
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

14

A Comprehensive Evaluation of the Rivest-Shamir-

Adleman (RSA) Algorithm Performance on Operating

Systems using Different Key Bit Sizes

Kwame Assa-Agyei
Department of Computer Science

Nottingham Trent University
Nottingham, United Kingdom

Funminiyi Olajide
Department of Computer Science

Nottingham Trent University
Nottingham, United Kingdom

ABSTRACT

In today's digital world, practically everyone uses the Internet

for various purposes. Most data sent over the Internet contains

personal or private information that people desire to keep

hidden. There are numerous encryption techniques available

for concealing data. However, none of the previous research

has thoroughly examined different bit sizes of RSA algorithms

on Windows and Linux. According to previous studies, there is

a range of factors, such as operating systems, compilers, and

environmental conditions that affect how well cryptographic

algorithms function. This study investigates the various key bit

sizes used in the RSA technique (512, 1024, 2048, and 4096).

The time it took to generate the following: private keys, public

keys, signature blocks, and verification processes utilized in the

RSA method was the basis for this experiment. Two virtual

machines, one running Windows and the other running Linux,

were used for the experiment. The experiment was conducted

on three HP laptops, each equipped with a 3.38GHz Intel Core

i5 processor, 12GB of RAM, and a 1TB SSD. The experiments

were repeated three times on each laptop, and the average times

were recorded for both virtual machines. It was demonstrated

in this investigation that the Linux operating system

outperforms the Windows operating system in terms of overall

performance. According to the results, both RSA private and

public key generation were faster on Linux than on Windows.

Furthermore, the test for digital signature and verification

throughput indicated that total signatures and verifications per

second were higher on Linux than on Windows for all RSA key

bit sizes. Finally, increasing the RSA key bit reduced

throughput for both digital signatures and verification in both

operating systems.

Keywords

Cryptography, Asymmetric Cryptosystems, RSA,

Throughput, Digital Signature, Verification, Performance,

Key Bits, Public key, Private Key

1. INTRODUCTION
The quick and continuous evolution of network technology is

also revolutionizing our environment and different parts of our

everyday lives, such as business, legal, and social lives. This

surge in network technology development, however, has a

drawback. The more links made to diverse global computer

networks on a daily basis, the more vulnerable the connected

systems are to unwanted access [1]. This is because common

methods such as network scanning, spoofing, and so on have

become more sophisticated, making information sharing

unsafe. Furthermore, the recent emergence of internet-based

transaction applications such as internet banking, online

shopping, and bill payment, among others, which involve the

sharing of very sensitive information between two or more

parties, necessitates the use of very secure end-to-end

connections that ensure the information's confidentiality,

integrity, authenticity, and so on [2]. As a result, security is a

critical component in network technology development that

must be addressed in order to safeguard information from

destruction and unwanted infiltration. This security issue has

prompted the creation of numerous technologies such as

passwords, biometrics, patterns, encryption, and so on to aid in

the elimination of information/network security difficulties,

particularly the protection of information from unwanted

access [3]. However, of all these approaches, cryptography is

known to be the safest and most reliable in keeping sensitive

information confidential from unwanted users [4].

Cryptography is the study and use of techniques used to

safeguard network communication from intruders such as

hackers and attackers. Through different modifications, it

renders the information incomprehensible to a third party or an

intruder. Cryptography uses four objectives and goals to do this

[5]:

1. Confidentiality: guard the user's identity and data

privacy against being accessed by others.

2. Integrity: the preservation of data against being

altered by others.

3. Authentication: Ensuring that the data originated

from a specific party.

4. Non-repudiation: The inability of a single party to

deny transmitting a message.

The presence or absence, as well as the type and number of

keys, determine the type of cryptosystem, as well as the

encryption and decryption phases involved in that

cryptosystem [6]. Key-based cryptosystems are classed or

grouped into two types based on the number and kind of key(s)

utilized. The first is symmetric key cryptosystems such as

Blowfish, Twofish, 3DES, DES, AES, RC6, and others, which

are also known as private, secret, or conventional key

cryptosystems due to the use of a single key for both encryption

and decryption. Despite its ease of implementation, their main

risk is the use of only one key for encryption and decryption.

