
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

35

Traveling Salesman Problem Multi-destination Route

Recommendation System Using Genetic Algorithm and

Google Maps API

Catharina Adinda Mega Cahyani
School of Information Technology

Universitas Ciputra Surabaya
Surabaya, East Java

Indonesia

Trianggoro Wiradinata*
School of Information Technology

Universitas Ciputra Surabaya
Surabaya, East Java

Indonesia

ABSTRACT

Google Maps does not provide route recommendations if users

want to find the shortest route from multiple destinations or

stop destinations, or more than two destinations. Departing

from the shortcomings of Google Maps which cannot sort the

sequence of multi-destination routes with the shortest distance,

the researcher created an innovation with a genetic algorithm

in solving the problem of the Traveling Salesman Problem

category. The processes in the genetic algorithm of solving the

Traveling Salesman Problem include data collection from

primary document sources, ETL implementation, genetic

algorithm implementation, and genetic algorithm testing with

comparison algorithms. The data to be used in this study is

primary data from the day tour package "Banyuwangi City

Tour" from PT. LINTASNUSA TOURISM PRIMARY. This

research produces recommendations for destination routes with

the shortest real-time travel distance with short computational

time. The genetic algorithm that has been programmed will be

compared with other Traveling Salesman Problem solving

algorithms, namely Nearest Neighbor and Brute Force. Based

on the results of testing with primary data, the genetic algorithm

is proven to be able to solve the Traveling Salesman Problem

with the shortest average distance and the same as the solution

of the Brute Force algorithm, which is 42.759 kilometres. The

genetic algorithm also successfully recommended destination

routes with shorter real-time travel distances or more optimal

solutions compared to the Nearest Neighbor algorithm, but the

genetic algorithm took 0.9 seconds slower computational time

than the Nearest Neighbor algorithm.

General Terms

Genetic algorithm, Nearest Neighbour, and Brute Force.

Keywords

Genetic Algorithm, Traveling Salesman Problem, Google

Maps API, and Multi-destination Routes.

1. INTRODUCTION
Google Maps is a free navigation and mapping application

provided by Google. Google Maps ranks first in popular

navigation apps with a percentage of 67% of 511 respondents

where respondents are smartphone users who use at least three

different apps per day [1]. Based on the same survey, 87% of

respondents use navigation apps to show directions when

driving.

On some occasions, the destination that users want to reach

while driving is more than one or two. This is one of the

shortcomings of Google Maps, where Google Maps has not

provided route recommendations if users want to find the

shortest route from multi-destinations or more than two stops

or destinations. This study is important because currently there

are no tools for tourism actors in Banyuwangi so in determining

the travel route there is no guidance and is prone to unoptimized

travel routes which can have an impact on losses for both tour

entrepreneurs, tourists, and business activities related to

tourism.

Google Maps users can only add additional destinations

without a sequence of destinations with the shortest estimated

distance. To get a sequence of destination routes with the

shortest distance on Google Maps, users must drag and drop

and make as many route combinations as (𝑛 − 1)! or n less one

and then factor. The number of destinations (n) is reduced by

one because the route starts from the departure point and

returns to the departure point. Simply put, to get the best route,

users must try all possible destinations of the route manually

until the route with the shortest distance and fastest travel time

is found. This is a weakness in using the Google Maps

application because, of course, it will take a lot of time until the

route with the shortest distance and the fastest time. Therefore,

a recommendation for determining the route of many

destinations with the shortest distance is needed. Departing

from the shortcomings of Google Maps which cannot sort the

order of multi-destination routes with the shortest distance, an

innovation was created with a genetic algorithm in solving the

Traveling Salesman Problem category. By solving the

Traveling Salesman Problem with a genetic algorithm and

utilizing Google Maps API to access the distance between

destinations in real-time, the best individual will be generated

in the form of a route sequence of destinations with the shortest

distance.

