
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.17, June 2023

17

Developments in KD Tree and KNN Searches

Vijay R. Tiwari
Jai Hind College

Churchgate
Mumbai, India

ABSTRACT
KNN (K-nearest neighbor) is an important tool in machine

learning and it is used in classification and prediction problems.

In recent years several modified versions of KNN search

algorithm have been developed and employed to improve the

efficiency of search. KNN has enormous real life applications

and is widely used in data mining. Data structures like KD tree

(or K dimensional tree) are used for implementing KNN

effectively. A KD tree is a multidimensional binary search tree

that can be balanced or unbalanced. With the increase in

dimension of space the computational time of KNN-KD search

goes high. Certain modifications that can help in improvising

the search time has been developed in recent years.

General Terms

Data mining and Data Structures.

Keywords

KNN search, KD tree, Supervised Machine Learning, KNN-

KD tree, Point Cloud Data.

1. INTRODUCTION
KNN (K – Nearest Neighbor) is a non-parametric lazy learning

algorithm and is used to find K (n positive integer) nearest

neighbor of a given query point by searching every point in the

dataset. In lazy learning, machine stores the data at training

time and delays learning until classification time. The nearest

neighbor search was first introduced in 1951, by Fix and

Hodges in their technical report which was never published as

an official paper. Later Silverman and Jones [22] wrote

commentary on this technical report thereby re-introducing the

concept briefly. Cover and Hart [6] first proposed that KNN

can be used to solve classification problems in machine

learning. KNN performs best when points are in lower

dimension but increase in dimension creates an over-fitting

problem and exponential growth in computation time [30].

Grouped techniques like weighted, reduction, additive, reverse,

continuous, principal axis, etc. are used for implementing

nearest neighbor search [18]. KNN search is used in pattern

recognition, data compression, computational statistics,

information retrieval, databases and data mining, etc. It labels

the given object by finding the most similar labelled objects and

copying their labels. There are numerous distance measuring

formulas used in metric and non-metric spaces to calculate the

distance of a query point from points in the dataset.

Performance of KNN is affected by the type of distance

formula used. Andoni [1] proved that the classical approach of

nearest neighbor search fails when used with certain distance

formulas like string edit distances. This problem is solved by

using the Ulam distance formula.

A data structure is a format of data organization, management

and storage. It can be thought of collection of data values and

their relations. Different data structures are used for

implementing nearest neighbor search. Ball tree, KD tree, LSH

(Locally sensitive hashing) are few of them. These techniques

use structure for indexing points and searching points.

Binary search tree is a key in building a multidimensional

binary search tree. KD trees are binary trees which stores K-

dimensional data. It is used to partition space into smaller

number of cells in a hierarchical manner. A major challenge in

optimizing search arises when KD is unbalanced. In an

unbalanced tree nodes appear to cluster heavily on one side.

There is no choice to reach the leaf node on heavy side as

cutting branch is impossible. Traversing each and every node

is required thereby, increasing the run time and making the

search linear. This issue is resolved by building a balanced tree

in which runtime is logarithmic. A balanced KD tree is built

by dividing the data points using median. Bentley [3] showed

that if the runtime of finding median, of n data points is of

order 𝑛, then runtime of building balanced KD tree is of

order 𝑛 log 𝑛. It is complicated to find an algorithm for

computing median with runtime of order 𝑛. Quicksort

algorithm [10] finds median with run time of order 𝑛 in the best

case. Merge sort algorithm [8] computes median whose run

time is of order 𝑛 log 𝑛. This helps in building balanced KD tree

whose runtime is of order 𝑛. Heapsort algorithm [23] does the

same process. Improved version of KD tree search algorithm

[20] performs well in case when data set points belong to higher

dimension. This algorithm finds an 𝑐 approximate nearest

neighbor where 𝑐 > 1 is a parameter denoting how closer is the

searched point from its neighbors. An 𝑐 approximate nearest

neighbor is a point at most 𝑐 times the distance of nearest

neighbor. Brown [4] proposed a method of building balanced

KD tree for 𝑛 points in 𝑘 - dimension whose runtime is of order

𝑘𝑛 log 𝑛 in the worst case. Zhai [25] proposed an improved

KNN algorithm that increases the efficiency of classification

and it improves KNN search, by combining Principal

component analysis (PCA) with KD tree data

structures.