The second type is asymmetric key cryptosystems such as

RSA, Elgamal, and others, which are commonly referred to as

public-key cryptosystems because the sender and receiver

employ two separate keys in this cryptosystem. The public key

is used for encryption (converting plaintext/message to

cipher text), while the private key is used for decryption

(converting cipher text back to plaintext or message). The

encryption key is made available to everyone who wishes to

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

15

send a message to the receiver (with whom the key for

decryption is stored in secret) [7]. A comparable secret key

cannot be easily derived from a specific public key [8]. Many

theoretical analyses have been conducted to evaluate

algorithms and their behaviours, but it is necessary to evaluate

them practically, especially because many factors, such as

operating systems, compilers, environment specifications, and

many others, can affect the performance of a cryptographic

algorithm's outcome [9]. The study's main purpose is to

compare the performance of various key bit sizes on Windows

and Linux. This research will focus on the following specific

objectives:

1. To compute the time required to generate public and

private keys

2. To determine the speed required to perform digital

signature and verifications per second

3. To raise awareness of the importance of

understanding and selecting the optimal operating

system for the RSA cryptographic techniques.

This paper is organized as follows. Section 2 presents the

principle of tradition RSA algorithm and literature review of

previous works are presented in Section 3. Section 4 presents

the experimental setting and tools used to evaluate our

methodology, whereas Section 5 presents the implementation

and section 6 discusses the results and comparison of the study.

Finally, concluding remarks are presented in Section 7

2. THE PRINCIPLE OF TRADITIONAL

RSA ALGORITHM
Ron Rivest, Adi Shamir, and Leonard Adleman devised RSA

in 1978. It is a well-known public key encoding method for key

exchange, digital signatures, and database block encryption.

The RSA algorithm has a different size key and various sizes

of encoding blocks. It is an asymmetric encoding system that

relies on numeral synthesis. It generates both the public and

private keys using two basic numbers [10]. It is one of the most

well-known public key cryptosystems for key exchange, digital

signatures, and data block encryption. It produces two keys: a

public key for encryption and a private key for message

decryption. The public and private keys are generated using

two prime numbers. These two distinct keys are utilized for

encryption and decryption. When the message is sent, the

sender encrypts it with the recipient's public key, and the

receiver decrypts it with his or her own private key. The user

can utilize the private key of certification authorities (CA) key

pairs to sign a document with a secure digital signature. On the

recipient side, the public key of these key pairs can be used to

validate the signature and the integrity of the document. The

certificate is signed just once, but it must be checked multiple

times. Because signature verification is the most common

approach, the RSA algorithm is ideally suited for this task.

When sending an email, the message must be signed and

encrypted. Each recipient must then validate the signature

using the right decryption key. Using RSA for encryption and

digital signatures provides a solid foundation for safe emails

[11]. RSA operations can be divided into three categories: key

creation, encryption, and decryption [12].

a. Key Generation

Every user creates a unique public/private key

combination by:

At random, two large primes are chosen: - p, q

• Calculating the system modulus

• N= p.q

NB: ø (N) = (p-1) (q-1)

• Choose an encode key e at random:1<e<ø (N), gcd

(e, ø (N)) =1

• Solve the following equation to find the decode key

d: e.d=1 mod ø (N) and 0≤d≤N

• Publish their public encode key: KU= {e, N}

• Keep secret decode key: KR= {d, p, q}

b. Usage of Keys: To encrypt a message M, the

Sender:

• Obtains public key of recipient KU={e,N}

• Computes: C=Me mod N, where 0≤M<N

c. To decrypt the cipher text C, the Receiver:

• Uses their private key KR={d,p,q}

• Computes: M=Cd mod N

This protects client information over the Internet and prevents

other users from accessing the original data because it has been

encoded [13].

3. RELATED WORK
RSA is regarded as one of the first systems for generating

digital signatures. The scheme's security is predicated on the

difficulty of factorizing a large number N, which is the product

of two large primes (p and q) [14].

There are some benefits and drawbacks of adopting RSA

techniques over traditional symmetric encryption schemes[15]:

Advantages

1. The fundamental benefit of RSA is greater security,

as private keys are never transferred or divulged to anyone. In

contrast, there is always the possibility that an adversary will

discover the secret key while it is being transmitted in a secret-

key system.

2. Another significant advantage of public-key systems

is that they may be used to generate digital signatures.

Authentication via secret-key systems necessitates the

disclosure of some secrets as well as the trust of a third party.

3. Digitally signed messages can be proven valid by a

third party, such as a judge, making them legally enforceable.

Disadvantage

1. One downside of employing public-key

cryptography for encryption is its poor processing speed.

