Kabir and 

Siuly 

(Kabir et 

al., 2016) 

Support _ 

Vector 

Machine 

(SVM), 

Logistic 

model 

trees 

(LMT), 

Multino- 

mial 

Logistic 

Regres- 

sion 

(MLR) 

 Optimum 

Alloca- 

tion 

Technique 

(OAT) 

4097 95.33(LMT) least 

square 

SVM (LS- 

SVM) 

classifier 

21 2017 Chen et SVM BONN  DWT 5120, 86.83 Low sen, 

  al. (D. 

Chen 

et al., 

2017) 

   4097  pres 

22 2017 Satapathy et 

al. 

(Satapathy 

et al., 

2017a) 

Neural BONN 

network, 

SVM 

 CWT, 

DWT 

_ 99.1 High 

detection 

time 

23 2017 Kumar et 

al. 

(Kumar et 

al., 2017) 

approximate CHB- 

entropy MIT 

ANN, 

SVM 

 DWT 

based ap- 

proximate 

entropy 

500 100 High time 

complex- 

ity 

24 2017 JianJia, 

Balaji 

Goparaju, 

JiangLing 

Song, et 

al. (Jia et 

al., 2017) 

Random BONN 

Forest 
 
6 

Complete 

ensemble 

empirical 

mode 

decompo- 

sition 

along 

with 

adaptive 

5 98 _ 

 

28 2017 Wanzhong 

Chen, 

Mingyan- 

gLi and 

TaoZhang. 

(Li et al., 

2017b) 

Neural 

network 

BONN Envelope 

analysis 

5 98.78 _ 

29 2017 Abeg 

Kumar 

Jaiswal, 

Haider 

Banka. 

(Jaiswal 

& Banka, 

2017) 

ANN 

(Artificial 

Neural 

Network) 

BONN "LNDP 

(Local 

neighbor 

descrip- 

tive 

Pattern)" 

5 99.82 LBP is 

sensitive 

to local 

variation 
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30 2017 Bhattacharyya     RF A,

 classifier 

Pachori and 

R. SMOTE 

CHB EWT 23 99.41 _ 

MIT 

(Bhattacharytyeachniqu

e & 

Pach

ori, 

201

7) 
 

31 2017 Birjandtalab Random CHB- Spectral _ 80.87 Low sens, 
  et al. forest- MIT power   spec 
  (Birjandtalab KNN      

  et al.,       

  2017)       

32 2017 Sarif et SVM Freiburg Distribution 19 96.60 limitation 
  al. (Sharif   (6 fuzzy   in number 
  & Jafari,   rules)   of 
  2017)      training 
        and test 

        data. 

33 2017 Datta ANN BONN Incorporated _ 96 _ 
  Prasad et   Hilbert    

  al. (Torse   trans.    

  et al.,       

  2017)       

34 2017 Shivnarayan LS-SVM University "Kraskov 5 97.75 _ 
  Patidar.  of Bonn entropy    

  and  Germany and    

  Trilochan   Multi-    

  Panigrahi   stage    

  (Patidar  7 TQWT"    

  & Pani-      

  grahi,      

  2017)      

35 2017 Hashem KNN BONN KPCA 5 99.73 _ 
  Kalbkhani   (Kernel   

  and   principal   

  Mahrokh   compo-   

 

41 2017 Tharayil Linear SeizureTrackeBr.caoymesian 3896 82 Noise 
  et al. Mixed informa-    

  (Tharayil Model tion    

  et al.,  criterion    

  2017)      

42 2017 Usman SVM CHB- Time- 22 92.23 _ 
  and  MIT frequency    

  Usman      

  (Usman      

  et al.,      

  2017b)      

43 2017 Kumar SVM USC-SIPI _ 44 100(MPNN _ 
  (Satapathy    and EL)  
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  et al.,      

  2017b)      

44 2018 Usman et Naive MIT Skewness, 24 97.07, _ 
  al. Bayes, Variance,  97.44,  

  (Usman SVM, SD, HP,  90.66  

  & Hassan, KNN Kurtosis,    

  2018)  Entropy    

45 2018 Kitano et SOM MIT Zero- 9 98 limitations 
  al.  crossing   in 
  (Kitano  (DWT co-   providing 
  et al.,  efficients)   exact fre- 

  2018)     quencies 

46 2018 Yang et SVM Freiburg Permutation 21 94 Limitations 
  al. (Yang  (Entropy)   in 
  et al.,     extracting 

  2018)     features 

47 2018 Park et SoftMax, CHB- _ 54 90.58 Low sens, 
  al. (Park 2D CNN MIT,   spec 
  et al.,  SNUH-    

  2018)  HYU    

    data    

48 2018 Jacobs MSC Toronto CFC 12 82.4 _ 
  D., Hilton (Multi Western (cross    

  T., Del stage Hospital frequency    

  Campo state Epilepsy coupling)    

  M. et al. classifier) Monitor-    

  (Jacobs et  ing Unit    

  al., 2018)      

49 2018 Ali Yener LS-SVM BONN HVD 5 97.33- _ 
  Mutlu  (Hilbert  97.66  

  (Mutlu,  8 vibration    

  2018)   decompo- 

     sition) 

50 2018 Sutrisno Linear BONN, Band 5 100 _ 
  Ibrahim, SVM, CHB- power, 
  Ridha KNN, MIT standard 
  Djemal LDA,  deviation 
  and DWT  and DWT 

 

54 2018 K, Ren D, 

Li,Wang 

D, et al. 

(D. Wang 

et al., 

2018) 

RBFSV M XJU 

Decompo- 

sition 

10 99.4 Existence 

of muscle 

artifact in 

long-term 

scalp EEG 

recordings 

 

55 2018 Faust et 

al. (Faust 

et al., 

2018) 

SoftMax, 

2D CNN 

Bern- 

Barcelona 

data 

Wavelet 

transfor- 

mations 

(DWT) 

_ 94.5 Low 

accuracy 
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56 2018 Chen et 

al. 