2. BINARY SEARCH TREE
A binary search tree is an enhanced binary tree where a node

will have a child to the left if the key value of the child node is

lesser than or equal to the key value of parent node value. The

child node will be attached to the right if the key value of the

child node is greater than the key value of the parent node. A

binary search tree can be skewed or balanced. If the left sub-

tree and right sub-tree have the same number of nodes then the

tree is balanced otherwise it is called skewed. A diagram of

balanced binary search tree shown in Fig 1:

Fig 1: Balanced Binary Tree of level 1

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.17, June 2023

18

3. KD TREE
KD tree is a K-dimensional non-linear data structure, which is

used for space partitioning based on certain conditions. It can

be balanced or unbalanced. It is used for storing the data in an

efficient manner so that certain search algorithms can be

implemented in optimal way thus reducing the computation

time. Balanced binary search tree leads to faster construction of

space partitions and new query search is also optimal in these

cases.

3.1 Construction of balanced
For given points in K-dimension, a balanced binary search tree

is constructed using median. If 𝑚1, 𝑚2, ⋯ , 𝑚𝑛 are 𝑛 discrete

data points the median is 𝑚𝑛+1

2

, if 𝑛 is odd. If 𝑛 is even the

median is
1

2
(𝑚𝑛

2

+ 𝑚𝑛

2
+1).

Example: Data points (1, 3), (5, 7), (2, 6), (9, 4), (4, 8), (7, 10),

(3, 9).

Step 1: Sorting in ascending value of first coordinate (i.e. 𝑥

coordinate), the new data set is (1, 3), (2, 6), (3, 9), (4, 8), (5,

7), (7, 10), (9, 4). Median of 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of these points is

4. Thus select the root node as (4, 8). Draw the line 𝑥 = 4 as

shown in fig 2:

Fig 2: Step 1 Balanced Search Tree

Step 2: Left Sub-Tree

For the left sub-tree take the points with 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 less

than or equal to 4. The points are (1, 3), (2, 6), (3, 9). Now

sorting these points in ascending value of the second coordinate

(i.e. 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒) the new list is (1, 3), (2, 6), (3, 9). Median

of 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of these points is 6.Thus, (2, 6) is selected as

root of the left sub-tree. Compare 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of these points

with 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of (2, 6). Thus (1, 3) will form the left child

and (3, 9) will form the right child. Draw the line 𝑦 = 6, 𝑥 = 1,

and then 𝑥 = 3 as shown in fig 3:

Fig 3: Step 2 Balanced Search Tree

Step 3: Right Sub-Tree

For the right sub-tree, points with 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 greater than 4

are selected and they are (5, 7), (7, 10), (9, 4). Arrange these

points in ascending value of 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 the new list as (9,

4), (5, 7), (7, 10). Median of 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of these points is

7. Thus the root of the right sub-tree is (5, 7). Now (9, 4) will

form the left child and (7, 10) will form the right child as shown

in fig 4:

Fig 4: Step 3 Balanced Search Tree

Draw the lines 𝑦 = 7, 𝑥 = 9 and 𝑥 = 7 as shown in Fig5:

Fig 5: Step 3 Space Partition

4. K NEAREST NEIGHBOR (KNN)
KNN is a branch of supervised machine learning used to solve

classification and prediction problems that occur in daily life.

K is an integer denoting the number of neighbors taken for that

particular problem. Methods like cross validation is used to find

the optimal values of K. Trial and error method on given data

with different values of K is also used to find the optimal

number of neighbors. Important steps in KNN algorithm are:

1. Find the optimal value of K as mentioned above.

2. Calculate the distance between the query observation

and given observations.

3. Rank the observations based on the distances

measured in increasing order with rank 1 given to

observations with minimum distance.

4. Arrange the observations based on rank and

determine the K nearest neighbors.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.17, June 2023

19

5. Gather the category of nearest neighbors.

6. The majority nature of the category of these K

neighbors is the prediction of the query observation.

4.1 Example on Classification
Consider the data in Table 1 of a soap manufacturing company:

Table 1: Soap Data
Potassium

Content in mg (𝑥)

PH (𝑦) Category

12.6 7 Good

9.5 8 Bad

9.8 9 Bad

12.1 10 Good

12.8 7 Good

9.1 9 Good

12.2 8 Bad

Company manufactures a new soap with Potassium content

equal to 12 grams and PH value 9. Classify new soap a good or

bad by doing three neighbor test and using square of Euclidean

distance which is given by

𝑑((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = (𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2.