Digital signatures can be secured using public key

cryptography. Examples include the RSA algorithm and the

Digital Signature Algorithm (DSA). The RSA method is

utilized in a variety of schemes and is a fundamental technique

to implementing Digital Signature Schemes. The use of digital

signatures with the RSA technique will improve cloud

computing data security [16]. Mohamad et al. [17] provide a

study of the RSA scheme of asymmetric cryptography

approaches in the year 2021. It seeks to present the areas of

RSA scheme use, such as public networks, wireless sensor

networks, image encryption, cloud computing, proxy signature,

Internet of Things, and embedded device, based on the

achievements of researchers over the previous decade. Aside

from that, the article investigated the trends and performance

parameters of the RSA scheme, such as security, speed,

efficiency, computational complexity, and space, based on the

number of experiments completed. In 2015, Saxena and

Kapoor [18] published a survey of various parallel

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

16

implementations of the RSA algorithm that includes a wide

range of hardware and software implementations. Parallel

programming is a new area of research that tries to increase

performance and efficiency by executing instructions more

rapidly and effectively on multi-core machines. The authors'

goal was to educate forthcoming researchers on the different

parallel RSA implementation strategies that have already been

created. They explored a number of concurrent RSA

implementation strategies proposed by numerous experts

worldwide in order to achieve high performance and

throughput in the realm of RSA and public key cryptography.

This survey is limited on one feature of RSA schemes: parallel

implementation. Every Secure Socket Layer connection starts

with a handshake, in which the two sides convey their

capabilities to the other party, complete authentication, and

agree on their session keys. The session keys are then used to

encrypt the remainder of the communication, which may span

several sessions. They are then erased. The purpose of the key

exchange phase is to allow the two parties to safely negotiate

the keys, preventing anyone else from learning these keys.

There are other key exchange mechanisms available, but the

most generally used one at the present is based on RSA and

uses the server's private key to safeguard the session keys [19].

This paper's author presented a concrete RSA signature

structure that can enable variable-sized file blocks and public

auditing. The researchers presented a formal security model for

IDCDIC and demonstrated the security of their architecture

under the RSA assumption with large public exponents in the

random oracle model. They demonstrated the presence of their

proposal by creating a protocol prototype. The results of the

implementation showed that the suggested ID-CDIC protocol

is feasible and flexible in real life [20]. According to authors in

[21], researchers did a comparison study of RSA and ECC,

RSA has around ten times more computing overheads than

ECC. ECC reduces the length of system parameters and key

pairs. ECC offers significant bandwidth savings over RSA

because RSA requires a substantially bigger key size for the

same degree of protection. ECC generates keys more quickly

than RSA. ECC is faster at encryption but slower at decryption

than RSA. As a result, they concluded that ECC will be more

efficient in terms of security for iOS devices. It was concluded

that, when compared to the RSA technique, the elliptic curve

discrete logarithm problem made ECC the most efficient with

a smaller key size. Public-key encryption can be used to solve

difficulties associated with traditional encryption. However,

because it adds a lot of overhead, it has not gained as much

traction as traditional encryption. As a result, it is critical to

identify solutions to reduce overheads while not sacrificing

other aspects of security so that the desirability of public-key

can be exploited. When the RSA and ECC ciphers were

examined, the ECC cipher was shown to have significantly

lower overheads than the RSA cipher. Because of its ability to

provide the same level of security as RSA while employing

shorter keys, the ECC has been proven to have various

advantages. However, its downside, which may even

overshadow its beauty, is its lack of maturity, as

mathematicians consider that not enough research on ECDLP

has been done. Furthermore, the researchers concluded that,

while both methods are valid, RSA is superior to ECC for the

time being since its security can be trusted more [22]. The

authors of this paper designed an encoding approach, which

first determines whether the private and public-key values

generated during the encoding procedure contain a prime

number, then combines with Pascal's triangle theorem, the RSA

algorithm model, and an inductive technique to build a new

cryptosystem that meets homomorphic computation of some

operations on cipher texts. The authors also concluded that

RSA is a partially homomorphic cryptosystem due to its

multiplication characteristics. However, a completely

homomorphic encryption should meet not only the

multiplication criterion but also the addiction characteristic.