(X. Chen 

et al., 

2018) 

SoftMax, 

LSTM 

Zenodo Wavelet 

transfor- 

mations 

(DWT) 

5 90 Low prec 

57 2018 Hussein 

(Hussein 

et al., 

2018) 

SoftMax, 

LSTM 

Zenodo Fully 

connected 

(FC) RNN 

15 96 High 

training 

time 

58 2018 Gasparini 

et al. 

(Gasparini 

et al., 

2018) 

SoftMax, 

SAE 

Reggio 

Calabria 

data 

Time- 

frequency, 

CWT 

_ 86.5 Low Sen, 

Spec, Acc 

59 2018 Karim et 

al. 

(Karim, 

Karal, & 

Çelebi, 

2018) 

SoftMax, 

SAE 

BONN DWT _ 91 Confusion 

matrix 

Low prec 

60 2018 Yuan et 

al. (Yuan 

et al., 

2018) 

SoftMax, 

SAE 

CHB- 

MIT 

AE and 

SE 

23 92.61 _ 

61 2018 Karim et 

al. 

(Karim, 

Güzel, et 

al., 2018) 

SoftMax, 

DSAE 

Kaggle ESD 

function 

2000 94 _ 

62 2018 Birjandtalab ANN 

et al. 

(Birjandtalab 

et al., 2018) 

CHB- 

MIT 

 

 

 
9 

Spectral 

power 

_ 86 High 

detection 

high 

63 2018 Sharma LS SVM 

et al. 

(Sharma 

BONN  _ 122 98.6 _ 

 
 

68 2018 Raghu Computerized Bern- time, 28 95.90 _ 
  and Auto- Barcelona frequency,    

  Sriraam mated database and    

  (Raghu & Detection statistical    

  Sriraam, of Focal domain    

  2018) Epileptic     

   Seizure(CADFES)     

69 2019 Al LS-SVM BONN Uses _ 99 _ 
  Gahyab  simple    

  et al.  FFT-    

  (Al Ghayab  DWT for    

  et al.,  feature    

  2019)  extraction    
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70 2019 Tzimoutra Random Bonn and Use of 21 99.74 _ 
  et al. forest Freiburg DWT for    

  (Tzimourta  feature    

  et al.,  extraction    

  2019)      

71 2019 Bizopoulos SoftMax, BONN 2D and 4097 85.3 Low 
  et al. standard 3D phase   detection 
  (Bizopoulos networks space   accuracy 
  et al.,  presents    

  2019)  the    

    intrinsic    

    mode and    

    functions    

72 2019 Ozerdem Softmax, Freiburg Frequency- 23 93.6 Low spec 
  and Turk 2D CNN time   for multi- 
  (Türk &  domain,   class 
  Özerdem,  CWT    

  2019)      

73 2019 Sui et al. SoftMax, Kaggle FT _ 91.18 High time 
  (Sui et 2DCNN    complex- 

  al., 2019)     ity 

74 2019 Tian et MV-TSK- CHB FFT, _ 95.33 _ 
  al. (Tian FS, 2D MIT WPD    

  et al., CNN     

  2019)      

75 2019 LeCun Softmax, Bern Feature 3800 95.90 High 
  and 2D CNN Barcelona extracts   detection 
  Triesch  from   time 
  (Lu &  CNN    

  Triesch,      

2019) 
10 

76 2019 San- Softmax, CHB- DWT 500 96.10 High 
  Segundo 2D CNN MIT    training 
  et al.      time 
  (San-       

  Segundo       
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al. (Raghu et al., 2020) 

KNN, adaboost Barcelona frequency men-tioned 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

94 2020 Ilakiyaselvan DL University spatial 4097 Binary UoB 
  et al. of Bonn and  (98.5) dataset is 
  (Ilakiyaselvan (UoB) temporal  Tertiary clean 
  et al.,  features  (95 ) dataset. 

 
 
 
 
 
 
 

85 2019 Chen et 
al. 

(S. Chen 
et al., 
2019) 

SVM,Naive 
Bayes 

CHB- 
MIT 

RMS, 
variance, 
energy, 
entropy 

4096 96.55 Low pre 

86 2019 Mursalin 
et al. 

(Mursalin 
et al., 
2019) 

KNN, 
SVM, RF 

BONN 15- 
features 

4097 98 _ 

87 2019 Fasil and 
Rajesh. 
(Fasil & 
Rajesh, 
2019) 

SVM BONN, 
Barcelona 

Energy _ 99.5 _ 

88 2019 Selvakumari LS-SVM 
et al. 

(Selvakumari 
et al., 
2019) 

Class Acc DWT, 
FFT 

23 100 High time 
complex- 

ity 

89 2019 Siddiqui 
et al. 

(Siddiqui 
et al., 
2019) 

Random 
forest, 

boosting, 
decision 

forest 

Bern 
Barcelona 

Nine 
statistical 
features 

_ 96.67 Time 
complex- 
ity is high 

90 2019 Wang et 
al. 

(X. Wang 
et al., 
2019) 

RF 
classifier 

BONN Mean, std 
dev, 

STFT, 
energy 

500 96.7 Low sens, 
spec for 
multi- 
class 

91 2019 Lahmiri 
and 

Shumel 
(Lahmiri 

& 
Shmuel, 

2018) 

KNN and 
GHE 

BONN _ 5 100 _ 

92 2020 Ahmed- 
Aristizabal 
(Ahmedt- 
Aristizabal 

et al., 
2020) 

SoftMax, 
LSTM 

Mater 
advanced 
epilepsy 

Unit 

Computer- 
based 

analytical 
ap- 

proaches 

500 95 _ 

93 2020 Raghu et RF, Bern 11 Time- _ 97.60 NFR not 
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pirical mode decomposition) was used to optimize SNR. The 

authors utilised SVM technique for clas- sification, and the 

results showed that the frame- work predicted seizures by an 

average of 23.6 min- utes, with highest prediction time of 

approximately 33 minutes. The suggested method, however, 

accord- ing to the author of (Kabir et al., 2016), "optimum- 

allocated techniques" (OTA) were used to draw sam- ples for 

each of the classes before integrating all the samples. The 

features were then extracted from the OTA set which included 

splitting of EEG signals into subsets in accordance with time 

frame. 

