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ABSTRACT 
KNN (K-nearest neighbor) is an important tool in machine 

learning and it is used in classification and prediction problems. 

In recent years several modified versions of KNN search 

algorithm have been developed and employed to improve the 

efficiency of search. KNN has enormous real life applications 

and is widely used in data mining. Data structures like KD tree 

(or K dimensional tree) are used for implementing KNN 

effectively. A KD tree is a multidimensional binary search tree 

that can be balanced or unbalanced. With the increase in 

dimension of space the computational time of KNN-KD search 

goes high. Certain modifications that can help in improvising 

the search time has been developed in recent years. 

General Terms 

Data mining and Data Structures. 

Keywords 

KNN search, KD tree, Supervised Machine Learning, KNN-
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1. INTRODUCTION 
KNN (K – Nearest Neighbor) is a non-parametric lazy learning 

algorithm and is used to find K (n positive integer) nearest 

neighbor of a given query point by searching every point in the 

dataset. In lazy learning, machine stores the data at training 

time and delays learning until classification time. The nearest 

neighbor search was first introduced in 1951, by Fix and 

Hodges in their technical report which was never published as 

an official paper. Later Silverman and Jones [22] wrote 

commentary on this technical report thereby re-introducing the 

concept briefly. Cover and Hart [6] first proposed that KNN 

can be used to solve classification problems in machine 

learning. KNN performs best when points are in lower 

dimension but increase in dimension creates an over-fitting 

problem and exponential growth in computation time [30]. 

Grouped techniques like weighted, reduction, additive, reverse, 

continuous, principal axis, etc. are used for implementing 

nearest neighbor search [18]. KNN search is used in pattern 

recognition, data compression, computational statistics, 

information retrieval, databases and data mining, etc.  It labels 

the given object by finding the most similar labelled objects and 

copying their labels. There are numerous distance measuring 

formulas used in metric and non-metric spaces to calculate the 

distance of a query point from points in the dataset. 

Performance of KNN is affected by the type of distance 

formula used. Andoni [1] proved that the classical approach of 

nearest neighbor search fails when used with certain distance 

formulas like string edit distances. This problem is solved by 

using the Ulam distance formula.  

A data structure is a format of data organization, management 

and storage. It can be thought of collection of data values and 

their relations. Different data structures are used for 

implementing nearest neighbor search. Ball tree, KD tree, LSH 

(Locally sensitive hashing) are few of them. These techniques 

use structure for indexing points and searching points.   

Binary search tree is a key in building a multidimensional 

binary search tree. KD trees are binary trees which stores K- 

dimensional data. It is used to partition space into smaller 

number of cells in a hierarchical manner.  A major challenge in 

optimizing search arises when KD is unbalanced. In an 

unbalanced tree nodes appear to cluster heavily on one side. 

There is no choice to reach the leaf node on heavy side as 

cutting branch is impossible. Traversing each and every node 

is required thereby, increasing the run time and making the 

search linear. This issue is resolved by building a balanced tree 

in which runtime is logarithmic.  A balanced KD tree is built 

by dividing the data points using median. Bentley [3] showed 

that if the runtime of finding median, of n data points is of 

order 𝑛, then runtime of building balanced KD tree is of 

order 𝑛 log 𝑛. It is complicated to find an algorithm for 

computing median with runtime of order 𝑛. Quicksort 

algorithm [10] finds median with run time of order 𝑛 in the best 

case. Merge sort algorithm [8] computes median whose run 

time is of order 𝑛 log 𝑛. This helps in building balanced KD tree 

whose runtime is of order 𝑛. Heapsort algorithm [23] does the 

same process. Improved version of KD tree search algorithm 

[20] performs well in case when data set points belong to higher 

dimension. This algorithm finds an 𝑐 approximate nearest 

neighbor where 𝑐 > 1 is a parameter denoting how closer is the 

searched point from its neighbors. An 𝑐 approximate nearest 

neighbor is a point at most 𝑐 times the distance of nearest 

neighbor. Brown [4] proposed a method of building balanced 

KD tree for 𝑛 points in 𝑘 - dimension whose runtime is of order 

𝑘𝑛 log 𝑛 in the worst case. Zhai [25] proposed an improved 

KNN algorithm that increases the efficiency of classification 

and it improves KNN search, by combining Principal 

component analysis (PCA) with KD tree data 

structures.                  