The addition algorithm was designed to achieve the fully

homomorphic encryption characteristic [23]. The authors in

[23] carried out an experiment on the Research and

Implementation of RSA Algorithms for Encryption and

Decryption in 2011. It was determined that the encryption and

decryption system can protect information against tampering,

forgery, and counterfeiting by ensuring the information's

confidentiality, integrity, and certainty. It explored how to

apply RSA information security issues to one's everyday life,

as well as the application of RSA and the fundamental concepts

of data encryption and decryption. It presented a new software

based on RSA cryptography and its vast application to improve

the RSA algorithm. The authors in [24] carried out an

experiment on the Research and Implementation of RSA

Algorithms for Encryption and Decryption in 2011. It was

determined that the encryption and decryption system can

protect information against tampering, forgery, and

counterfeiting by ensuring the information's confidentiality,

integrity, and certainty. It explored how to apply RSA

information security issues to one's everyday life, as well as the

application of RSA and the fundamental concepts of data

encryption and decryption. It presented a new software based

on RSA cryptography and its vast application to improve the

RSA algorithm. The authors performed their review without

using any proper research methodology and considered very

few articles for their review. The [25] paper study analyzed

RSA with different key sizes and word length variables in terms

of encryption and decryption process memory size and

execution time. The experiment results demonstrated that RSA

execution time is slower and requires more memory than ECC.

The fundamental issue with the DES algorithm is key

agreement and key distribution, but RSA encryption and

decryption take longer. The simulation results showed that

RSA is slower in performance than DES and that the RSA

algorithm throughput is not better than the DES algorithm. As

a result, the paper establishes the concept and specifications for

elliptic curve lightweight cryptography. This type of study is

missing in the literature for RSA public key cryptography, a

worthy competitor of ECC.

According to the analysis of the aforementioned surveys on

RSA schemes and their connected domains, a systematic and

detailed study on RSA public key cryptography is missing. All

research concentrate on a fairly narrow region and the

experiments are mostly carried out on a specific operating

system and key bit size. This research will be very useful for

researchers and practitioners in the field of cryptography,

particularly in the field of RSA public key cryptography, in

order to understand the specific key bits to be implemented

when executing public and private keys, signature, and

verification techniques for generating purpose systems.

4. EXPERIMENTAL DESIGN
To obtain reliable values for comparing cryptographic

algorithms on Windows and Linux, they must be executed on

workstations with comparable setups. As a result, the Oracle

VM Virtual Box is utilized to generate two virtual machines

running the two operating systems required for the experiment

on three different machines (A, B and C). The three machines

A, B and C have identical specifications, featuring a 3.38GHz

Intel Core i5 processor, 12GB of RAM, and a 1TB SSD. Two

virtual computers were deployed on each machine for this

investigation, one for each operating system, with the following

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

17

configurations:

Table 1. Virtual machines set-up configuration on the t

machines

Virtual Machine Configuration Details

Machine 1 Windows 10 Pro-64-bits, 1.8GHz (1

Core), 2048 MB memory, 50 HDD

size

Machine 2 Fedora 34, 1.8GHz (1 Core), 2048

MB memory size, 50 HDD size

The algorithms are implemented using the Python 3.10.

Different key bit sizes were employed in the experiment: 512,

1024, 2048, and 4096. Several metrics were collected during

the experiments:

a) The generation time for both private and public

keys.

b) The time required to generate and validate digital

signature

A series of similar experiments were carried out, and average

values were determined to ensure that the metrics collected

were relevant. Tables II to V gives the results of a comparison

of the execution time of key creation, signature block, and

verification for various key bit sizes. The dataset is made up of

two operating systems, namely Windows and Linux. These

operating systems were chosen because market share statistics

suggest that they are the most extensively used. Furthermore,

the majority of users rely on this software for their daily

transactions (i.e. e-banking, e-commerce, and social network)1.

5. IMPLEMENTATION OF RSA

ALGORITHMS

5.1 RSA private and public key generation

Throughput
Both RSA private and public key generation were executed by

generating keys of various sizes of 512, 1024 2048, and 4096

bits. The experiment was carried out ten (10) times on each

virtual machine and the mean time in megabits per second was

recorded. Table I and Table II provide detailed performance

analysis of the throughput on RSA private and public key

generation using Windows and Linux. The data generated

during the experiment are imported into R (version 3.12) and

the necessary graphs (Fig 1 and Fig 2) were plotted.