Data given in Table 2 is obtained after finding the distance

and arranging the data based on rank.

Table 2: Arranged Data

Potassium

Content in

mg (𝑥)

PH

(𝑦)

Category 𝑑((𝑥, 𝑦), (12,9)) Rank

12.1 10 Good 1.01 1

12.2 8 Bad 1.04 2

12.6 7 Good 4.36 3

12.8 7 Good 4.64 4

9.8 9 Bad 4.84 5

9.5 8 Bad 7.25 6

9.1 9 Good 8.41 7

The first three ranks are the three nearest neighbors of the

query observation (12,9). From these three nearest neighbors

two are in good category. Since the major category falls under

the good category, thus the soap is declared good.

4.2 Example on Prediction
Given set of observations:
(1, 4), (2, 9), (4, 8), (7, 2), (9, 9), (3, 5), (6, 3), (8, 0) and if

the query observation is (5, -) with missing 𝑦 coordinate then

use distance formula: 𝑑(𝑥1, 𝑥2) = |𝑥1 − 𝑥2|.

Table 3Distance from Query

Observations(𝑥1, 𝑦1)) 𝑑(𝑥1, 5) Rank

(1, 4) 4 4

(2, 9) 3 3

(4, 8) 1 1

(7, 2) 2 2

(9, 9) 4 4

(3, 5) 2 2

(6, 3) 1 1

(8, 0) 2 2

If 𝑘 = 5 then there is a tie in observations with rank 1 and rank

2 hence choose 𝑘 = 2 in order to avoid such clashes. The two

nearest neighbors are (6, 3) and (4, 8). The predicted

𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of the query (5, -) is the average of

𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 of the nearest neighbors and it is
3+8

2
 = 5.5.

4.3 Improving KNN
The computation cost of KNN search is high and the accuracy

of classification is affected by the selection of distance formula.

Survey report [12] gives three main issues in implementing

KNN along with some proposed solutions.

4.3.1 KNN is affected by the Choice of Distance

Formula Selected.
A data point 𝑥 having 𝑛 attributes say 𝐴1, … , 𝐴𝑛 is denoted by

the vector ((𝑎1(𝑥), … , 𝑎𝑛(𝑥))), where 𝑎𝑖(𝑥) denotes value of

attribute 𝐴𝑖 , for 1 ≤ 𝑖 ≤ 𝑛. In most cases Euclidean distance is

employed that uses each coordinate for measuring distance.

Thus for large values of 𝑛 computation cost is very high. A new

approach [17] eliminates least relevant attributes from the

space thereby reducing the computation time. Another method

calculates the distance by attaching weight to each attribute

depending on their importance. If 𝑤1, … , 𝑤𝑛 are the weights

attached to attributes 𝐴1, … , 𝐴𝑛 then the distance formula used

for measuring the distance between any two instances say 𝑥 and

𝑦 is

𝑑(𝑥, 𝑦) = √(∑ 𝑤𝑖
2(𝑎𝑖(𝑥) − 𝑎𝑖(𝑦))

2
𝑛

𝑖=1

)

4.3.2 KNN is affected by Method Used for

Finding K
Finding the optimal number of neighbors is important for

accuracy of classification. SNSB (Selective neighborhood

naïve Bayes) model [24] finds the best value of K. The

computation time of this model is high hence it is less efficient.

Another efficient method to find the value of K is cross

validation. It is done by crossValidate () function in the file

ofweka.classifier.lazy.IBK.java. DNNAW (Dynamic K-

nearest neighbor naïve Bayes with attribute weighted) [13]

determines the best value of K by combining SNSB with

weighted attribute technique. In this method, attributes are

weighted first and then machine learns a local naïve Bayesian

classifier for the test data.

4.3.3 KNN is affected by method used for voting
A simple method to classify or label a query attributes is to

label it with maximum vote obtained from labels of its K

neighbors. KNNDW (K-nearest neighbor with distance

weighted) [17] is another approach to label the query. In this

method votes of different neighbors are weighted based on their

distance. Combining KNN with naïve Bayes [15] is another

technique. LWNB (locally weighted naïve Bayes) [7] weighs

K nearest neighbors first and then built a local naïve Bayes.

ICLNB (Cloning local naïve Bayes) generates a number of

clones of each neighborhood. These clones are added to

training data and then naïve Bayes is trained on this expanded

data.

