
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

22

Efficient and Robust Security Architecture for

Enhancing Security of Message Queue Telemetry

Transport Protocol in Internet of Things Applications

Atul Oak
Ph.D. Research Scholar

Dept. of Electrical Engineering
Veermata Jijabai Technological Institute (VJTI)

Mumbai, India

R.D. Daruwala
Professor

Dept. of Electrical Engineering
Veermata Jijabai Technological Institute (VJTI)

Mumbai, India

ABSTRACT
Internet of Things (IoT) technology is one of the contributors

to Industry 4.0 revolution. IoT is a system of interconnected

devices called as things or nodes. Data is shared between such

two physical devices like a sensor and a smart mobile phone

using an existing internet and different types of network

infrastructures. IoT systems are usually deployed using special

protocols called light weight protocols which are different from

the traditional internet based communication protocols. There

are many constraints on devices used in IoT system such as use

of low end micro-controllers with limited computing power,

limited power consumption, and use of unreliable networks

with low bandwidth. To work with and manage such devices

with constraints, different types of light weight protocols have

been developed and used in the IoT systems. Message Queue

Telemetry and Transport (MQTT) is machine to machine

(M2M) light weight data protocol most commonly used in the

deployment of IoT systems and for sharing and delivery of data

at application layer. When data is shared in the IoT system

between the two physical devices with MQTT protocol, the

security of data is a very critical requirement for reliability and

adaptation of IoT systems. MQTT protocol being a light

weight protocol does not provide any built in powerful and

robust security techniques and it only supports very basic

security mechanism like a password authentication. When

used, this password is also shared in a clear text and it may be

visible to the intruders. Due to the weak security features in

MQTT protocol, many times the data is compromised and it is

vulnerable to different types of malicious attacks like sniffing

attack. Most common way to provide security to the MQTT

based IoT application is at the transport layer by using an

existing Transport Layer Security (TLS) protocol. TLS

protocol may be suitable for internet applications like web

applications and browsing but it is not suitable and designed for

use with constrained IoT devices which works with light weight

protocols.TLS protocol demands lots of complex computations

and it needs more powerful resources like high end

microprocessors and large memory which are only available

with general computing machines like laptop or desktop

computers. TLS approach may not provide end to end security

in IoT applications since MQTT is asynchronous protocol. To

achieve end to end security independent of TLS, robust security

architecture is proposed in the IoT systems for MQTT protocol.

These researches aims at developing efficient security

architecture for MQTT protocol and improve the security of

MQTT protocol.

General Terms

Industry 4.0, Technology, Internet, Devices, Attack,

Keywords

Internet of Things, Protocol, MQTT, Security, Architecture

1. INTRODUCTION
Internet is an interconnection of many heterogeneous networks

of computers. Internet is widely used for people to people (P2P)

communication using applications like email or browsing. In

1999, Kevin Ashton from MIT thought of sharing information

electronically between the two physical devices [3].

Information sharing between the two physical devices or things

through the existing infrastructure of an internet is called

Internet of Things (IoT). IoT is a type of thing to thing (T2T)

communication or device to device (D2D) communication and

it can be considered as a next step of people to people (P2P)

communication. IoT can be considered as connectivity in three

dimensions like connectivity at any time, connectivity at any

place and connectivity of anything. IoT is a network of physical

objects built with sensors like vehicles, buildings or a network

of devices like sensors which are embedded with required

electronics with driving software and network connectivity. It

enables all these objects or devices to collect and share the

information. The deployment of IoT applications is increasing

rapidly. According to IoT Analytics report, global IoT market

size grew 22% in 2021[13] as shown in figure 1.

Fig 1: Growth of IoT

 Gartner report has already estimated that by year 2021 about

20 billion devices are already connected to the internet.

Applications like vending machines, connected cars, jet

engines and more than 65% of enterprises will adopt IoT

products [6][11][14] in coming years..

2. LAYERS IN IoT SYSTEM
IoT system deployment normally follows layered architecture

like Open System Interconnection (OSI) model or a

Transmission Control Protocol/Internet Protocol (TCP/IP)

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

23

model. Though there is no standard architecture defined for IoT

systems, one of the most common layered architecture is called

Service Oriented Architecture (SOA) of IoT [1]. There are four

layers in SOA architecture as follows:
1. Perception layer: This is a physical layer of IoT system

which measures and collects the information from

different types of devices. These devices are light weight

devices with lots of physical and operating constraints like

limited or no computational power, limited power

consumption and limited resources like memory.