2. LITERATURE REVIEW

2.1 Previous Studies
There have been several previous studies that address the topic

of solving the Traveling Salesman Problem using genetic

algorithms. One of them is a study [2] that used a genetic

algorithm to determine the optimal route among four

anonymous cities (A, B, C, and D). The route starts from city

A and will also return to city A. The distances between cities

are determined with default values. The stopping criterion for

the genetic algorithm to generate new generations (iterations)

is if the obtained fitness value is not better or equal to the fitness

value of the previous generation. In this study, that criterion

will be adopted, but will be developed with a genetic algorithm

for solving the Traveling Salesman Problem with real-time

distances from the Google Maps API for real destinations.

Meanwhile, a related study on genetic algorithms to solve the

Traveling Salesman Problem has been conducted for

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

36

determining the distribution routes of PT. Pos Indonesia in

Bandar Lampung [3]. The distances used to calculate fitness are

computed using the Euclidean distance between the longitude

and latitude of each post office address, then multiplied by the

decimal degree value. The parameters used are as follows:

chromosome length of 16, population size of 30, crossover rate

of 0.95, mutation rate of 0.01, and number of generations of

100. The limitation of this study is that the calculation of

distances between post offices does not use actual travel

distances. However, the genetic algorithm still proves to

provide an optimal solution with the shortest distance of

66.52239581 km among the 16 post office locations. In this

study, real-time distances from the Google Maps API will be

used, making it a more realistic solution.

There is international research that also discusses genetic

algorithms for solving the Traveling Salesman Problem using

genetic algorithms [4]. This study proves that genetic

algorithms outperform the Discrete Fruit Fly Optimization and

Simulated Annealing algorithms in achieving the best results in

two out of three Traveling Salesman Problem cases. The

limitation of this study is that the testing of the genetic

algorithm is limited to distance matrices in three samples

Traveling Salesman Problem datasets and has not been applied

to real-world problems. In this study, real-time distances from

the Google Maps API will be used, making it a more realistic

solution.

Another international research [5] found that genetic

algorithms are more efficient compared to a similar algorithm,

Particle Swarm Optimization, as genetic algorithms process

only a few particles and their operations involve only particle

exchanges. The weakness of this research is the

implementation of the genetic algorithm that iterates the

movement of particles without storing the global best value.

Therefore, this study will store the overall best value

throughout the iterations or generation generations in the

genetic algorithm.

Based on these three previous studies, the application of genetic

algorithms is chosen to solve the Traveling Salesman Problem.

2.2 Terminology

2.2.1 Genetic Algorithm
A genetic algorithm is an algorithm based on population for

optimizing problems that require a large and complex search

space. It is through the population that genetic algorithms can

find solutions beyond the scope of local optima. When a new

generation is created through crossover and mutation

processes, chromosomes are evaluated based on a fitness

function [6]. The following is the sequence of processes in a

genetic algorithm [6]:

1. Initialization: forming a set of individuals by randomly

arranging chromosome genes in a specific order. These

chromosomes represent the solutions to be found. In

this study, the chromosome representation used is

permutation representation.

2. Reproduction: the process of producing offspring from

individuals in the population. The recombination

operators used in the reproduction process are

crossover and mutation.

3. Evaluation: Calculate the fitness value of each

chromosome. The higher the fitness value, the more

suitable the chromosome is as a candidate for the

optimal solution.

4. Selection: selecting individuals from the population

and offspring to be retained for the next generation.

Probabilistic functions are used to select individuals to

be retained. Individuals with higher fitness values have

a greater chance of being selected. This probabilistic

function is known as roulette wheel selection.

Here are some important definitions of genetic algorithms

(Belluano in [7]) [8]:

1. Genotype: the representation of the values in a

chromosome. Chromosome is the basic unit of

genotype. Genotypes can be binary, float, character,

combinatorial, and so on.

2. Allele: the representation of a value in a genotype.

3. Chromosome: a collection of genotypes that form

specific values.

4. Locus: the position of a gene in a specific chromosome.

5. Individual: the representation of one of the expected

optimal solutions. An individual consists of a

chromosome with a certain length.

6. Population: a group of individuals processed in a

specific cycle.

7. Generation: a unit to represent one cycle of evolution

or iteration in genetic algorithms.