5. APPLYING KNN IN KD TREE
Finding K nearest neighbors of a query observation using KD

trees is done by traversing a sub-tree based on minimum

distance. This process helps in pruning a sub-tree, thus saving

the time in finding the nearest neighbor. The method for two

dimensional data is discussed and it can be generalized to any

data set in finite dimension. The smallest box containing all the

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.17, June 2023

20

data points in a region of a space partition is called a tight box.

If the query observation belongs to any tight box then the

minimum distance is set to be infinite.

5.1. Steps in Algorithm
1. Compute distance of query and root and call this as

minimum distance.

2. At level one if 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of query is greater

than 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 of root then traverse the right

sub-tree first and then left sub-tree otherwise

traverse left sub-tree first and then right sub-tree.

Sub-tree traverse (right or left):

• Traverse each data point in a sub-tree using

𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 and 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒

alternate.

• While traversing a sub-tree check if the

query belongs to tight box corresponding

to left sub sub-tree or right sub sub-tree. If

it does not, then find the distance between

the query point and the tight box. If it is less

than minimum distance then traverse that

sub sub-tree or else prune that sub sub-tree.

• Find the distance between query

observation and data point at each level of

sub sub-tree. If this distance is less than

current minimum then update this value as

minimum distance.

3. From step 2, minimum distance and one nearest

neighbor is found. Delete the nearest neighbor and

repeat all processes again to get the second nearest

neighbor. Continuing to get all K nearest neighbors.

Example: Data points (1, 3), (5, 7), (2, 6), (9, 4), (4, 8), (7, 10),

(3, 9). Query observation (4.5, 10).

Figure 6: Nearest Neighbor

Figure 7: Nearest Neighbor

Step 1: At level 1, root is (4, 8) and distance of query from root

is 𝑑((4, 8), (4.5, 10)) = (4 − 4.5)2 + (8 − 10)2 = 4.25.

Therefore set the minimum distance to 4.25. Note that

𝑞𝑢𝑒𝑟𝑦 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(4.5) > 𝑟𝑜𝑜𝑡 𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(4)

traverse right sub-tree first and then left sub-tree. Since the

query lies in the space partition corresponding to the right sub-

tree, do not measure the distance of the query from the tight box

corresponding to this sub-tree.

Step 2 (Right sub-tree traversal):

At level 2, root is (5, 7) (see fig 5.1.1), and the distance of query

from root is 𝑑((5, 7), (4.5, 10)) = (5 − 4.5)2 + (7 − 10)2 =

9.25. Since this distance is greater than the set minimum

distance (which is 4.25), do not update minimum distance.

Since 𝑞𝑢𝑒𝑟𝑦 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (10) >
𝑟𝑜𝑜𝑡 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 (7) traverse right child first and then left

child.

Right child traversal

Right Child is (7, 10) and 𝑑((7,10), (4.5, 10)) = (7 − 4.5)2 +

(10 − 10)2 = 6.25. Since this distance is greater than the set

minimum distance (which is 4.25), do not update minimum

distance.

Left child traversal
Left Child is (9, 4) and 𝑑((9, 4), (4.5, 10)) = (9 − 4.5)2 +

(4 − 10)2 = 56.25. Since this distance is greater than the set

minimum distance (which is 4.25) do not update minimum

distance. Now the query lies in right part of partition thus find

the distance of query from tight box corresponding to left sub-

tree as shown in fig 8:

Figure 8: Query Distance from Tight Box

Step 3 (Left Sub-tree traversal)

At level 2, root is (2, 6) (fig 6) and the distance of the query

from root is 𝑑((2, 6), (4.5, 10)) = (2 − 4.5)2 + (6 − 10)2 =

22.25. Since this distance is greater than the set minimum

distance (which is 4.25), do not update minimum distance.

Since 𝑞𝑢𝑒𝑟𝑦 𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑒 (10) > 𝑟𝑜𝑜𝑡 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒(6) thus

traverse right child first and then left child.

Right child traversal

Right Child is (3, 9) (fig 6), thus 𝑑((3, 9), (4.5, 10)) =

(3 − 4.5)2 + (9 − 10)2 = 3.25. Since this distance is less

than the set minimum distance (which is 4.25), update

minimum distance = 3.25.