2. Network layer: This layer of IoT system is responsible for

routing of information using either Medium Access

Control (MAC) address or Internet Protocol (IP) address.

IoT access technologies like IEEE 802.15.4 called Low

Rate – Wireless Personal Area Network (LR-WPAN) is

widely used at perception layer and network layer.

3. Service layer: This layer of IoT system provides different

services to application layer and works like a business

logic. This layer may be further divided in more sub layers

depending on the functionality.

4. Application layer: User interacts with the IoT system

using an application layer and may share, view or display

the collected information.

 Due to the various constraints on IoT system, special light

weight protocols are required for working with low level

devices at different layers. There are also other layered models

for IoT such as five layered model referred in the literature of

IoT.

3. PROBLEM STATEMENT
MQTT protocol is not designed to be secure protocol. Most of

the IoT systems using MQTT protocol rely on existing

SSL/TLS protocol for security. SSL/TLS protocol is not been

designed for IoT systems. SSL/TLS protocol do not provide

end to end security especially with MQTT protocol which is

based on publish subscribe architecture. SSL/TLS protocols are

heavy weight protocols for resource constrained devices used

in IoT systems. MQTT protocol being a light weight protocol

does not provide any direct, powerful and efficient security

mechanism for sharing information using unreliable network.

It is observed during study of literature that many IoT systems

running on MQTT protocol do not provide any security

measure due to many challenges in providing security and

SSL/TLS implementation is not practical. When adequate

security is not provided for sharing of information, such

information is vulnerable to different types of malicious attacks

and IoT system is compromised. Security is a very fundamental

requirement to protect the information. End to end security can

be achieved in IoT system using standard encryption

techniques. Key management like computation of keys, sharing

and distribution of keys are the main challenges using the

resource constrained devices in IoT systems. Identification of

devices, authorization of devices is other security challenges in

MQTT based IoT systems. To mitigate these different types of

security challenges, more novel approach is do design a robust

security architecture framework around MQTT protocol so that

different security challenges can be handled in the future IoT

systems running on MQTT protocol.

4. APPLICATION LAYER PROTOCOLS
The application layer is the topmost layer of the IoT layered

architecture which provides the services requested by user. For

example, the application layer can provide temperature and

humidity measurements to the user requesting for such a data

[16]. Significance of application layer is an ability to provide

high-quality smart services to meet the requirements of the

users. Many different IoT applications like smart city, smart

healthcare, and smart factory can be implemented within this

level. An application support sub layer called service layer also

called middleware supports all sorts of business services and

used to realize intelligent computation. Resource allocation

could be implemented throughout specific middleware and

cloud computing platforms. Application layer provides a direct

interface to the end user where information generated in an IoT

system can be delivered. Application layer is crucial layer and

it is often an overlooked challenge in terms of security and

quality of service. Application layer of IoT system widely uses

five major protocols [9] [8] as follows

1. Constrained Application Protocol (CoAP)

2. Message Queue Telemetry and Transport Protocol (MQTT)

3. Extensible Message Presence Protocol (XMPP)

4. Advanced Message Queue Protocol (AMQP)

5. Hyper Text Transfer Protocol (HTTP)

HTTP and CoAP protocols being synchronous protocols

require regular polling and posting of updates in the form of

redundancy and it imposes considerable strain on already

constrained IoT devices. HTTP is based on request and

response architecture with lots of overhead. XMPP, AMQP and

MQTT are message oriented protocols which allows devices to

communicate through an asynchronous, event driven approach

according to their own context. XMPP requires processing and

storing of extended markup language data (XML) which in turn

requires more resources for large number of constrained IoT

devices. AMQP is more suitable for applications like server to

server communication than device to device communication.

MQTT is asynchronous protocol based on publish and

subscribe architecture. MQTT protocol was released by IBM as

a lightweight machine-to-machine (M2M) communication

protocol [18]. The MQTT protocol runs on top of the

Transmission Control Protocol (TCP) and Internet Protocol

(IP) stack. The MQTT was designed to work with constraints

like unreliable networks with low bandwidth and constrained

devices in IoT which are normally battery operated devices.

MQTT protocol is more reliable since it provides a technique

called Quality of Service (QoS) which can be used as per the

application requirements. The MQTT protocol is dependent on

the security features of Transport Layer Security (TLS)/ Secure

Sockets Layer (SSL) similar to the HTTP protocol used over

the Internet. Typical IoT applications based on MQTT protocol

are [10] home automation like gardening, light control, power

monitoring and energy monitoring, constrained networks,

medical applications, smart homes, mobile software. The Face

book messenger uses the MQTT protocol.