2.2.2 Crossover

The crossover process involves inheriting some genes from the

parent individuals in the same direction and exchanging other

genes. In this stage, the crossover rate (pc) needs to be

determined. This value represents the ratio of offspring

generated through the crossover to the population size,

resulting in offspring equal to pc multiplied by the population

size. The crossover method used in this study is the one-cut-

point method, randomly selecting a cutting point and

performing crossover on the right side of each parent to

generate offspring [9][8].

2.2.3 Mutation

In this study, the type of mutation used is reciprocal exchange

mutation. This method is the simplest mutation method. The

reciprocal exchange mutation works by randomly selecting two

positions (exchange points / XP) and swapping the values at

those positions [10].

2.2.4 Alternative: Nearest Neighbour Algorithm
The Nearest Neighbour Algorithm is one of the algorithms that

apply the Greedy algorithm principle to solve the TSP. The

Nearest Neighbour Algorithm chooses the best option based on

the most recent data without considering the overall data. The

Nearest Neighbour Algorithm is widely used in various fields

of science and technology [11] [12]. In solving the Traveling

Salesman Problem, the Nearest Neighbour Algorithm always

visits the nearest point or destination. The technique is to

choose which point or destination to visit first, and as long as

there are points that haven't been visited, visit the nearest point

that has not appeared in the route, then return to the starting

point [13].

2.2.5 Alternative: Brute Force Algorithm
The Brute Force method works by generating all possible

routes among all points and then calculating their distances. To

obtain the most optimal solution, the route with the shortest

distance is chosen. Here are the steps of the Brute Force method

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

37

for solving the Traveling Salesman Problem [14]:

1. Calculate the total number of destinations or points that

need to be visited.

2. Generate and list all possible destination routes.

3. Calculate the distance for each route.

4. Select the route with the shortest distance as the optimal

solution.

2.2.6 Traveling Salesman Problem
The Travelling Salesman Problem (TSP) falls into the category

of well-known optimization problems due to the complexity of

the computational process and its applications in real life, such

as school bus routes and courier vehicle scheduling [15]. The

TSP is a combinatorial NP problem. The problem in the

Travelling Salesman Problem is described as a salesman and a

list of cities. The salesman must visit all the cities, starting from

a specific point (e.g., headquarters), and then return to the

starting city. The TSP problem uses a permutation

representation because it involves finding the optimal sequence

of visiting locations, where each location is visited only once,

and then finding the sequence with the most optimal value [16].

Mathematically, the TSP can be formulated as a problem of

minimizing travel costs as follows [9].

Ζ = min{∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=1

𝑛
𝑖=1 } (1.1)

with additional arguments as constraint:

∑ 𝑥𝑖𝑗 = 1𝑛
𝑖=1 , for j = 1, 2, 3, ..., 𝑛 − 1 (1.2)

∑ 𝑥𝑖𝑗 = 1𝑛
𝑗=1 for i = 1, 2, 3, ..., 𝑛 − 1 (1.3)

2.2.7 Permutation Representation
Permutation representation describes a solution. Each gene in

the chromosome is represented by an integer that represents a

location, while the locus indicates the order of visitation for

each location [9].

2.2.8 Google Maps API
According to Google Maps, it is a web service that provides

various mapping services. Meanwhile, Google Maps API is a

JavaScript library that allows the modification of existing maps

on Google Maps according to specific needs. Google Maps API

helps users maximize the mapping capabilities of Google for

specific purposes and benefits [17].

2.2.9 Multidestination Travel Routes
Multidestination travel routes refer to the Traveling Salesman

Probwhichhere allows someone to create a combination of

routes to reach one or more desired destinations during the

journey [18].

3. RESEARCH METHODOLOGY
Broadly, this research will use a multi-destination list from

primary data as input. The multi-destination list will serve as a

parameter for the distance_matrix method of the Google Maps

API, with the API key filled in, to extract a list of road distances

between destinations. From this list, it will be transformed into

a Traveling Salesman Problem. To find the optimal solution to

the Traveling Salesman Problem, a genetic algorithm will be

implemented in a Phon programming language. The genetic

algorithm program includes population formation, parent

selection, mutation, crossover, and fitness value calculation.

The output of the program will be a recommendation for the

sequence of routes from the entered destinations, with the

shortest road distances. The visualization of the analytical

method can be seen in the following Figure 1.