Left child traversal

Left Child is (1, 3) (fig 6), thus 𝑑((1, 3), (4.5, 10)) =

(1 − 4.5)2 + (3 − 10)2 = 61.25. Since this distance is

greater than minimum distance (which is 3.25), do not update

minimum distance. Thus the minimum distance is 3.25 and

nearest neighbor is (3, 9). This neighbor does not belong to the

space partition of the query.

5.2 Pruning in KD Trees
KNN search is enhanced when used with KD tree as a branch

of a tree can be pruned thereby reducing the cost of measuring

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.17, June 2023

21

distance from each point in the dataset.

Example: Data points (1, 3), (5, 7), (2, 6), (9, 4), (4, 8), (7, 10),

(3, 9) and query observation (7, 2). Following the steps of

algorithm described in section 5.1 the first nearest neighbor

obtained is (9, 4). This process is completed by pruning the left

sub-tree (light shaded part), as shown in the fig 9:

Fig 9: Pruned Tree

Fig 10: First Nearest Neighbor

6. TIME COMPLEXITY
The time complexity known as 𝑩𝒊𝒈 𝑶 is a mathematical

notation denoting order of a function. It measures the time

taken to run the algorithm as the input size grows.

Definition ([𝟐𝟕], 𝐁𝐢𝐠 𝐎 notation)

For a positive integer 𝑛, we say 𝑓(𝑛) is big oh of 𝑔(𝑛) if there

are positive constants 𝑐 and 𝑘 depending on 𝑓 only such that

0 ≤ 𝑓(𝑛) ≤ 𝑐 𝑔(𝑛) for every 𝑛 ≥ 𝑘.

Example: A function 𝑓 is given as 𝑓(𝑛) = 𝑛2 + 2𝑛. Since

2𝑛 ≤ 𝑛2 if 𝑛 ≥ 2. Thus 𝑛2 + 2𝑛 ≤ 2 𝑛2 for every 𝑛 ≥ 2.
Choose 𝑔(𝑛) = 𝑛2, 𝑐 = 2 and 𝑘 = 2 0 ≤ 𝑓(𝑛) ≤ 𝑐 𝑔(𝑛).

Hence 𝑓(𝑛) has time complexity of order 𝑛2.

The bubble sort algorithm has the time complexity of order 𝑛2.
Thus to sort 1000 numbers bubble sort will require 10002 =
1000000 steps. The same sorting can be done by a quick sort

algorithm in fewer steps. The time complexity of quick sort is

of order 𝑛 log2 𝑛. Thus to sort 1000 numbers quicksort will

require 1000 log2 1000 = 10000 steps. The logarithmic

runtime is faster than quadratic. 𝐵𝑖𝑔 𝑂 gives the upper bound

of the time required to run an algorithm. This is called the worst

case of time complexity of an algorithm.

Time Complexity of Building KD Tree Building KD tree that

employs 𝑶(𝒏) median finding search algorithm has time

complexity 𝑶(𝒏 𝐥𝐨𝐠 𝒏). Whereas KD tree that employs

𝑶(𝐥𝐨𝐠 𝒏) median finding search algorithm has time complexity

𝑶((𝒏 𝐥𝐨𝐠 𝒏)𝟐) as time taken 𝐥𝐨𝐠 𝒏 ∗ 𝒏 ∗ 𝐥𝐨𝐠 𝒏. Finding

nearest neighbor in balanced KD tree has time complexity

𝑶(𝐥𝐨𝐠 𝒏). Deleting root node has time complexity 𝑶(𝒏(𝒌−𝟏)/𝒌)

and deleting a random node has time complexity 𝑶(𝒏 𝐥𝐨𝐠 𝒏).

6.1 Run-Time and Accuracy Comparison

between KNN and KNN – KD Search
Experiment [11] show that KNN-KD search was much better

when dataset consisted of 𝑛 points of 𝑘 dimension with 𝑛 ≫
 2𝑘. Experiment was performed with eleven UCI dataset on a

computer with win10 system, Intel i5-4200U, 4GB RAM, 64-

bit operating system and Pycharm 2017. The run-time of KNN-

KD is lesser than the run-time of KNN search whereas accuracy

remains almost the same. The runtime and accuracy

comparison is shown in table 4.