HTTP is a type of synchronous request and response protocol

which is used for internet applications like browsing of web

pages. It is based on Representational State Transfer (REST)

architecture. REST architecture uses methods like GET and

POST to provide the message system where all actions are

performed by HTTP commands. HTTP also works on the top

of the Transmission Control Protocol (TCP) and Internet

Protocol (IP) stack. It supports a transfer of large data using

HTTP message based on Extended Markup Language (XML)

format. It is not suitable for the IoT system with constraint

devices since it adds lots of overhead while using XML format.

CoAP is based on synchronous request and response protocol.

This protocol was designed by the Internet Engineering Task

Force (IETF). It is interoperable with HTTP and it can be

considered as a light weight version of REST architecture. The

CoAP runs over the User Datagram Protocol (UDP) unlike

MQTT or HTTP to keep light weight implementation. The

UDP-based application layer protocol reduces the bandwidth

requirements and it supports multicast and unicast features

unlike the Transmission Control Protocol (TCP), which does

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

24

not support multicast. CoAP supports four message types.

Compared to TCP based MQTT, CoAP may have lower

overhead but CoAP gets low on package losses since it does

not support TCP retransmission technique. Security is provided

by Datagram Transport Layer Security (DTLS) on top of UDP.

DTLS is used to secure UDP data but it is not designed for IoT

since DTLS handshake needs more packets which may increase

the resource requirements of constrained devices. Typical IoT

applications of CoAP protocol are smart city development,

smart grid and building automation, group communications and

transport logistics.

AMQP is commonly used in financial industry like banking.

JPMorgan, an American banking and financial services

company uses AMQP to send almost 1 billion messages per

day. AMQP has an underlying reliability when runs over TCP

protocol. It provides an asynchronous publish and subscribe

based messaging system. It ensures reliability with message-

delivery guarantee. The security in AMQP is handled by using

of the TLS/SSL. It is used by many financial institutions for

heavier data transmission.

XMPP was also standardized by the IETF. It is designed for

near real-time communications like chatting and message

exchange and it runs over TCP and provides publish/subscribe

and also request/response messaging system. The XMPP

Protocol has Transmission Layer Security (TLS)/ Secure

Socket Layer (SSL) security built into its core specifications.

However, it does not support a QoS option useful to achieve

the reliability so this makes protocol impractical for IoT

systems or M2M communications. XMPP uses XML messages

that create additional overhead due to tags and XML parsing

and may require more computations which are difficult for

constrained devices since it also increases the power

consumption of constrained devices. Typical applications for

XMPP protocol are group chat, gaming, system control and

voice over IP. In 2014 Google stopped XMPP standard support

due to lack of world wide support.

Figure 2 shows common protocols used in IoT system at

different layers.

Applicatio

n Layer

MQT

T

HTT

P

CoA

P

AMQ

P

XMP

P

Network

Layer

IPv6 over 6LowPAN

Adaption

Layer

6LowPAN

Perception

Layer

IEEE802.15.4 (LR WPAN)

Fig.2: Typical Protocols used in the IoT System

5. MQTT PROTOCOL MODEL
MQTT is a machine to machine data protocol used in the

application layer of IoT system. It is a light weight protocol

based on publish subscribe architecture. This protocol was

designed in year 1999 by Andy Stanford (IBM) and Arlen

Nipper (Eurotech). There are three versions of MQTT protocol

like MQTT V3.1 and MQTT V3.1.1 which are deployed in

various IoT applications and third version is been released

recently called MQTT 5.0. MQTT is standardized in 2013 from

Organization for the Advancement of Structured Information

Standard (OASIS) [15]. MQTT protocol works with three main

components using publish subscribe architecture [10] as

follows:

1. MQTT Client: MQTT clients are the device which works

as a publisher of information or subscriber of information.

MQTT client collects the information from various

sensors like temperature sensors and humidity sensor and

displays information on devices like smart phones. MQTT

client can be any device from a microcontroller board

interfaced with sensors up to the server which runs the

MQTT library and communicates using any kind of

network. Commonly these devices are constrained

microcontroller boards with sensors and actuators and lots

of constraints like limited power, limited memory, limited

computational capability and unreliable networks with

limited bandwidth.

2. MQTT Broker: MQTT broker is a central point of

communication and works like a server between the

MQTT client as a publisher and MQTT client as a

subscriber. Each MQTT client who works as a publisher

of information, publish the information to the MQTT

broker. Every information that is published includes

metadata called topic. Topic is a routing technique used

by the MQTT broker for sharing and routing information

to appropriate MQTT client who works as a subscriber.