2. BINARY SEARCH TREE 
A binary search tree is an enhanced binary tree where a node 

will have a child to the left if the key value of the child node is 

lesser than or equal to the key value of parent node value. The 

child node will be attached to the right if the key value of the 

child node is greater than the key value of the parent node. A 

binary search tree can be skewed or balanced. If the left sub-

tree and right sub-tree have the same number of nodes then the 

tree is balanced otherwise it is called skewed. A diagram of 

balanced binary search tree shown in Fig 1:  

 
Fig 1: Balanced Binary Tree of level 1 
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3. KD TREE 
KD tree is a K-dimensional non-linear data structure, which is 

used for space partitioning based on certain conditions. It can 

be balanced or unbalanced. It is used for storing the data in an 

efficient manner so that certain search algorithms can be 

implemented in optimal way thus reducing the computation 

time. Balanced binary search tree leads to faster construction of 

space partitions and new query search is also optimal in these 

cases. 

3.1 Construction of balanced  
For given points in K-dimension, a balanced binary search tree 

is constructed using median.  If 𝑚1, 𝑚2, ⋯ , 𝑚𝑛 are 𝑛 discrete 

data points the median is 𝑚𝑛+1

2

, if 𝑛 is odd. If 𝑛 is even the 

median is 
1

2
(𝑚𝑛

2

+ 𝑚𝑛

2
+1). 

Example: Data points (1, 3), (5, 7), (2, 6), (9, 4), (4, 8), (7, 10), 

(3, 9).  

Step 1: Sorting in ascending value of first coordinate (i.e. 𝑥 

coordinate), the new data set is (1, 3), (2, 6), (3, 9), (4, 8), (5, 

7), (7, 10), (9, 4). Median of 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒  of these points is 

4. Thus select the root node as (4, 8). Draw the line 𝑥 = 4 as 

shown in fig 2: 

 

Fig 2: Step 1 Balanced Search Tree 

Step 2: Left Sub-Tree 

For the left sub-tree take the points with 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 less 

than or equal to 4. The points are (1, 3), (2, 6), (3, 9). Now 

sorting these points in ascending value of the second coordinate 

(i.e. 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒) the new list is (1, 3), (2, 6), (3, 9). Median 

of 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of these points is 6.Thus, (2, 6) is selected as 

root of the left sub-tree. Compare 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of these points 

with 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of (2, 6). Thus (1, 3) will form the left child 

and (3, 9) will form the right child. Draw the line 𝑦 = 6, 𝑥 = 1, 

and then 𝑥 = 3  as shown in fig 3: 

 

Fig 3: Step 2 Balanced Search Tree 

Step 3: Right Sub-Tree 

For the right sub-tree, points with 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 greater than 4 

are selected and they are (5, 7), (7, 10), (9, 4). Arrange these 

points in ascending value of 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 the new list as (9, 

4), (5, 7), (7, 10). Median of 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of these points is 

7. Thus the root of the right sub-tree is (5, 7). Now (9, 4) will 

form the left child and (7, 10) will form the right child as shown 

in fig 4:   

 

Fig 4: Step 3 Balanced Search Tree 

Draw the lines 𝑦 = 7, 𝑥 = 9 and 𝑥 = 7 as shown in Fig5: 

 
Fig 5: Step 3 Space Partition 

4. K NEAREST NEIGHBOR (KNN) 
KNN is a branch of supervised machine learning used to solve 

classification and prediction problems that occur in daily life. 

K is an integer denoting the number of neighbors taken for that 

particular problem. Methods like cross validation is used to find 

the optimal values of K. Trial and error method on given data 

with different values of K is also used to find the optimal 

number of neighbors. Important steps in KNN algorithm are: 

1. Find the optimal value of K as mentioned above. 

2. Calculate the distance between the query observation 

and given observations. 

3. Rank the observations based on the distances 

measured in increasing order with rank 1 given to 

observations with minimum distance. 

4. Arrange the observations based on rank and 

determine the K nearest neighbors. 
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5. Gather the category of nearest neighbors. 

6. The majority nature of the category of these K 

neighbors is the prediction of the query observation. 

4.1 Example on Classification  
Consider the data in Table 1 of a soap manufacturing company: 

Table 1: Soap Data 
Potassium 

Content in mg (𝑥) 

PH (𝑦) Category 

12.6 7 Good 

9.5 8 Bad 

9.8 9 Bad 

12.1 10 Good 

12.8 7 Good 

9.1 9 Good 

12.2 8 Bad 

 

Company manufactures a new soap with Potassium content 

equal to 12 grams and PH value 9. Classify new soap a good or 

bad by doing three neighbor test and using square of Euclidean 

distance which is given by  

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2. 

Data given in Table 2 is obtained after finding the distance 

and arranging the data based on rank. 