Table 4: Run Time and Accuracy Comparison

Data

set

KNN

search

KNN-

KD

search

% Rate

of

increase

Accur

acy %

of

KNN

Accur

acy %

of

KNN-

KD

Iris 0.02923 0.01696 72.347 96.33 96.333

Habe

rman

0.14135 0.05747 145.954 74.146 74.193

Bloo

d

0.56106 0.13267 322.899 71.855 72.126

Seed

s

0.03755 0.02749 36.595 89.512 89.551

Ecoli 0.08834 0.12173 -27.512 92.864 92.858

Wine 0.03203 0.05951 -46.177 71.235 71.276

Haye

s

0.01958 0.0152 28.816 67.012 67.487

Liver 0.11220 0.08919 25.799 41.41 41.824

CMC 2.2142 1.5891 39.337 53.773 53.572

Heart 0.06884 0.10556 -34.786 65.778 65.444

Clev

eland

0.08177 0.17135 -52.279 52.704 52.638

7. APPLICATIONS OF KD TREE

7.1 Information Retrieval and Text

Classification
Information retrieval is a process of searching information from

databases. KD-tree helps in organizing data and accessing

them efficiently. This feature is used a lot in search engines

where information retrieval works on keyword search. A

benefit of using information retrieval programs is that it can be

used to get the location of documents containing information if

this document exists. The drawback of an information retrieval

program is that it cannot find the exact required information

explicitly.

A record of a file is an ordered tuple of the form
(𝑣0, 𝑣1, … , 𝑣𝑘−1) where each coordinate of this tuple are the

keys of the record. When a query of a file is called, it specifies

certain conditions that are specified by the keys. An associative

search is initiated by the information system on arrival of query.

Methods [14] like method of compounding attributes,

superimposed coding systems and combinatorial hashing are

used for information retrieval but none of these are suitable for

associative searches. These methods have issues like large

requirements of space, large run time etc. The KD tree search

has proven better in such situations. The run time of the nearest

neighbor search algorithm gets improved when combined with

the KD trees. Another advantage of using the KD tree is that it

allows deletion of roots by replacing it with its descendants.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.17, June 2023

22

Text categorization is a classification problem in which it is

determined whether a document belongs to a set of pre-

specified documents or not. It is useful in the situations where

documents are indexed manually. Features are words occurring

in document sets and hence it is very large. Decision trees based

on C4.5, RIPPER, naïve Bayes Rainbow are few methods used

for text classification. PEBLS (Parallel Exemplar-Based

Learning System) algorithm [5] is used for text classification

and is based on determining features of attributes. An

improvement of PEBLS [16] is VSM (Variable-Kernel

Similarity Metric) and works by improving weight in each

iteration according to the optimization function. VSM has

certain optimization limitations. WAKNN (Weight Adjusted K

nearest neighbor) [9] outperforms PEBLS and VSM. In this

algorithm KNN is used for improving objective function. For

document d, if D is the training document and W is the weight

vector objective function is

𝑜𝑏𝑗𝑚𝑎𝑥(𝑂, 𝑊, 𝑃) = {𝑑| 𝑑 ∈ 𝐷 𝑎𝑛𝑑 𝑑

∈ 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑗(𝑑, 𝐷, 𝑊, 𝑃)},

Where P is the majority percentage and

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑚𝑎𝑗(𝑑, 𝐷, 𝑊, 𝑃) is a predicate.

CeKNN (Centroid based K nearest neighbor) [21] based on two

step method is another approach. In the first step dimension of

document is reduced by projecting feature space to lower

dimensional class centroid space using centroid classifier. In

the second step KD tree search is used to find K nearest

neighbors.

7.2 Digital Elevation Model Production
A set of data points in space is called point cloud data. Point

cloud data are mostly used to create CAD models for

manufactured parts in 3D, Quality check and animation. One

important application is production of digital elevation models

that involve KD Tree. While acquiring the point cloud data in

an image there are chances of getting elevation anomalies.

These anomalies have two components: Low gross error that

occurs because of obstructions due to moving vehicles and trees

while scanning and high Gross error that occurs because of

reflected signals of birds and other low flying objects

[31]. These errors can be eliminated if the point cloud data is

organized and managed properly. It is achieved using KD- tree.

The organization of point cloud data is also crucial since point

cloud data has its own features like massiveness, missing local

data, uneven density, etc. An image ([31], p.721) before and

after gross error elimination is shown in fig 11 and fig 12

respectively.

Fig 11: Before Gross Elimination

Fig 12: After Gross Elimination

8. FUTURE SCOPE OF STUDY
Setting efficient memory indexing algorithm is requirement of

building strong text classifier. Performance of newly developed

algorithms for nearest neighbor search in different metric and

non-metric space is another direction of study.