MQTT clients who works as a subscriber receives the

information by subscribing to a particular topic. MQTT

broker delivers all messages with matching topics to

MQTT client working as a subscriber.

Fig 3: MQTT protocol model

MQTT Broker is responsible for receiving all the

information in the form of messages, filtering the

information, deciding who is interested in the information

and sending information messages to the appropriate

subscribers. Broker can also perform authentication and

authorization of MQTT clients.

3. MQTT Connection: MQTT protocol works on the

top of existing Transmission Control Protocol (TCP) and

Internet Protocol (IP). It’s necessary that MQTT clients like

publisher and subscriber as well as MQTT broker have a

support for TCP/IP protocol stack. The connection is always

between one MQTT clients like a publisher or a subscriber and

the MQTT broker such that no two MQTT clients are

connected to each other directly. Connection is initiated

through the MQTT client sending the CONNECT message or

packet to the MQTT broker. MQTT Broker responds with

CONNACK message or packet to the MQTT client. Once

connection is initialized, MQTT will keep it open as long as

MQTT client do not request using DISCONNECT message or

packet. There are two standard TCP ports used for sharing

information using MQTT protocol. PORT 1883 is used for non

encrypted communication without TLS while PORT 8883 is

used for encrypted communication with TLS. Figure 3 shows

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

25

working of MQTT protocol for sharing information using

publish and subscribe model.

The main advantage of publish and subscribe architecture of

MQTT protocol is the decoupling of transmitter and the

receiver or clients, which offers the following advantages

1. Space decoupling: Publisher and subscriber do not need to

know each other.

2. Time decoupling: Publisher and subscriber do not need to

run at the same time.

3. Synchronization decoupling: Operations on both

components are not halted during publish or receiving.

4. Publish and Subscribe approach also provides a greater

scalability than the traditional client server approach. This

is because operations on the broker can be highly

parallelized and processed event driven.

MQTT protocol commonly uses 14 control packets [12] for

communication of information between clients. Packets are as

follows:

1. CONNECT – Client requests to connect the server (broker).

2. CONNACK – Connection of client is acknowledged.

3. PUBLISH – A message or information sharing to broker.

4. PUBACK – Quality of Service (QoS1) response to a

 publish message.

5. PUBREC – First part of QoS2 message flow.

6. PUBREL – second part of QoS2 message flow.

7. PUBCOMP – Last part of QoS2 message flow.

8. SUBSCRIBE – A message used by client to subscribe to

 specific topic.

9. SUBACK – acknowledgement of subscribe message.

10. UNSUBSCRIBE – A message used by clients to

 unsubscribe from specific topic.

11. UNSUBACK – Acknowledgement of an unsubscribed

 message.

12. PINGREQ – Heart beat message to keep connection.

13. PINGRESP – Heart beat message acknowledgement to

 keep connection.

14. DISCONNECT – Graceful disconnect message sent by

 Client.

Out of these 14 control packets of MQTT protocol, only four

packets are used directly by clients like PUBLISH,

SUBSCRIBE, UNSUBSCRIBE and CONNECT and other

packets are the part of publish and subscribe mechanism.

 MQTT is designed to be a lightweight protocol to support

requirements of IoT environment. Being light weight protocol,

it does not support much security techniques and mechanisms.

CONNECT packet provides a feature of password

authentication but this password is shared in a clear text. To

provide the adequate security, MQTT protocol depends on

other widely accepted security mechanisms at transport layer

like Transmission Layer Security to guard against different

kinds of security risks and malicious attacks. But security at

transport layer does not provide end to end security.

6. MQTT PROTOCOL AND SECURITY

CIA model of security is the most basic and standard model for

security. Model refers to three major aspects of a security called

Confidentiality (C), Integrity (I) and Availability (A) of

information as shown in the figure 4 [16]. AAA model of

security is enhanced version of CIA model which refers to

extended aspects of security like Authentication (A),

Authorization (A) and Accounting (A). Confidentiality refers

to ensuring that devices that should have access to the

information should able to access the information.

Fig.4: CIA model of Security

Confidentiality is important in IoT systems because many

devices may collect and handle the critical information like

personal information. Integrity refers to ensuring that

information is correct and information is not corrupted or

modified in any way by unauthorized access. Availability

refers to ensuring that system is available to all valid users all

the time. As time will progress [13], billions of devices will be

connected to internet and it’s unlikely that this horde will be

protected by adequate security measures [2] [5]. In the IoT

system, it is possible that any time the personal data can

become public data due to different types of malicious attacks

and data is compromised. To make IoT systems secure, there

are some basic security requirements [4] [7] which must be

fulfilled. The security requirements are as follows:

1. Confidentiality: it must be ensured that only authorized

users can able to access the information.