Table 2: Arranged Data 

 

Potassium 

Content in 

mg (𝑥) 

PH 

(𝑦) 

Category 𝑑((𝑥, 𝑦), (12,9)) Rank 

12.1 10 Good 1.01 1 

12.2 8 Bad 1.04 2 

12.6 7 Good 4.36 3 

12.8 7 Good 4.64 4 

9.8 9 Bad 4.84 5 

9.5 8 Bad 7.25 6 

9.1 9 Good 8.41 7 

 

The first three ranks are the three nearest neighbors of the 

query observation (12,9). From these three nearest neighbors 

two are in good category. Since the major category falls under 

the good category, thus the soap is declared good.  

4.2  Example on Prediction 
Given set of observations: 
(1, 4), (2, 9), (4, 8), (7, 2), (9, 9), (3, 5), (6, 3), (8, 0) and if 

the query observation is (5, -) with missing 𝑦 coordinate then 

use distance formula: 𝑑(𝑥1, 𝑥2) = |𝑥1 − 𝑥2|. 

Table 3Distance from Query 

Observations(𝑥1, 𝑦1)) 𝑑(𝑥1, 5) Rank 

(1, 4) 4 4 

(2, 9) 3 3 

(4, 8) 1 1 

(7, 2) 2 2 

(9, 9) 4 4 

(3, 5) 2 2 

(6, 3) 1 1 

(8, 0) 2 2 

 

If 𝑘 = 5 then there is a tie in observations with rank 1 and rank 

2 hence choose 𝑘 = 2 in order to avoid such clashes. The two 

nearest neighbors are (6, 3) and (4, 8). The predicted 

𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of the query (5, -) is the average of 

𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 of the nearest neighbors and it is 
3+8

2
  = 5.5. 

4.3  Improving KNN 
The computation cost of KNN search is high and the accuracy 

of classification is affected by the selection of distance formula. 

Survey report [12] gives three main issues in implementing 

KNN along with some proposed solutions. 

4.3.1 KNN is affected by the Choice of Distance 

Formula Selected. 
A data point 𝑥 having 𝑛 attributes say 𝐴1, … , 𝐴𝑛 is denoted by 

the vector ((𝑎1(𝑥), … , 𝑎𝑛(𝑥))), where 𝑎𝑖(𝑥) denotes value of 

attribute 𝐴𝑖 , for 1 ≤ 𝑖 ≤ 𝑛. In most cases Euclidean distance is 

employed that uses each coordinate for measuring distance. 

Thus for large values of 𝑛 computation cost is very high. A new 

approach [17] eliminates least relevant attributes from the 

space thereby reducing the computation time. Another method 

calculates the distance by attaching weight to each attribute 

depending on their importance. If 𝑤1, … , 𝑤𝑛 are the weights 

attached to attributes 𝐴1, … , 𝐴𝑛  then the distance formula used 

for measuring the distance between any two instances say 𝑥 and 

𝑦 is  

𝑑(𝑥, 𝑦) =  √(∑ 𝑤𝑖
2(𝑎𝑖(𝑥) − 𝑎𝑖(𝑦))

2
𝑛

𝑖=1

) 

 

4.3.2  KNN is affected by Method Used for 

Finding K 
Finding the optimal number of neighbors is important for 

accuracy of classification. SNSB (Selective neighborhood 

naïve Bayes) model [24] finds the best value of K. The 

computation time of this model is high hence it is less efficient. 

Another efficient method to find the value of K is cross 

validation. It is done by crossValidate () function in the file 

ofweka.classifier.lazy.IBK.java. DNNAW (Dynamic K-

nearest neighbor naïve Bayes with attribute weighted) [13] 

determines the best value of K by combining SNSB with 

weighted attribute technique. In this method, attributes are 

weighted first and then machine learns a local naïve Bayesian 

classifier for the test data. 

4.3.3  KNN is affected by method used for voting 
A simple method to classify or label a query attributes is to 

label it with maximum vote obtained from labels of its K 

neighbors. KNNDW (K-nearest neighbor with distance 

weighted) [17] is another approach to label the query. In this 

method votes of different neighbors are weighted based on their 

distance. Combining KNN with naïve Bayes [15] is another 

technique. LWNB (locally weighted naïve Bayes) [7] weighs 

K nearest neighbors first and then built a local naïve Bayes. 

ICLNB (Cloning local naïve Bayes) generates a number of 

clones of each neighborhood. These clones are added to 

training data and then naïve Bayes is trained on this expanded 

data. 