Patrick et al., (Luckett, 2018), used machine Learning 

techniques to integrate three techniques to predict and detect an 

epileptic episode.The first tech- nique, known as the p-s 

adjacency spectrum, used a plot of the p-s adjacency spectrum 

as a diagnos- tic markers for seizure detection and had 97% 

accu- racy rate. The second method, L spectrum, which 

achieved a 93% accuracy rate, used spectrum mea- surements 

as a diagnostic marker for seizure predic- tion. The last 

technique was p-s graph analysis, which utilized a subset of the 

edges of the phase- space graph as a diagnostic biomarker for 

diagnos- ing seizure and learning accuracy. The approach 

received 93% and 80% accuracy assessment. The author 

combined the p-s analysis approach and DL (deep learning) 

with the CNN algorithm to detect the commencement of 

seizures with 100% accuracy. In a number of studies, an 

ensemble classifier was employed to characterize epileptic 

episodes. 

In (Subasi et al., 2019), the authors developed a new approach 

for detecting epileptic seizures. They employed hybrid SVM to 

calculate SVM parame- ters by combining a "genetic 

algorithm" (GA) with "particle swarm optimization" (PSO); 

this model ob- tained 99.38% accuracy. 

Similar to this, Nair et al. (Nair et al., 2021) came to the 

conclusion that AI-based approaches have greatly aided in the 

diagnosis, prediction, and management of epilepsy for a society 

with better ac- cess to healthcare. 

ML approaches for predicting epileptic seizures were 

compared, along with their effectiveness, by Lekshmy et al. 

(Lekshmy et al., 2022). According to the data, the RF (Random 

Forest) and LSTM (Long 

Short Term Memory) algorithm achieved the highest accuracy 

rates of 97% and 98% respectively. 

Similar to this, a complete examination of AI and ML seizure 

detection strategies was published by Natu et al. (Natu et al., 

2022). Techniques for preparing data, methods for the 

classifiers or pre- diction model’s channel selection, and other 

subjects were covered. Also, the limitations and shortcomings 

of this field of study were highlighted. They recom- mended 

feature selection method, dataset labelling and research into 

deep learning algorithms as a cure. Using correlation dimension 

(CD), authors in (Brari & Belghith, 2021) introduced a unique 

ML technique to epilepsy prediction and attained 100% 

accuracy. Due to a limited number of features and a unique mix 

of subsets, the proposed model demon- strates a significantly 

faster convergence than com- parable approaches in the 

literature across the same 

dataset. 

In (Ilakiyaselvan et al., 2020), scientists suggested using RPS 

(reconstructed phase space) rather than direct EEG data, which 

have chaotic and non-linear behavior and are therefore 

unsuitable for analysis, as a Deep Learning (DL) approach for 

seizure de- tection. With binary and tertiary classification, the 

method had accuracy rates of 98.5% and 95%, respec- tively.   

Bhattacharyya and Pachori (Bhattacharyya & Pachori, 2017) 

employed an information entropy based strategy to decrease the 

amount of EEG signals which was to be processed based on 

intensity fluctua- tions in the EEG signal, before breaking it 

down into smaller bands employing empirical wavelet transfor- 

mation. Each of the sub-band was divided into dis- tinct 

MODES, which showed the frequency and am- plitude 

constituents. A statistical approach was used to extract the 

feature from the individual instanta- neous amplitudes. 

Jacobs et al. (Jacobs et al., 2018) used a multi- stage state 

classifier (MSC) with three RF classifiers to classify a pre-

clinical seizure state. A 5-fold ROC (Receiver Operating 

Characteristic) evaluation was used to evaluate their system, 

which contrasted per- formance under two situations. The 

system having MSC training had a 95% accuracy, while the 

system before training had a 79% accuracy, suggesting that RF 

classifier enhances accuracy. 

Patidar and Panigrahi (Patidar & Panigrahi, 2017) used a 

wavelet with two vanishing moments based on the Daubechies 

filter.     Its adjustable QWT (Q wavelet transform) is filter that 

has the poten- tial to deliver significantly improved time-

frequency resolutions. Filters with lower disappearing 

moments may be employed as well if their capacity to appropri- 

ately deconstruct signal information without spend- ing a large 

amount of resources is intentionally lim- ited. The Kraskov 

entropy, which utilizes a distance function, is employed in the 

system’s feature extrac- tion stage. 

Mahalanobis distance function is the distance func- tion that 

can be used in combination with a two class discriminating test, 

namely the Wilcoxon rank test, to increase performance. 

Wang et al. (D. Wang et al., 2018) used a 5th level wavelet 

decomposition, which may assure efficient signal 

decomposition with effective resource trade- offs if 5 sub-

bands are required. 

Its dimensions were also kept to a minimum of five. When 

compared to different sub-bands of EEG signals, WDTF also 

enhanced selectivity. The feature extraction method produced 

an enormous vector with dimensions of 19*19. This dimension 

was reduced to 19*1 by using the directed transfer 

function.Because this dimension computation was re- lated to 

energy and entropies like Shannon’s entropy assisted in 

reduction. Further, the employment of an elliptic band - pass 

filter before signal decomposition could increase frequency 

separation. 