In this research, the data comes from primary document

sources, namely the "Banyuwangi City Tour" tour package

from PT PRATAMA WISATA LINTASNUSA. After data

collection, ETL (Extract Transform Load) is implemented on

the data. The following Table 1 is a visualization of the ETL

diagram in this study.

Figure 1 Research Workflows

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

38

Table 1 ETL Research Diagram

%time

def main():

 starting_point = 1

 progress = []

 if len(location) <= 5:

 population = 20

 elif len(location) <= 7:

 population = 50
 else:
 population = 100

 indiv =

initialization(population,len(location),starting_point)

 fitness_list = fitness(indiv, distance_gmap,

len(location))

 indiv = selection(indiv, fitness_list, population)

 if len(location) <= 6:

 iteration = 20
 cross_rate = 0.2

 mutation_rate = 0.5
 elif len(location) <= 8:

 iteration = 50

 cross_rate = 0.2

 mutation_rate = 0.5

 else:

 iteration = 100

 cross_rate = 0.2

 mutation_rate = 0.7

 i = 0
 fitness_twin = 0

 temp_fitness = 0
 while i < iteration and fitness_twin < 35:

 offspring_cross = crossover_onecut(indiv, cross_rate,

len(location), distance_gmap)
 offspring_mut = mutation(indiv, mutation_rate,

len(location), distance_gmap)

 indiv = np.append(indiv, offspring_cross, axis = 0)

 indiv = np.append(indiv, offspring_mut, axis = 0)
 fitness_list = fitness(indiv, distance_gmap,

len(location))
 indiv = selection(indiv, fitness(indiv, distance_gmap,

len(location)), population)
 indiv = indiv[:population]

 progress.append(100 / fitness_list[0])

 if fitness_list[0] == temp_fitness:
 fitness_twin += 1

 else:

 fitness_twin = 0

 temp_fitness = fitness_list[0]
 i+=1

 indiv_selection = selection(indiv, fitness(indiv,
distance_gmap, len(location)), population)

 fitness_final = fitness(indiv_selection, distance_gmap,

len(location))
 print("Final optimum route: " + str(indiv_selection[0]))

 print("Final optimum distance: ", ((100 /
fitness_final[0]/1000)))

 distance_final = (100 / fitness_final[0]/1000)

 best_indiv = indiv_selection[0].tolist()

 rute = []
 for i in best_indiv:

 rute.append(destinasi[i-1])
 return progress, rute, distance_final

progress, rute, distance_final = main()

Figure 2 Main Function Snippet Code

After performing the extraction and transformation process, the

list of distances between destinations with a dimension of 7 x 7

will be accommodated into a variable that will directly enter

the genetic algorithm.

In the implementation of the genetic algorithm, several

processes are divided into several functions which are then

called in a main function. In this subchapter, each process in

the genetic algorithm that has been created in the main function

and the function that is called will be described. The main

function of the genetic algorithm is shown in Figure 2 above.

To speed up the computation time, the number of individuals

in a population, the number of iterations, the crossover rate, and

the mutation rate are determined using simple conditioning (if-

else statement). This experiment has been proven to improve

the efficiency of the genetic algorithm.

After the determination, initialization is performed to generate

the initial population to obtain a set of individuals with a certain

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

39

number in a population. The random method (shuffle) is used

to form the initial individuals, n in a population. In accordance

with the condition that the route always starts with a starting

point, a chromosome arrangement condition is set to always

place the gene index representing the starting point at index 0

(zero). The temporary chromosome formed is then appended

with the starting point gene at the last index. This also follows

the condition that the route must return to the starting point.

The result of this function is a set of candidate parent

individuals with random chromosome arrangements.

After initialization, evaluation is performed. Evaluation is used

to calculate the fitness of each chromosome of the individual.

In this evaluation, the 7 x 7 distance matrix, the result of the

ETL process, is used to calculate fitness. The fitness formula

used is 100 divided by the total distance of the chromosome

arrangement of each individual. The function will return a list

or array containing fitness values.

Selection functions to retain individuals with the best fitness.

Bubble sorting is performed where there will be continuous

element exchanges in the fitness array and individuals as many

times as the length of the fitness array but reversed or starting

from the last index. The selection function will return an array

or list of individuals that have been sorted in ascending order.