9. REFERENCES
[1] Andoni, A. 2009. Nearest Neighbor Search: the Old, the

New, and the Impossible. Doctoral dissertation,

Massachusetts Institute of Technology.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=

pdf&doi=4b4e7e0419644e9130666ed6e3ba8beee77ffa4e

[2] Atallah, M. J., and Blanton, M. 2009. Algorithms and

Theory of Computation Handbook, Second Edition,

volume 1: General Concepts and Techniques. Chapman &

Hall / CRC Applied Algorithms and Data Structures series

Edition: 2. ISBN: 1584888229; 9781584888222.

[3] Bently, J. L. 1975. Multidimensional Binary Search Trees

used for Associative Searching. Communications of the

ACM, 18(9). pp. 509-517.

517. doi:10.1145/361002.361007

[4] Brown, R.A. 2015. Building a balanced k - d Tree in

O(kn log n)Time. Journal of Computer Graphics

Techniques (JCGT), vol. 4, no. 1. pp. 50-68.

[5] Cost, S., and Salzberg, S. 1993. A Weighted Nearest

Neighbor Algorithm for Learning with Symbolic

Features. Machine learning 10. pp. 57-78. doi:

10.1023/A:1022664626993

[6] Cover, T.M. and Hart, P.E. 1967. Nearest Neighbor

Pattern Classification. IEEE Transactions on Information

Theory, 13(1), pp. 21-27.

[7] Eibe, F., Hall, M., and Pfahringer, B. 2003. Locally

Weighted Naïve Bayes. In Proceedings of the Conference

on Uncertainty in Artificial Intelligence. pp. 249–256.

Morgan Kaufmann.

[8] Goldstine, H., and Von Neumann, J. 1963. Coding of

some combinatorial (sorting) problems. In John von

Neumann Collected works Design of computers, Theory

66 of Automata and Numerical Analysis, A. Taub, Ed.,

vol. 5. Pergamon Press Ltd. and the Macmillan company,

New York NY. pp. 196-214.

[9] Han, E., Karypis, G., and Kumar, V. 2001. Text

Categorization Using Weight Adjusted k-Nearest

Neighbor Classification. Pacific-Asia Conference on

Knowledge Discovery and Data Mining.

[10] Hoare, C. A. R. 1962. Quicksort. The Computer Journal 5.

pp. 10-15. doi: 10.1093/comjnl/5.1.10. 51

[11] Hou, W., Li, D., Xu, C., Zhang, H., and Li, T. 2018. An

Advanced k Nearest Neighbor Classification Algorithm

https://libgen.li/biblioservice.php?type=isbn&value=1584888229
https://libgen.li/biblioservice.php?type=isbn&value=9781584888222

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.17, June 2023

23

Based on KD-tree. IEEE International Conference of

Safety Produce Informatization (IICSPI), Chongqing,

China, pp. 902-905. doi: 10.1109/IICSPI.2018.8690508.

[12] Jiang, L., Cai, Z., Wang, D., and Jiang, S. 2007. Survey of

Improving K-Nearest-Neighbor for Classification. Fourth

International Conference on Fuzzy Systems and

Knowledge Discovery (FSKD 2007), Haikou, China, pp.

679-683. doi: 10.1109/FSKD.2007.552.

[13] Jiang, L., Zhang, H., and Cai, Z. 2006. Dynamic K-

Nearest-Neighbor Naive Bayes with Attribute

Weighted. International Conference on Fuzzy Systems

and Knowledge Discovery. pp. 365–368. Springer, 2006.

[14] Knuth, D.E. 1973. The art of computer programming

Volume III: Sorting and Searching. Addison - Wesley,

Reading, Mass.

[15] Kohavi, R. 1996. Scaling up the accuracy of Naïve-Bayes

Classifier: A decision tree hybrid. In Proceedings of the

Second International Conference on Knowledge

Discovery and Data Mining. pp. 202–207. AAAI Press.

[16] Lowe, D.G. 1995. Similarity metric learning for a

variable-kernel classifier. Neural computation, vol. 7, no.

1. pp. 72-85. doi: 10.1162/neco.1995.7.1.72.

[17] Mitchell, T. M. 1997. Machine Learning. McGraw-Hill

Science/Engineering/Math. ISBN: 0070428077

[18] Mohammad Reza, A., Bijan, G., and Hassan, N. 2014. A

Survey on Nearest Neighbor Search Methods.