The Stockwell transform is based on an N-point discrete 

Fourier transform derivative developed by Kalbkhani and 

Shayesteh (Kalbkhani & Shayesteh, 2017). It had good time 

and frequency resolution. Other distance functions, such as the 

Hausdorff or Mahalanobis, can be used to improve their use of 

the nearest neighbour classifier. 

In the study by Guergachi, Kaleem and Krish- nan citer710, the 

dominant wavelet was the level five Daubechies db6 wavelet 

with 6 vanishing mo- ments. 

In this scenario, a greater proportion of disappear- ing moments 

was employed as they were more com- parable to the observed 

EEG signals. 

The adoption of DT-CWT by Chen, Zhang and Li (Li et al., 

2017a) in the decomposing phase was useful since it reduced 
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the difficulties of unreal fre- quency, which gave way to the 

halfway band division. They could improve the system by 

using a proper LS SVM classifier. 

The authors of (Jia et al., 2017) employed fea- ture extraction 

stage that used statistical approaches based on spectral 

moments. This approach was sim- pler to put into effect on 

hardware and provided greater mode mixing separation. In 

certain investiga- tions, the authors used a fairly well-founded 

decom- position technique. The key strength of the study by 

Chen, Zhang, and Li (T. Zhang et al., 2017) was the application 

of VMD based decomposition, which iso- lated the 2 harmonic 

signals of comparable frequency. HVD (Hilbert vibration 

decomposition) was used by Mutlu (Mutlu, 2018) which could 

decompose sig- nals in both narrow and wide bands. The LS 

SVM classifier too was effective due to its inequality type 

limitations. Butterworth low pass filter was included in the pre-

processing stage which could be altered 

with improved digital filters like elliptic filters. 

The undulated local and global feature detection technique 

employed by Paul and Parvez (Parvez & Paul, 2016) was based 

on epochs, allowing it to han- dle the decomposition more 

accurately. Its applica- tion for example in phase correlation, 

worked by mov- ing information between two correlated 

signals using the Fourier transform. This approach made no use 

of any specific decomposition blocks. The window regu- 

larization procedure, on the other hand, was difficult and could 

be replaced by alternative approaches like the Hadamard 

transform. 

The study by Ibrahim, Djemal, and Alsuwailem (Ibrahim et al., 

2018) attained 100% accuracy by combining the discrete 

wavelet transformation with a Rosenstein algorithm, which was 

known to improve system robustness to noise. The next step for 

this system could be to test it with larger datasets in the future. 

The two-dimensional system and decompo- sition method 

utilized by Khan et al. (Khan et al., 2017) were focussed on 

Mexican hat mother wavelet function. By utilising weight 

sharing, their system had the benefit of reducing the trained 

parameter uti- lized in the neural network. 

Shiao et al. (Shiao et al., 2016) had the design choices and 

performance metrics closely related to clinical objectives. 

However, their decision to use all channels for feature 

extraction was resource-intensive as they generated large 

dimensions for the feature extraction (nearly 96 to 120 

dimensions) despite us- ing cross-channel correlation. For 

feature dimen- sions, techniques such as principal component 

analy- sis (PCA) methods can be used. 

For dealing with high-frequency oscillation (HFO) signals, Jrad 

et al. (Jrad et al., 2016) employed a seizure detection method 

with exact non stationary signal decomposition. Its time-

frequency localization has also been enhanced. It was also 

advantageous to use Gabor atoms because they were 

synchronised to degrade signals within the physiological band. 

In their research, the authors of (Li et al., 2017b) employed an 

EA (wavelet-based envelope analysis) to identify envelope 

with the HT (Hilbert transform) and estimated the enclosure 

spectrum at each band. Its technology may detect slight but cru- 

cial changes in EEG waves. They also used a simple statistical 

model with low dimensions to extract fea- tures. 

The procedure given in Jaiswal and Banka’s work (Jaiswal & 

Banka, 2017) used a segmentation technique that was 

computationally straightforward, meaning that capabilities 

were effectively managed during the implementation stage. 

The ANN imple- mentation was efficient, however the CNN 

classifier outperformed it. Tsiouris et al. (Tsiouris et al., 2018) 

described a system that used machine learn- ing (unsupervised) 

classification method that did not require prior knowledge. It 

also incorporated an en- ergy based feature extraction stage that 

required lit- tle technology to implement. 

Goksu’s (Göksu, 2018) paper was a good illustra- tion of using 

an appropriate wavelet order for such a system. Despite the fact 

that three levels of wavelet transform were used, high accuracy 

was achieved, saving resources. The entropy used in the feature 

extraction phase was also simple, allowing useful in- formation 

to be extracted. 

On a scalp EEG dataset, Usman et al. (Usman et al., 2017b) 

proposed a model that identified the begin- ning of the preictal 

state, a type of state that starts a few minutes just before onset 

of the convulsion, with a raised true positive rate, 92.23%, and 

maximum an- ticipation time frame of 33 minutes and mean 

average duration of 23.6 minutes. 

Usman et al. (Usman & Hassan, 2018) proposed model 

demonstrated that pre-ictal time for predic- tion of epileptic 

seizure is 33.9 minutes, which was far better than observed 

using existing methods. Five univariate features were used to 

predict seizures. The prediction algorithm allowed enough time 

for affected patients to take medication in order to avoid 

seizures where Support vector machines (SVM) was found to 

perform better. K-nearest neighbour, Naive Bayes, and Support 

Vector Machines were three classifiers. SVM accuracy was 

97.07%, with a true positive rate of 88.89%. 

Kitano et al. (Kitano et al., 2018) advocated us- ing a modest 

quantity of data to predict seizures. From CHB MIT database’s 

hours-long capture of 24 patients, researchers only used 20 

mins of data from 9 patients. The data set lasted 20 minutes and 

was composed up of 10 minute of preictal data plus 10 mins of 

interictal data. They extracted zero cross- ing of DWT level 1 

specific coefficients using Discrete wavelet transform on 4 sec 

non-overlapping window frames of 20-minutes of this data. 