The selection applied in this research is roulette wheel

selection.

After selection, the next stage is reproduction. The genetic

algorithm operators used in this reproduction stage are

crossover and mutation.

The crossover method used is a one-cut-point, where the

offspring or child is formed by exchanging a pair of parents that

have undergone a previous selection and roulette wheel

processes. In the crossover process, a cut point index is

determined randomly for crossover, except for the first and last

indexes, forming a part of the offspring chromosome genes by

slicing the first parent according to the cut point index, then

filling in the remaining genes from the second parent that are

not the same as the previous first parent genes. The result of

this crossover function is an array or list of offspring equal to

the number of individuals in a population multiplied by the

predetermined crossover rate through previous conditional

statements.

In this research, the reciprocal exchange mutation method is

used, which works by selecting two positions or indexes

randomly, except for the first and last indexes, and swapping

the values at those positions. In the mutation stage, only one

selected individual is used as a parent and two indexes are

determined to swap their element positions. The result of this

mutation function is an array or list of offspring equal to the

number of individuals in a population multiplied by the

predetermined mutation rate through previous conditional

statements.

In addition to the implementation of the genetic algorithm, this

research also implements the Nearest Neighbour and Brute

Force algorithms. The recommended routes from the genetic

algorithm will be compared in terms of distance traveled with

the Nearest Neighbour algorithm and computation time with

the Brute Force algorithm.

The Nearest Neighbour algorithm implementation implements

the queue data structure used by following the FIFO (First In

First Out) principle. The addition of elements (enqueue) uses

the built-in append and insert functions while the removal of

elements (dequeue) with the built-in remove function. The

result of the Nearest Neighbour algorithm is the destination

route, the accumulated distance between destinations in route

order, and computation time.

The implementation of the Brute Force algorithm utilizes the

permutations module of the itertools library as well. To get all

destination route permutations of (𝑛 − 1)!. After obtaining all

permutations of destination routes, all distances between

destinations from these permutations are calculated, and then

take the destination route with the shortest or minimum

distance. The result of this Brute Force algorithm is the

destination route, the accumulated distance between

destinations in the order of the route, and the computation time.

4. RESULTS
The testing process was conducted on Tuesday and Thursday.

The first test was conducted on Tuesday, March 28, 2023, at

12:23:41 WIB, comparing the route sequence, distance

traveled, and computation time between the genetic algorithm,

Nearest Neighbour algorithm, and Brute Force algorithm. The

second test will perform the same comparisons on Thursday,

April 6, 2023, at 11:04:31 WIB. The final test involves

comparing the distances between destinations generated by the

genetic algorithm with the original destination routes from the

"Banyuwangi City Tour" package.

The results of the first test are presented in Table 2. Based on

Table 2, it can be concluded that the implementation of the

genetic algorithm shows a significantly shorter computation

time compared to the Brute Force algorithm. However, when

compared to the Nearest Neighbour algorithm, it appears that

the Nearest Neighbour algorithm has a faster computation time

with a delta of 0.98 seconds compared to the genetic algorithm.

Based on the aspect of distance traveled for the destination

route, it can be concluded that the genetic algorithm is superior

to the Nearest Neighbour algorithm and is equally superior to

the Brute Force algorithm.

The results of the second test are presented in Table 3.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

40

Table 2 First Trial Results

Table 3 Second Trial Results

Algorithm Destination Route

Travelling Distance

(kilometre)

Computational Time

(seconds)