5. APPLYING KNN IN KD TREE 
Finding K nearest neighbors of a query observation using KD 

trees is done by traversing a sub-tree based on minimum 

distance. This process helps in pruning a sub-tree, thus saving 

the time in finding the nearest neighbor. The method for two 

dimensional data is discussed and it can be generalized to any 

data set in finite dimension. The smallest box containing all the 
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data points in a region of a space partition is called a tight box. 

If the query observation belongs to any tight box then the 

minimum distance is set to be infinite. 

5.1. Steps in Algorithm 
1. Compute distance of query and root and call this as 

minimum distance. 

2. At level one if 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of query is greater 

than 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of root then traverse the right 

sub-tree first and then left sub-tree otherwise 

traverse left sub-tree first and then right sub-tree. 

Sub-tree traverse (right or left):    

• Traverse each data point in a sub-tree using  

𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 and 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 

alternate.  

• While traversing a sub-tree check if the 

query belongs to tight box corresponding 

to left sub sub-tree or right sub sub-tree. If 

it does not, then find the distance between 

the query point and the tight box. If it is less 

than minimum distance then traverse that 

sub sub-tree or else prune that sub sub-tree. 

• Find the distance between query 

observation and data point at each level of 

sub sub-tree. If this distance is less than 

current minimum then update this value as 

minimum distance. 

 

3. From step 2, minimum distance and one nearest 

neighbor is found. Delete the nearest neighbor and 

repeat all processes again to get the second nearest 

neighbor. Continuing to get all K nearest neighbors. 

Example: Data points (1, 3), (5, 7), (2, 6), (9, 4), (4, 8), (7, 10), 

(3, 9). Query observation (4.5, 10). 

 
Figure 6: Nearest Neighbor 

 
Figure 7: Nearest Neighbor 

Step 1: At level 1, root is (4, 8) and distance of query from root 

is 𝑑((4, 8), (4.5, 10)) = (4 − 4.5)2 + (8 − 10)2 = 4.25. 

Therefore set the minimum distance to 4.25. Note that  

𝑞𝑢𝑒𝑟𝑦 𝑥  𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(4.5) > 𝑟𝑜𝑜𝑡 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(4)  

traverse right sub-tree first and then left sub-tree. Since the 

query lies in the space partition corresponding to the right sub-

tree, do not measure the distance of the query from the tight box 

corresponding to this sub-tree. 

Step 2 (Right sub-tree traversal):  

At level 2, root is (5, 7) (see fig 5.1.1), and the distance of query 

from root is 𝑑((5, 7), (4.5, 10)) = (5 − 4.5)2 + (7 − 10)2 =

9.25. Since this distance is greater than the set minimum 

distance (which is 4.25), do not update minimum distance. 

Since 𝑞𝑢𝑒𝑟𝑦 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (10) >
𝑟𝑜𝑜𝑡 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (7) traverse right child first and then left 

child. 

Right child traversal 

Right Child is (7, 10) and 𝑑((7,10), (4.5, 10)) = (7 − 4.5)2 +

(10 − 10)2 =  6.25. Since this distance is greater than the set 

minimum distance (which is 4.25), do not update minimum 

distance. 

Left child traversal 
Left Child is (9, 4) and 𝑑((9, 4), (4.5, 10)) = (9 − 4.5)2 +

(4 − 10)2 =  56.25. Since this distance is greater than the set 

minimum distance (which is 4.25) do not update minimum 

distance. Now the query lies in right part of partition thus find 

the distance of query from tight box corresponding to left sub-

tree as shown in fig 8: 

 
 

Figure 8: Query Distance from Tight Box 

 

Step 3 (Left Sub-tree traversal) 

At level 2, root is (2, 6) (fig 6) and the distance of the query 

from root is 𝑑((2, 6), (4.5, 10)) = (2 − 4.5)2 + (6 − 10)2 =

22.25. Since this distance is greater than the set minimum 

distance (which is 4.25), do not update minimum distance. 

Since 𝑞𝑢𝑒𝑟𝑦 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑒 (10) > 𝑟𝑜𝑜𝑡  𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(6) thus 

traverse right child first and then left child. 

Right child traversal 

Right Child is (3, 9) (fig 6), thus 𝑑((3, 9), (4.5, 10)) =

(3 − 4.5)2 + (9 − 10)2 =  3.25. Since this distance is less 

than the set minimum distance (which is 4.25), update 

minimum distance = 3.25. 

Left child traversal 

Left Child is (1, 3) (fig 6), thus 𝑑((1, 3), (4.5, 10)) =

(1 − 4.5)2 + (3 − 10)2 =  61.25. Since this distance is 

greater than minimum distance (which is 3.25), do not update 

minimum distance. Thus the minimum distance is 3.25 and 

nearest neighbor is (3, 9). This neighbor does not belong to the 

space partition of the query.  