2. Integrity: it is used to ensure that the completeness and

accuracy of information and absence of any unauthorized

data manipulation.

3. Availability: it is necessary to confirm that all system

services are available when requested by an authorized

user any time.

4. Accountability: It makes user responsible for their own

actions performed in the system.

5. Auditability: Ability of system to conduct persistent

monitoring of all actions.

6. Trustworthiness: It is verification, identification and

establishing trust in a third party.

7. Non repudiation: Ability of a system to confirm

occurrence or non occurrence of an action.

8. Privacy: It is necessary to ensure the privacy policies that

enable individuals to control their personal information.

A thing that obeys all the security requirements is called a

secure thing. An attack that threatens at-least one of the security

requirements is called security threat. There are various types

of threats which make IoT system vulnerable. The main

security threats in the application layer [1] [14] are as follows:

1. Data leakage: The attacker can easily steal critical data like

password of the user by knowing vulnerabilities of the

service or application. Example is snooping attack.

2. Denial of Service (DoS) attack: The attacker can destroy

the availability of the application or service. Example is

Distributed Denial of Service attack (DDoS).

3. Malicious code Injection: The attacker can upload the

malicious codes in software applications exploiting

the known vulnerabilities in the system and get access to

critical resources.

MQTT protocol has no imposed and robust security mechanism

in order to keep the protocol light weight [20]. MQTT protocol

supports only basic features of security like username and

password but this information is communicated using MQTT

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

26

protocol in a clear text. MQTT protocol depends on transport

layer for security of data. In MQTT environment the security

of communication between MQTT clients and MQTT broker is

provided by Secure Socket Layer (SSL) and Transport Layer

Security (TLS) protocols. TLS is a protocol that is designed to

ensure authentication, confidentiality and integrity at the

transport layer. TLS allows the two devices to negotiate a

shared key between the two devices on the internet. This shared

key is used to create a secure communication channel between

the two devices. TLS is a resource intensive protocol and it is

challenging for constrained IoT devices to run this protocol.

TLS is been designed to function over a reliable

communication channel. It means in case of packet loss or

message appearing out of order protocol will drop the

connection. IoT devices are not only constrained devices but

these devices may also run on unreliable channel which may

result in lots of connections being dropped. The internet

protocol suite TCP/IP used for traditional internet is not

suitable directly for IoT system. Different types of IoT access

technologies like 6 Low Power Personal Area Network

(6LowPAN) are used in IoT applications which runs over

Internet Protocol (IPv6) to allow different link layer

technologies to communicate [8]. It is a main network layer

protocol used in the IoT system which enables IoT devices that

cannot handle the traditional IP stack used in the internet. 6

LowPAN do not provide any major security and it depends on

other protocols for the security. Figure 5 shows the protocol

stack with MQTT.

Fig.5: Protocol Stack with MQTT

Application Layer

MQTT Protocol

TCP/IP Protocol with 6LowPAN

Ethernet/Physical Layer and MAC

TLS is an encryption technique on the transport layer that

means the application layer does not have to implement the

encryption itself; instead it configures the transport layer to use

the encryption protocol. Figure 6 shows the working of TLS for

providing the security of information at transport layer. MQTT

was designed without any security in the mind and even after

20 years after invention, it lacks many of its own security

features. MQTT protocol does not provide and support any

encryption by default. MQTT protocol recommends use of

TLS/SSL for security. TLS provides an encrypted

communication channel over which MQTT messages are sent.

Before MQTT channel between the publisher to broker to

subscriber is established, TLS uses handshake mechanism to

share certificates or keys from the publisher to the broker and

also from broker to subscriber.

Fig.6: Working of TLS protocol

 If certificate or key exchange is successful then TLS creates a

secure encrypted communication channel, if not then

connection is aborted. It is possible to provide link layer

security mechanisms with 6LowPAN protocol but it provides

the encryption and integrity check on hop by hop basis. Main

concern in this technique is every device on the communication

path must be trusted and any traffic leaving 6LowPAN will not

be protected and hence the solution is provided by SSL or TLS

security. TLS is computationally expensive and requires

powerful resources like several kilobytes of primary memory

[19]. SSL/TLS do not provide end to end security. Following

are the disadvantages of SSL/TLS protocol:

1. IoT traffic needs to be quick and light weight. TLS

protocol adds additional two round trips to the start of

every session for establishment of secure channel.