Where Sarif et al. (Sharif & Jafari, 2017) pre- sented a method 

for seizure prediction that encom- passes a novel technique for 

feature extraction from EEG. The algorithm begun by 

constructing an em- bedded space from EEG time - series data. 

Then, using an optimised and data-specific Poincare plane, it 

took samples with the majority of the informa- tion. The 

frequency analysis of these fuzzy system was used to determine 

the features in each minute. The qualities with the highest 

variance were then se- lected as ictal characteristics and 

decreased utilizing PCA once more.Finally, the shift from 

interictal to preictal condition was evaluated using SVM to see 

how these unique features could improve the seizure prediction 

algorithm’s performance. 

Yang et al. (Yang et al., 2018) employed PE as a characteristic 

retrieved from iEEG data from the Freiburg hospital. They 

studied 83 episodes from 19 subjects and used an SVM 

classifier with an RBF kernel using 5 second feature segments 

as input. As performance analysis measures, false prediction 

rate (FPR) and sensitivity were used. They averaged 94% 

diagnostic accuracy and 0.11 FPR with a mean du- ration of 61 

minutes. 

Bandarabadi et al. (Bandarabadi et al., 2015a) em- ployed 

relative combination of sub-band spectral strengths of EEG 

recordings among all feasible chan- nel pairings to track 

progressive changes preceding seizures. Using a newly created 

feature selection pro- cess, a series of strongest candidate 

values were fed to SVM in order to identify cerebrovascular 
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condition as preictal or non-preictal. Long-term multi-channel 

invasive and scalp recordings were used to validate the 

proposed algorithm (seizures as 183, time as 3565 h). The best 

results demonstrated a responsiveness of 75.8 percent (66 of 87 

episodes) and 0.1 hour of FPR. The performance was analyzed 

statistically and proved to outperform an analytical randomized 

pre- dictor. 

Direito et al. (Direito et al., 2017) calculated 22 univariate 

features per channel using NW sam- ples and an EEG epoch 

(the observational window). Each feature vector was created by 

concatenating the features calculated from various EEG 

electrodes in order to capture spatial information at the same 

time. To avoid overfitting, SVM was used to dis- cover a 

decision function depending on training and validation sets.   

Bandarabadi et al.   (Bandarabadi et al., 2015b) devised a 

method to predict epilep- tic episodes, which could assist 

epileptic subjects live longer lives. They retrieved spectral 

energy features and then used Support Vector Machines to 

classify them after picking the best ones. They observed 75.8 

percent sensitivity , which meant that their classifier predicted 

66 episodes from a total of 87. They con- cluded that utilizing 

these strategies after narrowing the suggested feature subset 

can improve seizure pre- diction performance. Goal of Abbasi 

et al (Abbasi & Esmaeilpour, 2017)’s research was to increase 

predic- tion accuracy and categorize various epilepsy stages 

from EEG signals. It classified the signal as being in a stable, 

epileptic, and convulsive state. The signal was divided into five 

levels by the authors using the Daubechies-4 wavelet to achieve 

this, although they only used the frequency components up to 

level 4 for analysis. A multilayer perceptron neural network 

was trained using statistical variables like mean, stan- dard 

deviation, maximum, and minimum that were taken from the 

data. The Bonn Database was used to test the classifier’s 

performance, and it was discov- ered that it achieved an 

accuracy rate of 98.33%. 

Sabrina et al.   (Belhadj et al., 2016) established an innovative 

framework for automatic recognition of whole-brain epileptic 

episodes that employs a fast PHA (potential-based hierarchical 

agglomera- tive) Clustering Algorithm and Empirical Mode 

Decomposition (EMD). Different distances between the IMFs, 

such as Euclidian, Batacharay, and Kolo- mogorov, were 

calculated and utilized as input for the PHA cluster. The results 

of the evaluation were very encouraging, with an overall 

accuracy of 98.84%. 

Similarly, Orellana et al. (Orellana & Cerqueira, 2016) 

investigated personalised seizure detection in epilepsy 

employing random forest classification on one-dimensional 

transformed EEG data. 

The authors of (Torse et al., 2017) classified EEG data as non- 

seizure or seizure using an ANN and EMD. Al Gahyab et al. 

(Al Ghayab et al., 2019) sug- gested an improved algorithm for 

detecting seizures in EEG data by combining frequency 

response infor- mation with the InfoGain technique. There were 

four primary steps in the proposed technique. The FFT (fast 

Fourier transform) or DWT (discrete wavelet transform) were 

utilised first. Secondly, each band was separated into k 

windows, with each window con- taining a collection of 

statistical information. Lastly, the retrieved features were 

ranked using InfoGain. Lastly, to categorise the EEG, each 

characteristics were fed into LS-SVM classifier. This 

methodol- ogy was deployed and tested on a reference EEG 

database, as well as compared to other current meth- ods, based 

on several performance evaluation param- eters. 

Tzimoutra et al. (Tzimourta et al., 2019) pre- sented a 

multicenter technique of analysis based on the DWT for 

automated seizure identification . A five level decomposition 

was employed in each EEG segment, and five features were 

derived from the wavelets. The feature vector obtained was 

employed to train a RF classifier, which was subsequently uti- 

lized to differentiate among preictal and interictal data. 