5.2 Pruning in KD Trees 
KNN search is enhanced when used with KD tree as a branch 

of a tree can be pruned thereby reducing the cost of measuring 



International Journal of Computer Applications (0975 – 8887) 

Volume 185 – No.17, June 2023 

 

21 

distance from each point in the dataset. 

Example: Data points (1, 3), (5, 7), (2, 6), (9, 4), (4, 8), (7, 10), 

(3, 9) and query observation (7, 2). Following the steps of 

algorithm described in section 5.1 the first nearest neighbor 

obtained is (9, 4). This process is completed by pruning the left 

sub-tree (light shaded part), as shown in the fig 9: 

 
Fig 9: Pruned Tree  

 
Fig 10: First Nearest Neighbor 

6. TIME COMPLEXITY 
The time complexity known as 𝑩𝒊𝒈 𝑶 is a mathematical 

notation denoting order of a function. It measures the time 

taken to run the algorithm as the input size grows.  

Definition ([𝟐𝟕], 𝐁𝐢𝐠 𝐎 notation) 

For a positive integer 𝑛, we say 𝑓(𝑛) is big oh of 𝑔(𝑛) if there 

are positive constants 𝑐 and 𝑘 depending on 𝑓 only such that 

0 ≤ 𝑓(𝑛) ≤ 𝑐 𝑔(𝑛) for every 𝑛 ≥ 𝑘. 

Example:  A function 𝑓 is given as 𝑓(𝑛) = 𝑛2 + 2𝑛. Since 

2𝑛 ≤ 𝑛2 if 𝑛 ≥ 2. Thus 𝑛2 +  2𝑛 ≤ 2 𝑛2 for every 𝑛 ≥ 2. 
Choose 𝑔(𝑛) = 𝑛2, 𝑐 = 2 and 𝑘 = 2 0 ≤ 𝑓(𝑛) ≤ 𝑐 𝑔(𝑛). 

Hence 𝑓(𝑛) has time complexity of order 𝑛2. 

The bubble sort algorithm has the time complexity of order 𝑛2. 
Thus to sort 1000 numbers bubble sort will require 10002 =
1000000 steps.  The same sorting can be done by a quick sort 

algorithm in fewer steps. The time complexity of quick sort is 

of order 𝑛 log2 𝑛. Thus to sort 1000 numbers quicksort will 

require 1000 log2 1000 = 10000 steps.  The logarithmic 

runtime is faster than quadratic. 𝐵𝑖𝑔 𝑂 gives the upper bound 

of the time required to run an algorithm. This is called the worst 

case of time complexity of an algorithm. 

Time Complexity of Building KD Tree Building KD tree that 

employs 𝑶(𝒏) median finding search algorithm has time 

complexity 𝑶(𝒏 𝐥𝐨𝐠 𝒏). Whereas KD tree that employs 

𝑶(𝐥𝐨𝐠 𝒏) median finding search algorithm has time complexity 

𝑶((𝒏 𝐥𝐨𝐠 𝒏)𝟐) as time taken 𝐥𝐨𝐠 𝒏 ∗ 𝒏 ∗ 𝐥𝐨𝐠 𝒏. Finding 

nearest neighbor in balanced KD tree has time complexity 

𝑶(𝐥𝐨𝐠 𝒏). Deleting root node has time complexity 𝑶(𝒏(𝒌−𝟏)/𝒌) 

and deleting a random node has time complexity 𝑶(𝒏 𝐥𝐨𝐠 𝒏). 

6.1 Run-Time and Accuracy Comparison 

between KNN and KNN – KD Search 
Experiment [11] show that KNN-KD search was much better 

when dataset consisted of 𝑛 points of 𝑘 dimension with 𝑛 ≫
 2𝑘. Experiment was performed with eleven UCI dataset on a 

computer with win10 system, Intel i5-4200U, 4GB RAM, 64-

bit operating system and Pycharm 2017. The run-time of KNN-

KD is lesser than the run-time of KNN search whereas accuracy 

remains almost the same. The runtime and accuracy 

comparison is shown in table 4. 