Destination Route Order

Genetic

Algorithm

42,735 1,33 1. ASTON Banyuwangi Hotel and Conference Center,

2. Jagir Waterfall,

3. Gandrung Terakota Park,

4. Banyuwangi Jopuro Tourism Attraction,

5. Marina Boom Beach Banyuwangi,

6. Pendopo Sabha Swagata Banyuwangi

7. ASTON Banyuwangi Hotel and Conference Center

Nearest

Neighbour

44,828 0,633 1. ASTON Banyuwangi Hotel and Conference Center,

2. Pendopo Sabha Swagata Banyuwangi,

3. Marina Boom Beach Banyuwangi,

4. Jagir Waterfall,

5. Banyuwangi Jopuro Tourism Attraction,

6. Gandrung Terakota Park,

7. ASTON Banyuwangi Hotel and Conference Center

Brute Force 42,735 12,5 1. ASTON Banyuwangi Hotel and Conference Center,

2. Jagir Waterfall,

3. Gandrung Terakota Park,

4. Banyuwangi Jopuro Tourism Attraction,

5. Marina Boom Beach Banyuwangi,

6. Pendopo Sabha Swagata Banyuwangi,

7. ASTON Banyuwangi Hotel and Conference Center

Based on the previous two tables, the author summarizes the

test results in Table 4 below.

Algorithm Destination Route

Travelling Distance

(kilometre)

Computational Time

(seconds)

Destination Route Order

Genetic

Algorithm

42,873 1,45 1. ASTON Banyuwangi Hotel and Conference Center,

2. Jagir Waterfall,

3. Gandrung Terakota Park,

4. Banyuwangi Jopuro Tourism Attraction,

5. Marina Boom Beach Banyuwangi,

6. Pendopo Sabha Swagata Banyuwangi

7. ASTON Banyuwangi Hotel and Conference Center

Nearest

Neighbour

44,706 0,542 1. ASTON Banyuwangi Hotel and Conference Center,

2. Pendopo Sabha Swagata Banyuwangi,

3. Marina Boom Beach Banyuwangi,

4. Jagir Waterfall,

5. Banyuwangi Jopuro Tourism Attraction,

6. Gandrung Terakota Park,

7. ASTON Banyuwangi Hotel and Conference Center

Brute Force 42,873 15,4 1. ASTON Banyuwangi Hotel and Conference Center,

2. Jagir Waterfall,

3. Gandrung Terakota Park,

4. Banyuwangi Jopuro Tourism Attraction,

5. Marina Boom Beach Banyuwangi,

6. Pendopo Sabha Swagata Banyuwangi,

7. ASTON Banyuwangi Hotel and Conference Center

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

41

Table 4 Quantitative Summary Result

Algorithm Destination

Route Travelling

Distance

(kilometre)

Computational

Time (seconds)

Genetic

Algorithm
Excellent Excellent

Nearest

Neighbour
Less Excellent Excellent

Brute Force Excellent Less Excellent

Based on the summary, the genetic algorithm is the most

superior to solving the Traveling Salesman Problem, especially

when compared with data obtained from primary sources,

namely "Banyuwangi City Tour". The test results of the

recommended destination route sequence of the genetic

algorithm with the destination route sequence from the primary

source are presented in Table 5 of the following comparison.

Table 5 Primary Data Comparison Trial Result

Destination Route Source Destination

Route

Travelling

Distance

(kilometre)

Destination Route Order

Genetic Algorithm 42,7 1. ASTON Banyuwangi Hotel and Conference Center,

2. Jagir Waterfall,

3. Gandrung Terakota Park,

4. Banyuwangi Jopuro Tourism Attraction,

5. Pantai Marina Boom Banyuwangi,

6. Pendopo Sabha Swagata Banyuwangi

7. ASTON Banyuwangi Hotel and Conference Center

"Banyuwangi City Tour" package on

YukBanyuwangi website

66,5 1. Hotel (ASTON Banyuwangi Hotel and Conference

Center),

2. Banyuwangi Jopuro Tourism Attraction,

3. Pendopo Sabha Swagata Banyuwangi

4. Jagir Waterfall

5. Gandrung Terakota Park,

6. Pantai Marina Boom Banyuwangi,

7. Hotel (ASTON Banyuwangi Hotel and Conference

Center).

5. DISCUSSION
Based on the previous test results, it can be summarised as

follows.

1. The genetic algorithm managed to get a solution with the

shortest distance and the same as the solution of the Brute

Force algorithm, which is about 42.7 kilometres. The

genetic algorithm also takes a much shorter computation

time with a difference of about 11 seconds.

2. The genetic algorithm managed to get a solution with a

shorter distance than the solution from the Nearest

Neighbour algorithm with a difference of about 1.7

kilometres. However, the computation time of the genetic

algorithm is slightly longer by about 0.9 seconds than the

Nearest Neighbour algorithm.