International Journal of Computer Applications. 95. pp.

39-52. doi: 10.5120/16754-7073.

[19] Necaise, R.D. n. d. Data Structures and Algorithms using

python. Wiley Student edition.

[20] Panigrahy, R. 2008. An Improved Algorithm Finding

Nearest Neighbor Using Kd-trees. In: laber, E.S.,

Bornstein, C., Nogueira, L.T., Faria, L. (eds) LATIN

2008; Theoretical Informatics. LATIN 2008. Lecture

Notes in Computer Science, vol 4957. Springer, Berlin,

Heidelberg.doi: 10.1007/978-3-540-78773-0_34

[21] Priyanka, T., and Swamy, N. N. 2015. KNN Based

Document Classifier Using Kd Tree: An Efficient

Implementation. International Journal of Computer

Science & Communication Networks, 5(5). pp. 270-274.

[22] Silverman, B. W., and Jones, M. C. 1989. E. Fix and J.L.

Hodges (1951): An Important Contribution to

Nonparametric Discriminant Analysis and Density

Estimation: Commentary on Fix and Hodges.

International Statistical Review / Revue Internationale de

Statistique, vol. 57, no. 3, 1989, pp. 233–238. doi:

10.2307/1403796.

[23] Williams, J. 1964. Heapsort (algorithm 232).

Communications of the ACM 7. pp. 347-348.

[24] Xie, Z., Hsu, W., Liu, Z., and Lee, M. 2002. SNNB: A

Selective Neighborhood Based Naïve Bayes for Lazy

Learning. In Proceedings of the Sixth Pacific-Asia

Conference on KDD. pp. 104–114. Springer. doi:

10.1007/3-540-47887-6_10.

[25] Zhai, H. 2022. Improving KNN Algorithm Efficiency

Based on PCA and KD-tree. International Conference on

Machine Learning and Knowledge Engineering (MLKE),

Guilin, China, pp. 83-87. doi:

10.1109/MLKE55170.2022.00021.

[26] Barnwal, A. 2022. K Dimensional Tree | Set 1 (Search and

Insert).https://www.geeksforgeeks.org/k-dimensional-

tree/

[27] Black, P. E. 2019. Big - O notation. Dictionary of

Algorithms and DataStructures.

https://www.nist.gov/dads/HTML/bigOnotation.html

[28] Couto, D. D, and Napoli, J. 1998. kD

Trees.http://groups.csail.mit.edu/graphics/classes/6.838/S

98/meetings/m13/kd.html

[29] Dey, S. 2017. Implementing kd-tree for fast range-search,

nearest-neighbor search and k-nearest-neighbor search

algorithms in 2D (with applications in simulating the

flocking boids: modeling the motion of a flock of birds

and in learning a kNN classifier: a supervised ML model

for binary classification) in Java

and python.https://sandipanweb.wordpress.com/2017/09/

10/implementing-kd-trees-along-with-the-fast-range-

search-nearest-neighbor-search-and-k-nearest-neighbor-

search-algorithms-in-2d-with-an-application-in-

simulating-the-motion-of-a-flock-of-boids/

[30] Hachcham, A. 2023. The KNN Algorithm – Explanation,

Opportunities, Limitations.https://neptune.ai/blog/knn-

algorithm-explanation-opportunities-limitations

[31] Kang, Q., Huang, G. M., and Yang, S.C. 2018. A Gross

Error Elimination Method for Point Cloud data based on

KD-Tree. ISPRS-International Archives of the

Photogrammetry, Remote Sensing and Spatial

Information Sciences, 2018, 719-722. https://www.int-

arch-photogramm-remote-sens-spatial-inf-sci.net/XLII-

3/719/2018/isprs-archives-XLII-3-719-2018.pd

[32] MATWORKS from MATLAB. 2022. Classification

Using Nearest Neighbors.

https://in.mathworks.com/help/stats/classification-using-

nearest-neighbors.html

[33] Mount, D. 2021.CMSC 420: Lecture 13 Answering

Queries with kd-

trees.https://www.cs.umd.edu/class/spring2021/cmsc420-

0101/Lects/lect13-kd-query.pdf

[34] Padmaja, B. 2018. Lecture Notes on Data

Structures.https://www.iare.ac.in/sites/default/files/lectur

e_notes/IARE_DS_LECTURE_NOTES_2.pdf

IJCATM : www.ijcaonline.org