Table 4: Run Time and Accuracy Comparison 

Data

set 

KNN 

search 

KNN-

KD 

search 

% Rate 

of 

increase 

Accur

acy % 

of 

KNN 

Accur

acy % 

of 

KNN-

KD 

Iris 0.02923 0.01696 72.347 96.33 96.333 

Habe

rman 

0.14135 0.05747 145.954 74.146 74.193 

Bloo

d 

0.56106 0.13267 322.899 71.855 72.126 

Seed

s 

0.03755 0.02749 36.595 89.512 89.551 

Ecoli 0.08834 0.12173 -27.512 92.864 92.858 

Wine 0.03203 0.05951 -46.177 71.235 71.276 

Haye

s 

0.01958 0.0152 28.816 67.012 67.487 

Liver 0.11220 0.08919 25.799 41.41 41.824 

CMC 2.2142 1.5891 39.337 53.773 53.572 

Heart 0.06884 0.10556 -34.786 65.778 65.444 

Clev

eland 

0.08177 0.17135 -52.279 52.704 52.638 

 

7. APPLICATIONS OF KD TREE 

7.1 Information Retrieval and Text 

Classification 
Information retrieval is a process of searching information from 

databases.  KD-tree helps in organizing data and accessing 

them efficiently. This feature is used a lot in search engines 

where information retrieval works on keyword search. A 

benefit of using information retrieval programs is that it can be 

used to get the location of documents containing information if 

this document exists. The drawback of an information retrieval 

program is that it cannot find the exact required information 

explicitly.  

A record of a file is an ordered tuple of the form 
(𝑣0, 𝑣1, … , 𝑣𝑘−1) where each coordinate of this tuple are the 

keys of the record. When a query of a file is called, it specifies 

certain conditions that are specified by the keys. An associative 

search is initiated by the information system on arrival of query. 

Methods [14] like method of compounding attributes, 

superimposed coding systems and combinatorial hashing are 

used for information retrieval but none of these are suitable for 

associative searches.  These methods have issues like large 

requirements of space, large run time etc. The KD tree search 

has proven better in such situations. The run time of the nearest 

neighbor search algorithm gets improved when combined with 

the KD trees. Another advantage of using the KD tree is that it 

allows deletion of roots by replacing it with its descendants. 
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Text categorization is a classification problem in which it is 

determined whether a document belongs to a set of pre-

specified documents or not. It is useful in the situations where 

documents are indexed manually. Features are words occurring 

in document sets and hence it is very large. Decision trees based 

on C4.5, RIPPER, naïve Bayes Rainbow are few methods used 

for text classification. PEBLS (Parallel Exemplar-Based 

Learning System) algorithm [5] is used for text classification 

and is based on determining features of attributes. An 

improvement of PEBLS [16] is VSM (Variable-Kernel 

Similarity Metric) and works by improving weight in each 

iteration according to the optimization function. VSM has 

certain optimization limitations. WAKNN (Weight Adjusted K 

nearest neighbor) [9] outperforms PEBLS and VSM. In this 

algorithm KNN is used for improving objective function. For 

document d, if D is the training document and W is the weight 

vector objective function is  

𝑜𝑏𝑗𝑚𝑎𝑥(𝑂, 𝑊, 𝑃) = {𝑑| 𝑑 ∈ 𝐷 𝑎𝑛𝑑 𝑑

∈ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑗(𝑑, 𝐷, 𝑊, 𝑃)}, 

Where P is the majority percentage and 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑗(𝑑, 𝐷, 𝑊, 𝑃) is a predicate. 

CeKNN (Centroid based K nearest neighbor) [21] based on two 

step method is another approach. In the first step dimension of 

document is reduced by projecting feature space to lower 

dimensional class centroid space using centroid classifier. In 

the second step KD tree search is used to find K nearest 

neighbors. 

7.2 Digital Elevation Model Production 
A set of data points in space is called point cloud data. Point 

cloud data are mostly used to create CAD models for 

manufactured parts in 3D, Quality check and animation. One 

important application is production of digital elevation models 

that involve KD Tree. While acquiring the point cloud data in 

an image there are chances of getting elevation anomalies. 

These anomalies have two components: Low gross error that 

occurs because of obstructions due to moving vehicles and trees 

while scanning and high Gross error that occurs because of 

reflected signals of birds and other low flying objects 

[31].  These errors can be eliminated if the point cloud data is 

organized and managed properly. It is achieved using KD- tree. 

The organization of point cloud data is also crucial since point 

cloud data has its own features like massiveness, missing local 

data, uneven density, etc.  An image ([31], p.721) before and 

after gross error elimination is shown in fig 11 and fig 12 

respectively. 

 

Fig 11: Before Gross Elimination 

 

Fig 12: After Gross Elimination 

8. FUTURE SCOPE OF STUDY 
Setting efficient memory indexing algorithm is requirement of 

building strong text classifier. Performance of newly developed 

algorithms for nearest neighbor search in different metric and 

non-metric space is another direction of study.   