However, Wu et al. (Wu et al., 2021) created a novel method 

for detecting HFOs in iEEG signals. There were three steps in 

this method: preliminary identification, extraction of features, 

and feature cat- egorization. The variable cutoff of Hilbert 

envelopes was employed In the initial detection phase to iden- 

tify EoIs from background activity, boosting the ef- fectiveness 

of HFO detection. To prevent the sub- jective bias induced by 

manually retrieved features, the SDAE network was utilised to 

extract the (time- frequency) domain features of EoIs. The 

(SWAF- ABSVM) ensemble classifier was created to differen- 

tiate between HFOs and observed EoIs. This en- semble 

classifier solved the issue of an imbalanced class between 

HFOs and fHFOs, resulting in better HFO detection 

performance. Dedeo et al. (Dedeo & Garg, 2021) developed a 

method for identifying crit- ical preictal locations and their 

associated frequen- cies in the high gamma band, which covers 

the range of 30 to 100 Hz, in order to diagnose convulsions in 

10 (paediatric) cases at least 30 seconds before seizure 

onset.Further research into the potential fu- ture predictive 

performance of event-related future direction in this higher 

gamma band found that de- tection algorithms must 

accommodate varying inten- sities of a patient’s usual 

extremes. Bizopoulos et al. citer356 described (S2Is) 

Signal2Image as non train- able or trainable prefix units that 

change signals, such as EEG   to image like representation, 

mak- ing them appropriate for learning image based DNN. The 

time performance and accuracy of 4 S2Is (sig- nal as image, 

spectrogram, and both one- and two- layer CNNs) paired with 

a collection of ’base mod- els (LeNet, VGGnet, AlexNet, 

ResNet, DenseNet), in addition to depth-wise and 1D versions 

of the lat- ter were examined. 

Antoniades et al. (Antoniades et al., 2016) inves- tigated 

convolutional neural networks (CNNs) in a subject-

independent manner and discovered mean- ingful features that 

represented IEDs. The model achieved cutting-edge 

classification performance, of- fered insights into the various 

types of IEDs in the group, and was unaffected by IED temporal 

dis- parities. According to the findings of this work, deep 

learning based feature generation is applicable for EEG and 

IEDs in general. 

Park et al. (Park et al., 2018) proposed a deep convolutional 

network-based epileptic seizure detec- tion method.The 

suggested network was constructed for multi channel EEG 

signals using 1D and 2D con- volution layer and took into 

account spatio temporal correlation feature in epileptic seizure 

identification. The temporal evolution of each channel’s EEG 

signal was considered by the 1D convolutional layer, and the 

spatial relationships among EEG channels were considered by 

the 2D convolutional layer. 

Sui et al. (Sui et al., 2019) established a new recognition 

approach for iEEG-based localization of epileptic focals based 

on STFT and CNN with ex- tra preprocessing in his paper, and 

developed a 15- layer CNN architecture for iEEG signal 

categoriza- tion. The findings with 91.8% accuracy revealed 

that this technique worked for localisation of focal seizure area 

with considerably efficient and rapid preprocess- ing step. Turk 

and Ozerdem (Türk & Özerdem, 2019), on the other hand, 

employed a CNN struc- ture to learn the properties of these 

scalogram data, and the classification performance of the 
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structure was compared to earlier studies. 

Faust et al. (Faust et al., 2018) illustrated the application of 

various deep learning algorithms cur- rently in use and Tian et 

al. (Tian et al., 2019) pro- posed a multiview deep feature 

extraction method in an attempt to identify effective features in 

EEG signals, which were critical for accurate seizure de- 

tection. The technique used wavelet packet decom- position 

(WPD) and Fast Fourier transform (FFT) to construct the first 

multi-view features and LeCun (LeCun et al., 2015) and 

Triesch (Lu & Triesch, 2019) contributed to the development 

of a deep CNN model with residual connections that achieved 

state-of-the- art classification of EEG signals in the context of 

epilepsy. 

San-Segundo et al. (San-Segundo et al., 2019) in- vestigated a 

DNN for epileptic EEG signal catego- rization. Two 

convolution layer for feature extraction and 3 fully linked 

layers for classification comprised the deep learning 

architecture. 

The EEG signal provided vital information about the brain’s 

electrical activity. The analysis of these signals was critical for 

the detection of epilepsy. Be- cause of the human aspect, 

epilepsy identification can be subjective and potentially wrong. 

Machine Learn- ing (ML) techniques were created to address 

this issue by removing the human factor. This strategy, how- 

ever, was counter intuitive because it included the use of 

complicated features for epilepsy identification. Akut (Akut, 

2019) at el. created a wavelet based deep learning approach that 

avoided the necessity of ex- tracting features and performed 

considerably better on fewer datasets than existing state-of-the-

art ML algorithms, and Yao et al. (Yao et al., 2019b) devel- 

oped a new method for seizure/non-seizure classifica- tion 

based on an emerging deep learning framework, the 

independent recurrent neural network (IndRNN) (?, ?). The 

time scales were gradually enlarged by this new technology, 

enabling temporal and spatial information to be recovered from 

the regional time duration to the full record. Cross-validation 

exper- iments were used to evaluate the noisy data across 

subjects. 

Chen et al. (X. Chen et al., 2018) suggested an expense 

sensitivedeep active learning strategy to de- tect epileptic 

episodes. To acquire the expense sen- sitive efficiency for the 

sample selection approach in the labelling process, a novel 

generic dual neu- ral network (dual-DNN) in particularly was 

applied. Three types of core neural networks were tested in the 

double DNN: 1D CNNs, recurring neural net- works with 

LSTM units, and recurring neural net- works with GRU( gated 

recurrent units).   Hussein et al. (Hussein et al., 2019) 

established the practi- cal feasibility of epilepsy detection 

strategy based on a deep LSTM (Long Short-Term Memory) 

network that exceeded cutting-edge strategies in seizure de- 

tection efficacy and robustness. In this study, Talathi and 

Vartak (Talathi & Vartak, 2015) concentrated on a recently 

introduced weight initialization using iden- tity matrix for 

recurring weights in an RNN. This initialization was created 

using hidden nodes with non-linear Rectified Linear Units 

(ReLU). A simple dynamical systems perspective on the weight 

initial- ization process was also presented, allowing us to 

propose a modified weight initialization strategy and the author 

(Ahmedt-Aristizabal et al., 2020) demon- strated that recurrent 

deep convolutional neural net- works outperformed traditional 

methods of machine learning for sequence modelling using 

average cross-validation performance. The intuitive salient 

infor- mation of the model, including the placement of the most 

particular properties of a post-stimulus window, was explained 

in further detail. This baseline iden- tification approach in the 

field of mental illness sup- ported the findings of 

developmental and disease im- pacts in the pre-prodromal 

phase of psychosis. 