2. Certificates can be large files and device memory is

limited in IoT system since memory is one of the

constraints in IoT system. In TLS handshake, the server

can use server side TLS certificate to authenticate itself.

Devices often store certificates to authenticate themselves

to the application server. Device memory is often limited

in IoT and certificates can be large and it is challenging to

store the certificates.

3. With TLS we need current time to check certificate

validity. NTP client code is required with a Real Time

Clock (RTC) preferably with battery to check validity of

certificates.

In MQTT environment security of information that is

communicated between MQTT broker and MQTT clients is

mainly provided by SSL/TLS. This protocol is not sufficient

for optimum security at MQTT application layer [13].

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

27

Fig 7: Security at Different Layers

This security does not step in the broker level. A user with the

broker access is authorized to access to all information. After

connection to the broker, user is listening to the topic and

receives all the information and security is compromised. The

disadvantage of MQTT security is the use of TLS/SSL with

certificates which is not optimized for constrained devices [14].

Using TLS/SSL with certificates and session key management

for multiple heterogeneous devices is surely cumbersome and

difficult [16]. As discussed in figure 6, SSL/TLS do not provide

end to end security in publish subscribe model like MQTT

protocol. The solution can be provided by the use of symmetric

encryption techniques like Data Encryption Standard (DES) or

Advanced Encryption Standard (AES) and asymmetric

encryption techniques like RSA. These encryption techniques

when in IoT systems have a problem of key management.

MQTT protocol was specially designed as a lightweight

protocol with minimum focus on the security aspect [11] [17].

Data privacy and confidentiality in MQTT protocol is a major

concern since MQTT protocol does not directly provide any

support for data encryption [13]. Figure 7 shows security

provided by lower layer protocols. Security of MQTT protocol

is mainly dependent on lower layer protocol like TCP based on

a mechanism called Secure Socket Layer (SSL) or Transport

Layer Security (TLS). SSL or TLS protocols are common for

applications like internet browsing using personal computers

(PC). But, this mechanism is not suitable for constrained

devices used in the design of IoT system like use of an 8 bit

microcontroller. TLS mechanism does not provide end to end

security in MQTT protocol. Different types of data encryption

techniques can be used with MQTT protocol to provide an end

to end encryption of data that is electronically communicated

between MQTT clients [11]. End to end encryption may avoid

the dependency on TLS and the associated problems due to

various constraints. Data encryption techniques can be

classified into two basic types called symmetric encryption and

asymmetric encryption. Symmetric encryption technique uses

only private key between the two MQTT clients for encryption

and decryption of data. Asymmetric encryption technique uses

private key along with public key between the two MQTT

clients for encryption and decryption of data. Asymmetric

encryption technique is computationally more resource

incentive than symmetric encryption and hence may not be

suitable for constrained devices used in the IoT system.

Symmetric encryption techniques can be further classified into

two types called block ciphers and stream ciphers. In block

ciphers, plain text or data is divided into the larger blocks of

fixed size and each block is encrypted separately into a cipher

text. In Stream cipher, encryption is performed on the plain text

bit by bit to generate the cipher text. After literature survey, we

focused our research on three types of block cipher algorithms

called Data Encryption Standard (DES), Advanced Encryption

Standard (AES) and Blowfish. AES is most commonly used

block cipher and Blowfish is more suitable for constrained

devices. There are several code blocks available with block

ciphers. This research has performed experimentation to

measure the performance of MQTT protocol using standard

symmetric block encryption techniques like DES, AES and

Blowfish and by varying the code blocks for the encryption. In

Electronic Code Book (ECB) mode, data is divided into the

fixed size blocks and each block is encrypted independently.

ECB is like a raw cipher in which for each block of the input

we get the corresponding encrypted output. ECB may not be

the most preferred mode for the encryption of data since same

data pattern in the block may have similar encryption patterns.

It is less secure since pattern becomes predictable and becomes

vulnerable to the attacks. In Cipher Block Chain (CBC) mode,

each block of plaintext is EX-ORed (XOR operation) with the

previous block of plaintext and the result of XOR operation is

finally encrypted into a cipher text. CBC has an initialization

vector EX-ORed with first block of plain text. It is observed

that CBC is one of the common modes used for encryption but

the process of encryption looks serial and it may require more

time. Propagating Cipher Block Chaining (PCBC) mode is an

extension of CBC mode in which each block of plain text is

EX-ORed with previous block of plaintext and the cipher text

and result of XOR operation is finally encrypted into cipher

text. It is observed that this technique is not so common in the

applications. Cipher Feedback mode (CFB) is a derivative of

CBC mode which may work on block cipher as a stream cipher.