9. REFERENCES 
[1] Andoni, A. 2009. Nearest Neighbor Search: the Old, the 

New, and the Impossible. Doctoral dissertation, 

Massachusetts Institute of Technology. 

https://citeseerx.ist.psu.edu/document?repid=rep1&type=

pdf&doi=4b4e7e0419644e9130666ed6e3ba8beee77ffa4e 

[2] Atallah, M. J., and Blanton, M.  2009. Algorithms and 

Theory of Computation Handbook, Second Edition, 

volume 1: General Concepts and Techniques. Chapman & 

Hall / CRC Applied Algorithms and Data Structures series 

Edition: 2. ISBN: 1584888229; 9781584888222.  

[3] Bently, J. L. 1975. Multidimensional Binary Search Trees 

used for Associative Searching. Communications of the 

ACM, 18(9). pp. 509-517. 

517. doi:10.1145/361002.361007   

[4] Brown, R.A. 2015. Building a balanced k - d Tree in 

O(kn log n)Time. Journal of Computer Graphics 

Techniques (JCGT), vol. 4, no. 1. pp.  50-68.  

[5] Cost, S., and Salzberg, S. 1993. A Weighted Nearest 

Neighbor Algorithm for Learning with Symbolic 

Features. Machine learning 10. pp. 57-78. doi: 

10.1023/A:1022664626993   

[6] Cover, T.M. and Hart, P.E. 1967. Nearest Neighbor 

Pattern Classification. IEEE Transactions on Information 

Theory, 13(1), pp. 21-27. 

[7] Eibe, F., Hall, M., and Pfahringer, B. 2003. Locally 

Weighted Naïve Bayes. In Proceedings of the Conference 

on Uncertainty in Artificial Intelligence. pp. 249–256. 

Morgan Kaufmann. 

[8] Goldstine, H., and Von Neumann, J. 1963. Coding of 

some combinatorial (sorting) problems. In John von 

Neumann Collected works Design of computers, Theory 

66 of Automata and Numerical Analysis, A. Taub, Ed., 

vol. 5. Pergamon Press Ltd. and the Macmillan company, 

New York NY. pp. 196-214. 

[9] Han, E., Karypis, G., and Kumar, V. 2001. Text 

Categorization Using Weight Adjusted k-Nearest 

Neighbor Classification. Pacific-Asia Conference on 

Knowledge Discovery and Data Mining. 

[10] Hoare, C. A. R. 1962. Quicksort. The Computer Journal 5. 

pp. 10-15. doi: 10.1093/comjnl/5.1.10. 51  

[11] Hou, W., Li, D., Xu, C., Zhang, H., and Li, T. 2018. An 

Advanced k Nearest Neighbor Classification Algorithm 

https://libgen.li/biblioservice.php?type=isbn&value=1584888229
https://libgen.li/biblioservice.php?type=isbn&value=9781584888222


International Journal of Computer Applications (0975 – 8887) 

Volume 185 – No.17, June 2023 

 

23 

Based on KD-tree. IEEE International Conference of 

Safety Produce Informatization (IICSPI), Chongqing, 

China, pp. 902-905. doi: 10.1109/IICSPI.2018.8690508. 

[12] Jiang, L., Cai, Z., Wang, D., and Jiang, S. 2007. Survey of 

Improving K-Nearest-Neighbor for Classification. Fourth 

International Conference on Fuzzy Systems and 

Knowledge Discovery (FSKD 2007), Haikou, China, pp. 

679-683. doi: 10.1109/FSKD.2007.552. 

[13] Jiang, L., Zhang, H., and Cai, Z. 2006. Dynamic K-

Nearest-Neighbor Naive Bayes with Attribute 

Weighted. International Conference on Fuzzy Systems 

and Knowledge Discovery. pp. 365–368. Springer, 2006. 

[14] Knuth, D.E. 1973. The art of computer programming 

Volume III: Sorting and Searching. Addison - Wesley, 

Reading, Mass. 

[15] Kohavi, R. 1996. Scaling up the accuracy of Naïve-Bayes 

Classifier: A decision tree hybrid. In Proceedings of the 

Second International Conference on Knowledge 

Discovery and Data Mining. pp. 202–207. AAAI Press. 

[16] Lowe, D.G. 1995. Similarity metric learning for a 

variable-kernel classifier. Neural computation, vol. 7, no. 

1. pp. 72-85. doi: 10.1162/neco.1995.7.1.72. 