3. The Brute Force algorithm and the genetic algorithm

produce the most optimal solution while the Nearest

Neighbour algorithm takes the shortest computation time.

4. The genetic algorithm in this study uses a population size

of 50, number of iterations of 50, crossover rate of 0.2, and

mutation rate of 0.5.

In addition, based on the hypothesis and previous test results,

the following conclusions can be drawn.

1. The application of genetic algorithms and Google Maps

API, has been able to recommend real-time travel routes

with the shortest distance for the multidestination Traveling

Salesman Problem in real cases.

2. The application of genetic algorithms, based on the tests

written in Chapter 5.1, has been able to recommend

destination routes with shorter real-time travel distances or

more optimal solutions compared to the Nearest Neighbour

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

42

algorithm but genetic algorithms take longer computing

time than the Nearest Neighbour algorithm.

6. CONCLUSION AND FUTURE

STUDIES

6.1 Conclusion
The genetic algorithm for solving the Traveling Salesman

Problem for a multi-destination shortest route recommendation

system has been successfully implemented through the

following steps:

1. Data collection from primary document sources.

2. Implementation of ETL (Extract Transform Load).

3. Implementation of the genetic algorithm.

4. Testing the genetic algorithm against comparison

algorithms.

The constructed genetic algorithm is capable of producing the

most optimal solution, where the solution generated is the same

as the solution from the Brute Force algorithm but with a faster

computation time compared to the Brute Force algorithm. The

built genetic algorithm is able to produce a more optimal

solution than the Nearest Neighbour algorithm but at a slower

pace.

6.2 Future Studies
Development suggestions that could be useful for future studies

in this research include:

1. Conduct trials with a larger number of destinations to

measure how optimal and fast the genetic algorithm that

has been built.

2. Adding constraint variables for fitness in the form of

destination density or peak hour measures, destination

priority weights (for example: the beach must be visited last

in order to enjoy the sunset), destination operating hours,

and the like.

3. Testing a variety of real Traveling Salesman Problem cases

and modifying the genetic algorithm accordingly.

4. Expanding the options of trip types such as not returning to

the starting point or having a final destination that must be

fulfilled.

5. Accommodating other distance units besides

metres/kilometres such as miles.

7. REFERENCES
[1] R. Panko, “The Popularity of Google Maps: Trends in

Navigation Apps in 2018,” Jul. 10, 2018.

https://themanifest.com/app-development/trends-

navigation-apps (accessed Feb. 25, 2023).

[2] E. Wulan and N. Apriani, “The Application of Genetic

Algorithm in Solving Traveling Salesman Problem,”

2020, doi: 10.4108/eai.11-7-2019.2297522.

[3] S. Rohman, L. Zakaria, A. Asmiati, and A. Nuryaman,

“Optimisasi Travelling Salesman Problem dengan

Algoritma Genetika pada Kasus Pendistribusian Barang

PT. Pos Indonesia di Kota Bandar Lampung,” Jurnal

Matematika Integratif, vol. 16, no. 1, p. 61, 2020, doi:

10.24198/jmi.v16.n1.27804.61-73.

[4] S. Sharma and V. Jain, “A Novel Approach for Solving

TSP Problem Using Genetic Algorithm Problem,” IOP

Conf Ser Mater Sci Eng, vol. 1116, no. 1, p. 012194, 2021,

doi: 10.1088/1757-899x/1116/1/012194.

[5] P. Mudjihartono, T. Tanprasert, and R. Setthawong, “A

Comparative Study of Modified PSO Algorithm and

Traditional PSO and GA in Solving University Course

Timetable Problem,” 2018.

[6] M. Gen and R. Cheng, Genetic Algorithms and

Engineering Optimization (Engineering Design and

Automation), 1st ed. Wiley-Interscience, 1999.

[7] C. Pramartha and H. Suputra, “Rekomendasi Rute

Perjalanan Wisata Berbasis Web Menggunakan

Algoritma Genetika,” Jurnal Ilmu Komputer, vol. 13, pp.

21–27, Apr. 2020, doi: 10.24843/JIK.2020.v13.i01.p03.