Output Feedback Mode (OFB) uses key stream block to XOR

with the plain text and perform encryption and to get cipher

text.

7. PROPOSED SECURITY

 ARCHITECTURE FOR MQTT
The Proposed Security architecture framework for MQTT

protocol shown in the figure 8. This is a de-centralized

architecture in which security aspects are separated from

MQTT clients and MQTT broker. Key Management can be

efficiently performed using a separate dedicated unit called

Security Center (SC). All the MQTT clients before establishing

connection with MQTT broker will request SC for the

appropriate keys. SC will authenticate and authorize the MQTT

clients and may generate and distribute the keys to the MQTT

clients. There are following phases for publishing data using

MQTT client via broker

1. Generation of request for the key.

2. Authentication of the device.

3. Authorization of the device.

4. Generation of the key.

5. Sharing of the key with the MQTT client.

6. Requesting connection with MQTT broker.

7. Authentication of MQTT client by broker (optional).

8. Encryption of data and sharing of data with the broker

using pre shared key.

9. Request for connection termination

This decentralized architecture reduces the burden of all

security related mechanisms from the constrained IoT devices.

This approach does not depend on broker for providing the

security and achieves end to end security. This is a distributed

architecture such that dependency and overload for generating

and managing of security keys with individual devices is

shifted to the central device like SC. MQTT clients called

publisher use the keys for encrypting the data and sharing the

data after connection is established. with the broker. MQTT

broker can verify the identity of the MQTT client called

publisher from the SC before establishing the connection with

MQTT client.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

28

Fig. 8: Proposed Security Architecture

 MQTT clients called subscriber also use the keys for

decrypting the data. MQTT broker can verify the identity of the

MQTT client called subscriber from the SC before establishing

the connection with MQTT client. Since generation and

distribution of keys are separately managed at SC, it is possible

to select the appropriate encryption technique depending on the

specifications of applications and nature of the data. For light

weight MQTT clients, encryption techniques like Blowfish can

be used while for moderate MQTT client’s encryption

techniques like AES can be used. It is also possible to configure

the different types of cipher blocks at SC depending on the need

of an application. Depending on the application and availability

of resources like memory, it is possible to reduce the number

of request from MQTT clients for procuring the keys from SC.

Keys may be stored locally at MQTT clients using a facility

called cache memory. This security architecture is a dynamic

architecture such that according to the applications and exact

specifications, security facilities and techniques can be

provided. It is observed that the implementation overhead of

the proposed architecture is relatively low, particularly in

compared with implementation using TLS. It is seen that in the

resource-constrained environment and devices of IoT system,

TLS is not suitable and it requires extra bandwidth and

computations. IoT system can be configured without TLS with

this proposed architecture by providing different levels of

security. The proposed architecture is dynamic security

architecture and designed specifically for IoT environment.

The SC handles all of the computations and validations which

allow light weight IoT devices to work with minimum

knowledge of the security infrastructure and practices used in

the system which also adds a hidden layer of security.

8. PERFORMANCE OF SECURITY

ARCHITECTURE

Fig. 9: Response of Security Architecture

Figure 9 shows response of proposed security architecture by

varying the size of the message block and time to perform

authorization and authentication at SC. Publisher or subscriber

request for a key and duration of time is measured from request

to response at SC. It is observed that comparatively small time

is required for authorization and authentication by providing

these facilities using central security center. This time

progressively increases with increase in the size of the message.

Further experimentation is possible to measure round trip time

including network delay. Further experimentation is also

possible to measure time by changing the configuration of

security centre.

9. CONCLUSION
IoT is a pervasive technology and today it is used in wide range

of applications. IoT based applications use devices like sensors

with lots of constraints and with the use of low end eight bit

microcontroller, limited memory, limited computational

capability, limited power consumption, unreliable network and

limited bandwidth. Traditional internet protocols like HTTP are

heavy weight protocols for IoT based applications due to these

various constraints. Specialized light weight protocols like

MQTT are used for use in IoT systems with such constrained

devices. MQTT is one of the most widely used application layer

protocol in the IoT systems and can be considered as a de facto

standard for IoT system. IoT system may use a massive number

of devices for collecting and sharing the information. This

information can be sensitive information like personal health

information. Security of such information is very important for

adoption of IoT based application. MQTT being a light weight

protocol do not have robust security mechanisms. Different

types of vulnerabilities and malicious threats have been

identified in IoT systems due to weak security. All such threats

and attacks must be defended with a smart security mechanism.