[17] Mitchell, T. M. 1997. Machine Learning. McGraw-Hill 

Science/Engineering/Math. ISBN: 0070428077 

[18] Mohammad Reza, A., Bijan, G., and Hassan, N. 2014. A 

Survey on Nearest Neighbor Search Methods. 

International Journal of Computer Applications. 95. pp. 

39-52.  doi: 10.5120/16754-7073. 

[19] Necaise, R.D. n. d. Data Structures and Algorithms using 

python. Wiley Student edition. 

[20] Panigrahy, R. 2008. An Improved Algorithm Finding 

Nearest Neighbor Using Kd-trees. In: laber, E.S., 

Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN 

2008; Theoretical Informatics. LATIN 2008. Lecture 

Notes in Computer Science, vol 4957. Springer, Berlin, 

Heidelberg.doi: 10.1007/978-3-540-78773-0_34   

[21] Priyanka, T., and Swamy, N. N. 2015. KNN Based 

Document Classifier Using Kd Tree: An Efficient 

Implementation. International Journal of Computer 

Science & Communication Networks, 5(5). pp. 270-274. 

[22] Silverman, B. W., and Jones, M. C. 1989. E. Fix and J.L. 

Hodges (1951): An Important Contribution to 

Nonparametric Discriminant Analysis and Density 

Estimation: Commentary on Fix and Hodges. 

International Statistical Review / Revue Internationale de 

Statistique, vol. 57, no. 3, 1989, pp. 233–238. doi: 

10.2307/1403796.  

[23] Williams, J. 1964. Heapsort (algorithm 232). 

Communications of the ACM 7. pp. 347-348. 

[24] Xie, Z., Hsu, W., Liu, Z., and Lee, M. 2002. SNNB: A 

Selective Neighborhood Based Naïve Bayes for Lazy 

Learning. In Proceedings of the Sixth Pacific-Asia 

Conference on KDD. pp. 104–114. Springer. doi: 

10.1007/3-540-47887-6_10. 

[25] Zhai, H. 2022. Improving KNN Algorithm Efficiency 

Based on PCA and KD-tree. International Conference on 

Machine Learning and Knowledge Engineering (MLKE), 

Guilin, China, pp. 83-87. doi: 

10.1109/MLKE55170.2022.00021. 

[26] Barnwal, A. 2022. K Dimensional Tree | Set 1 (Search and 

Insert).https://www.geeksforgeeks.org/k-dimensional-

tree/ 

[27] Black, P. E. 2019. Big - O notation. Dictionary of 

Algorithms and DataStructures. 

https://www.nist.gov/dads/HTML/bigOnotation.html 

[28] Couto, D. D, and Napoli, J. 1998.  kD 

Trees.http://groups.csail.mit.edu/graphics/classes/6.838/S

98/meetings/m13/kd.html 

[29] Dey, S. 2017. Implementing kd-tree for fast range-search, 

nearest-neighbor search and k-nearest-neighbor search 

algorithms in 2D (with applications in simulating the 

flocking boids: modeling the motion of a flock of birds 

and in learning a kNN classifier: a supervised ML model 

for binary classification) in Java 

and python.https://sandipanweb.wordpress.com/2017/09/

10/implementing-kd-trees-along-with-the-fast-range-

search-nearest-neighbor-search-and-k-nearest-neighbor-

search-algorithms-in-2d-with-an-application-in-

simulating-the-motion-of-a-flock-of-boids/ 

[30] Hachcham, A. 2023. The KNN Algorithm – Explanation, 

Opportunities, Limitations.https://neptune.ai/blog/knn-

algorithm-explanation-opportunities-limitations 

[31] Kang, Q., Huang, G. M., and Yang, S.C. 2018. A Gross 

Error Elimination Method for Point Cloud data based on 

KD-Tree. ISPRS-International Archives of the 

Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 2018, 719-722. https://www.int-

arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-

3/719/2018/isprs-archives-XLII-3-719-2018.pd 

[32] MATWORKS from MATLAB. 2022. Classification 

Using Nearest Neighbors. 

https://in.mathworks.com/help/stats/classification-using-

nearest-neighbors.html 

[33] Mount, D. 2021.CMSC 420: Lecture 13 Answering 

Queries with kd-

trees.https://www.cs.umd.edu/class/spring2021/cmsc420-

0101/Lects/lect13-kd-query.pdf 

[34] Padmaja, B. 2018. Lecture Notes on Data 

Structures.https://www.iare.ac.in/sites/default/files/lectur

e_notes/IARE_DS_LECTURE_NOTES_2.pdf 

 

IJCATM : www.ijcaonline.org 