Yao et al. (Yao et al., 2019a) coupled a develop- ing deep 

learning framework, the independently re- curring neural 

network (IndRNN), with an attention mechanism and a dense 

structure to leverage spatial and temporal discriminating 

characteristics and over- come seizure unpredictability. The 

thick structure was created to allow for optimal information 

trans- mission between levels. 

Hussein (Hussein et al., 2018) presented an efficient seizure 

detection approach that dealt with both clean and noisy data. 

Long Short-Term Memory (LSTM) neural networks were used 

in the proposed method to extract representative EEG features 

relevant to seizures and Birjandtalab et al. (Birjandtalab et al., 

2018) used a Gaussian mixture model (GMM) to de- tect 

epileptic seizures. They obtained satisfactory ac- curacy results 

and an F-measure of 85.1. 

Hussein (Hussein et al., 2018) demonstrated an ef- fective 

seizure detection method that coped with both noisy and clean 

data. The proposed method used LSTM (Long Short-Term 

Memory) neural networks to retrieve representative EEG 

variables related to seizures, Birjandtalab et al. (Birjandtalab et 

al., 2018) utilised a GMM (Gaussian mixture model) to detect 

seizures. They got good overall accuracy as well as 85.1 F-

measure . In order to reliably cat- egorise seizure detection, 

Raghu et al.   (Raghu et al., 2020) proposed a hybrid SVM-

KNN framework that was tested on raw EEG data, with test 

results exhibiting up to 90% accuracy. (Sharma et al., 2018) 

proposed ANN classifier on the EEG activity in the brain 

datasets with time and frequency do- main features in the 

literature. Amin et al. (Amin et al., 2015) introduced tritime 

domain techniques for selecting features in epileptic seizure 

detection em- ploying statistical parameters such as frequency, 

line length, and energy. In a study proposed by Satapa- thy et 

al. (Satapathy et al., 2017a), they applied two model types—

SVM and neural networks (or "black-box" approaches)—on an 

EEG dataset in order to detect seizures. The findings of the 

tested models demonstrated that, when contrasted to other net- 

works, the SVM model was significantly more effec- tive in 

terms of precision and time complexity (sec). Hassan and 

Subasi (Hassan & Subasi, 2016) used GA (genetic algorithms), 

SVM, and PSO (particle swarm optimization) to detect 

seizures. This method reached the optimum accuracy of 

92.38%, Lahmiri and Shmuel (Lahmiri & Shmuel, 2018) 

employed the HE (Hurst exponent) to correctly classify the 

acquired EEG dataset into non seizure and seizure with near 

97% accuracy. Time-domain feature ex- traction approaches 

utilising 9 statistical characteris- tics (kurtosis, standard 

deviation, energy, skewness, mean, line length, mode, entropy 

and Hurst) were de- termined to be appropriate for epileptic 

seizure iden- tification in recent research that explored and 

anal- ysed a range of features (Kumar et al., 2017). 

Similar to this, Donos et al. (Donos et al., 2015) created a 

classifier called decision forest us- ing statistical variables 

(time and frequency domains) extracted out of an EEG dataset 

and obtained accu- racy of up to 93.8% and Hosseini et al. 

(Hosseini et al., 2018) achieved 96.7% accuracy using the RF 

with grid search optimization (RF-GSO) approach. 

A review of the studies looking at ML and AI in epilepsy is 

shown in Table I. It covers the dataset source that was used, the 

ML algorithm that was looked at, and metrics such as feature 

analysis, num- ber of samples, accuracy and limitations that 

were discovered. It demonstrates that ML remains promis- ing 
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for identifying epilepsy with respect to accuracy and other 

metrics. 

6. FINDINGS AND DISCUSSION 
ML has solved various ES prediction issues, includ- ing 

manual, time-consuming and complex analysis methods. 

Interpretation of model is critical, because pattern recognition 

in data is just as important as data fitting. The accurate 

classification of disease and its subtypes is a key challenge in 

biomedicine. Massive amounts of biomedical data are now 

avail- able, which can lead to the identification of more 

extensive sub-types. There are numerous ways wherein ML has 

advanced EEG analysis. The hierarchical architecture of the 

neural networks has greatly expanded the possibilities for 

learning characteristics from raw or slightly processed input. 

We investigated use of various machine learning algorithms for 

detection of epileptic seizure in this study.For instance, 

traditional ML (SVM, KNN and ANN) and RF-based ML were 

taken into consider- ation due to their exceptional efficacy in 

epileptic seizure identification in the prior studies. 

This comprehensive investigation found that tra- ditional ML 

algorithms (KNN, SVM, and ANN) made a significant 

contribution to the analysis of brain information for seizure 

identification. Even so, each approach has benefits and 

drawbacks. SVM, for instance, has proven successful for binary 

clas- sification. It has a larger computation complexity (sec), 

particularly in comparison to KNN and ANN, but delivers a 

greater degree of detection preci- sion than ANN and 

KNN.While KNN can handle high-dimensional datasets, it has 

low detection com- plexity and low performance assessment 

measures (precision, recall, and F1-score). The precision, 

recall, detection accuracy and F1-score can all be increased by 

utilising a hybrid classification method (SVM-ANN or SVM-

KNN) that integrates multiple ML models. Hybrid models are 

computationally more efficient than single design models, 

which restricts their utility in practical applications even if they 

can surpass single models in the accuracy of their predictions. 