The security for MQTT protocol is mainly provided by lower

layer protocols like TCP with techniques like SSL or TLS. SSL

or TLS is an expensive protocol in terms of resources for use

in constrained devices in IoT system running on MQTT

protocol. It is necessary to provide the efficient light weight and

robust security architecture for MQTT protocol to reduce the

dependency on heavy weight SSL or TLS security protocol.

Security architecture also handles challenges like key

distribution, authorization and authentication.

0

200

400

600

800

1000

1 2 3 4 5 6 7 8

Time to perform authorization and

authentication in Milliseconds (mS) vs

Message size in KB

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.18, June 2023

29

10. ACKNOWLEDGMENTS
We are thankful to Veermata Jijabai Technological Institute (V

J T I) Mumbai and Vidyalankar Institute of Technology (VIT),

Mumbai for providing the required facilities and support for

doing our research.

11. REFERENCES
[1] Jie Li, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang

and Wei Zhao, “A Survey on Internet of Things:

Architecture, Enabling Technologies, Security and

Privacy, and Applications”, IEE Internet of Things Journal

2016.

[2] Sye Loong Keoh, Sandeep S. Kumar, and Hannes Tscho,

“Securing the Internet of Things: A Standardization

Perspective”, IEEE Internet of Things Journal, Vol. 1, No.

3, June 2014.

[3] Jatinder Singh, Thomas Pasquier, Jean Bacon, Hajoon Ko,

and David Eyers, “Twenty Security Considerations for

Cloud Supported Internet of Things”, IEEE Internet of

Things Journal, Vol. 3, No. 3, June 2016.

[4] Arsalan Mohsen Nia, Student Member, IEEE and Niraj K.

Jha, Fellow, IEEE, “A Comprehensive Study of Security

of Internet- of-Things”, IEEE Transactions on Emerging

Topics in Computing.

[5] Yixian Yang, Haipeng Peng, Lixiang Li and Xinxin Niu,

“General Theory of Security and a Study Case in Internet

of Things”, IEEE Internet of Things Journal 2015.

[6] https://www.gartner.com/imagesrv/books/iot/

iotEbook_digita .pdf

[7] S. Sicari, A.Rizzardi, L.A.Grieco and A.Coen-Porisini,

“Security,privacy and trust in Internet of Things: The road

ahead”, Elsevier journal on Computer Networks 2014.

[8] Jorge Granjal, Edmundo Monteiro and Jorge Sa’silva,

“Security of Internet of Things: A survey of existing

protocols and open research issues”, IEEE

communications surveys and tutorials, 2015.

[9] Aimaschana Niruntasukrat, Chavee Issariyapat, Panita

Pongpaibool, Koonlachat Meesublak, Pramrudee

Aiumsupucgul and Anun Panya “Authorization

Mechanism for MQTT based IoT”, IEEE 2016 workshop

on IoT.

[10] Satya Sankar Sahoo, “Getting Started With MQTT A

Practical Guide”.

[11] https://www.google.co.in/search?q=impact+of+iot ++

forec ast+2020 &source=lnm

[12] Journal of Physics: Conference series “IoT real time data

acquisition using MQTT Protocol”, R.A. Atmoko et el.

2017 J physics: conf ser 853012003

[13] https://iot-analytics.com/iot-market-data/global-iot-

enterprise-spending/

[14] Abdessamad Mektoubi et al., “New Approach for a

Securing Communication Over MQTT Protocol, A

comparison between RSA and Elliptic Curve”, IEEE

2016.

[15] Mario FRUSTACI et al., “Evaluating critical security

issues of the IoT world: Present and Future challenges”,

IEEE Internet of Things DOI

10.1109/JIOT.2017.2767291.

[16] [16] Tara Salman and Raj Jain, “A Survey of Protocols

and Standards for Internet of Things”, Department of

Computer Science and Engineering, Washington

University,

[17] Sejal Gupta et. al., “Energy-efficient dynamic

Homomorphic Security scheme for fog computing in IoT

networks”, Journal of Information Security and

Applications 2021.

[18] https://mqtt.org/

[19] A. R. Alkhafajee et. al., “Security and Performance

Analysis of MQTT Protocol with TLS in IoT Networks”,

IEEE 2021.

[20] Lukas Malina et. al., “A Secure Publish/Subscribe

Protocol for Internet of Things”, ACM 2019.

IJCATM : www.ijcaonline.org