[8] D. E. Goldberg, Genetic Algorithms in Search,

Optimization, and Machine Learning, 1st ed. Addison-

Wesley Professional, 1989. [Online]. Available:

http://gen.lib.rus.ec/book/index.php?md5=8ac0783ba24b

71236b695cbdfab2ca67

[9] W. F. Mahmudy, “Algoritma Evolusi,” Program

Teknologi Informasi dan Ilmu Komputer, Universitas

Brawijaya, Malang, pp. 1–101, 2013.

[10] J. Juwairiah, D. Pratama, H. Rustamaji, H. Sofyan, and D.

Prasetyo, “Genetic Algorithm for Optimizing Traveling

Salesman Problems with Time Windows (TSP-TW),”

International Journal of Artificial Intelligence & Robotics

(IJAIR), vol. 1, p. 1, Oct. 2019, doi:

10.25139/ijair.v1i1.2024.

[11] S. A. Nene and S. K. Nayar, “A simple algorithm for

nearest neighbor search in high dimensions,” IEEE Trans

Pattern Anal Mach Intell, vol. 19, no. 9, pp. 989–1003,

1997, doi 10.1109/34.615448.

[12] I. Sutoyo, “Penerapan Algoritma Nearest Neighbour

untuk Menyelesaikan Travelling Salesman Problem,”

Jurnal Khatulistiwa Informatika, vol. 20, no. 1, pp. 101–

106, 2018, doi: 10.31294/p.v20i1.3155.

[13] G. Kizilateş and F. Nuriyeva, “On the Nearest Neighbor

Algorithms for the Traveling Salesman Problem,” in

Advances in Computational Science, Engineering and

Information Technology, D. Nagamalai, A. Kumar, and A.

Annamalai, Eds., Heidelberg: Springer International

Publishing, 2013, pp. 111–118.

[14] A. Rahman Saiyed, “The Traveling Salesman Problem,”

2012.

[15] R. H. Warren, “Solving the traveling salesman problem on

a quantum annealer,” SN Appl Sci, vol. 2, no. 1, p. 75,

2019, doi: 10.1007/s42452-019-1829-x.

[16] S. Juneja, P. Saraswat, K. Singh, J. Sharma, D. Majumdar,

and S. Chowdhary, Travelling Salesman Problem

Optimization Using Genetic Algorithm. 2019. doi:

10.1109/AICAI.2019.8701246.

[17] F. Mahdia and F. Noviyanto, “211271-Pemanfaatan-

Google-Maps-Api-Untuk-Pemban,” vol. 1, pp. 162–171,

2013.

[18] H. Santoso and R. Sanuri, “Implementasi Algoritma

Genetika dan Google Maps API Dalam Penyelesaian

Traveling Salesman Problem with Time Window (TSP-

TW) Pada Penjadwalan Rute Perjalanan Divisi Pemasaran

STMIK El Rahma,” Teknika, vol. 8, no. 2, pp. 110–118,

2019, doi: 10.34148/teknika.v8i2.187.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

43

8. AUTHOR’S PROFILE
Catharina Adinda Mega Cahyani is an Information

System fresh graduate, with research interests in

Evolutionary Computing, Deep Learning, Artificial

Intelligence, and iOS Mobile Development. Catharina is

an alumnus of the Apple Developer Academy @ UC and

Bangkit Academy 2022, and a Machine Learning

Student by Google, GoTo, and Traveloka. Catharina has

been recognized as 1st Runner Up in the National AI

Innovation Challenge and has been a finalist in several

national data competitions. With her expertise in iOS

development and passion for cutting-edge technologies,

Catharina contributes to the advancement of intelligent

mobile applications and technologies.

Trianggoro Wiradinata is a researcher at the School of

Information Technology at Ciputra University. His main

research interests are data science, software engineering,

technology adoption, and technology-based

entrepreneurship. He was actively involved in many

large-scale enterprise software development projects

before joined as researcher at Ciputra University,

Surabaya, Indonesia. Assoc. Prof. Dr. Wiradinata is

currently a. member of Association for Computing

Machinery (ACM) and Association for Information

Systems Indonesia (AISINDO).

IJCATM : www.ijcaonline.org