However, a key issue with classical Ml techniques is that the 

reasoning process utilised to produce their predictions is 

challenging to comprehend and is frequently left unexplained 

for logical rules and patterns hidden within the model (the 

blackbox idea). They should not be used to extract relevant 

information from datasets. 

For instance, the RNN model often executes more quickly than 

CNN and LSTM, but it has worse recall, accuracy and 

precision. LSTM, on the other hand, has time complexity 

challenges when used with CHB-MIT, BONN, and other 

datasets for seizure detection.While using traditional ML 

models for epileptic seizure detection, feature extraction is a 

key component of the overall scheme. Therefore, selecting the 

right feature extraction techniques is crucial for analyzing EEG 

signals. 

Recent studies that investigated and analysed many 

characteristics discovered that time-domain based feature 

extraction techniques with 9 statistical datasets (entropy, 

kurtosis, standard deviation, mean, energy, skewness, line 

length, mode, and Hurst) might be useful for epileptic seizure 

identi- fication. It is because the aforementioned features, when 

used with ML models for categorising epileptic seizures based 

on EEG signals, have been demon- strated to generate average 

accuracies of 98–100%. Furthermore, it is crucial to reduce the 

model’s sophistication by utilising a selection approach to pick 

a more manageable number of useful features. It leads to an 

examination of several feature selection approaches used 

mostly for dimensionality reduction. 

The improvement of patients’ quality of life is the main 

objective of ES prediction research. The bottleneck remains the 

expense-effective and efficient hardware implementation, not 

withstanding the current state of ML as it relates to ES 

prediction that we have provided in this study. The seizure 

detection system also employed decomposition, pre- 

processing, feature extraction, classification, and post-

processing. Among the ML models, the feature engineering-

based traditional ML models account for an amount of 

applications. Whereas excessive extraction of features will 

prolong the computa- tion time and cost. For an actual system 

for ES predictions to be practical, rapid predictions with low-

power equipment and lower processing costs are required. 

One of the key causes of a prediction algorithm’s poor 

performance is missing observations. Because of failure in 

communication between implantable or wearable devices with 

limited storage space and storage device for a number of 

reasons, there are often zero or almost completely zero in the 

seen data. The ML field has paid little attention to learning from 

faulty or missing data. Yet, missingness signals in systems that 

can provide significant amounts of information for prediction 

are necessary. 

The complexities and one-of-a-kind objectives of epilepsy 

applications might considerably inspire the advancement of 

machine learning algorithms. The heterogeneity of epileptic 

patients needs tailored medical management, which 

necessitates proper diag- nosis of every patient’s stratification, 

such as the pri- mary cause of epilepsy, epilepsy location and 

epilepsy symptoms (Alaverdyan & Lartizien, 2018; Zhao, 

2017). Because epilepsy prognosis is so important to a patient’s 

well-being, every patient’s longitudi- nal healthcare records 

should be kept and examined. These are compelling reasons for 

developing ML the- ory and methods. 

7. FUTURE DIRECTIONS 
The interaction of various machine learning tech- niques that 

can be used more effectively in the con- text of epilepsy 

diagnosis and prognosis will be high- lighted. Then we’ll go 

over approaches for applying machine learning methods to our 

data, such as tra- ditional machine learning approaches and 

their vari- ations.Following that, the use of ML as well as tasks 

specifically related to prognosis and diagnosis will be further 

examined. Finally, we will examine current achievements, 

problems, and potential future initia- tives in this subject with 

the intention of paving the way towards computer-aided 

epilepsy diagnosis and prognosis. 

8. RESEARCH GAP 
Dataset availability is a serious difficulty in epilepsy. As a 

result, there is an immediate need to aggre- gate, normalize, and 

process diverse practice records across the world in order to 

build a comprehensive, uniform, and holistic dataset. The 

optimum prepro- cessing methodology for the normalised and 

unified dataset must be determined because preprocessing 

method influences predictive performance and model success. 

It is worth noting that much work remains to be done to enhance 

the precision of feature se- lection methods.For future 

investigation, the right system combinations should be chosen 

before modifying the parameters associated with the classifiers 

stated here for enhanced quality. Under certain con- ditions, 

channel selection can reduce computing loads for both pattern 

recognition and feature extraction , enabling online 

computation. 

It is also feasible to use cloud computing linked via 5G 

technology to perform real-time EEG record- ing interchange. 
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Deep learning is a hot technique in image processing when it 

comes to ML methods. Sev- eral electrodes are used to record 

EEG signals, which increases the amount of the received signal. 

This makes analyzing multichannel EEG signals more dif- 

ficult. ES detection and prediction are often defined as tasks 

involving supervised learning requiring la- belled dataset, 

which is a costly, time-consuming, and tedious operation. 

Using extra training data is a nat- ural way to improve the 

efficacy of ML approaches. 

9. CONCLUSION 
In this study, we thoroughly evaluated the relevant literature 

and described why early ES prediction is critical, as well as how 

ML approaches are employed for ES prediction. In the scope of 

feature selection, EEG analysis, ES prediction and detection 

and the assessment of prediction or detection methods, ES 

prediction is a vast topic. This research sought to contrast and 

narrow down the vast number of ex- isting strategies for 

Electroencephalography seizure identification and 

categorization based on their im- proved performance. The 

objective of this overview was to examine seizure detection 

strategies currently published in a number of studies.It is simple 

to com- pare alternative methods when all of the typical per- 

formance metrics parameters (e.g., specificity, sen- sitivity and 

accuracy) are available. In contrast to the results of this article, 

most previous survey ar- ticles solely focused on the EEG 

analysis, only with a few covering the advancements of 

prediction meth- ods; whilst we tried to provide insights by 

taking into account aspects of prediction techniques, feature se- 

lection and evaluation methods, among others. 

Furthermore, we identified research gaps and fu- ture work that 

require further investigation. 
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