Table 2. RSA Private Key Generation Throughput on

Windows and Linux

OS Key Bits
Mean Throughput in

MB/s

Windows 512 8.932

Linux 512 10.729

Windows 1024 6.788

Linux 1024 7.333

Windows 2048 3.042

1 Net Marketshare, 2022

Linux 2048 3.27

Windows 4096 0.558

Linux 4096 0.621

Table 3. RSA public key generation throughput on

Windows and Linux

OS Key Bits
Mean Throughput in

MB/s

Windows 512 84.11

Linux 512 116.656

Windows 1024 89.613

Linux 1024 102.955

Windows 2048 64.306

Linux 2048 70.643

Windows 4096 32.277

Linux 4096 39.895

Fig. 1: Average RSA private key generation throughput

on Windows and Linux

8
.9

3
2 6
.7

8
8

3
.0

4
2 0

.5
5

8

1
0

.7
2

9

7
.3

3
3

3
.2

7 0
.6

2
1

0

2

4

6

8

10

12

512 1024 2048 4096

T
H

R
O

U
G

H
P

U
T

 I
N

 M
B

/S

KEY BITS

RSA PRIVATE KEY GENERATION

THROUGHPUT IN MB/S

Windows Linux

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

18

Fig. 2: Average RSA public key generation throughput on

Windows and Linux

5.2 RSA Signature and verification

throughput
RSA performs digital signature by applying the private key to

generate a signature that can be verified by using the public

key. The experiments measured and recorded the speed used in

creating the signatures and verifying them using the various key

bit sizes of 512, 1024, 2048, and 4096 bits. Both the signature

and verification throughput are recorded in Tables III and IV

on Windows and Linux respectively. Fig 3 and Fig 4 show the

graphs of the throughput of signatures and verification

performed by RSA of key bit sizes of 512, 1024, 2048, and

4096 bits.

Table 4. RSA signature throughput on Windows and

Linux

OS Key Bits Sign/s

Windows 512 17653.6

Linux 512 20955.5

Windows 1024 6628.5

Linux 1024 7248.8

Windows 2048 1485.5

Linux 2048 1597

Windows 4096 135.7

Linux 4096 151.7

Table 5. RSA signature verification throughput on

Windows and Linux

OS Key Bits Verify/s

Windows 512 163732.5

Linux 512 227844.4

Windows 1024 87471.6

Linux 1024 103677.5

Windows 2048 31413.9

Linux 2048 34494.3

Windows 4096 7881.4

Linux 4096 9740.2

Fig. 3: RSA sign throughput on Windows and Linux

Fig. 4: RSA signature verification throughput on Windows

and Linux

6. DISCUSSION OF RESULTS
The RSA algorithm is tested with four key bit sizes: 512, 1024,

2048, and 4096. The throughput required to produce the private

keys for the four (4) different key bit sizes was investigated.

In Fig 1, it was discovered that Linux used 10.729MB/s to

generate private keys, whereas Windows used 8.932MB/s for

the key bit of 512. The speed utilized to generate 1024 key bit

sizes for both Windows and Linux, on the other hand,

decreased to 6.788MB/s and 7.333MB/s, respectively. Using

the 2048 key bit, Linux achieved a faster speed of 3.27 than

8
4

.1
1

8
9

.6
1

3

6
4

.3
0

6 3
2

.2
7

7

1
1

6
.6

5
6

1
0

2
.9

5
5 7
0

.6
4

3

3
9

.8
9

5

0

50

100

150

512 1024 2048 4096

T
H

R
O

U
G

H
P

U
T

 I
N

 M
B

/S

KEY BITS

RSA PUBLIC KEY GENERATION

THROUGHPUT IN MB/S

Windows Linux 1
7

6
5

3
.6 6

6
2

8
.5

1
4

8
5

.5

1
3

5
.7

2
0

9
5

5
.5 7

2
4

8
.8 1
5

9
7

1
5

1
.7

0

10000

20000

30000

512 1024 2048 4096
S

IG
N

/S
KEY BITS

RSA DIGITAL SIGNATURE

THROUGHPUT

Windows Linux

1
6

3
7

3
2

.5

8
7

4
7

1
.6 3

1
4

1
3

.9

7
8

8
1

.4

2
2

7
8

4
4

.4

1
0

3
6

7
7

.5 3
4

4
9

4
.3

9
7

4
0

.2

0

50000

100000

150000

200000

250000

512 1024 2048 4096

V
E

R
IF

Y
/S

KEY BITS

DIGITAL SIGNATURE

VERIFICATION

Windows Linux

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

19

Windows, which achieved a speed of 3.042MB/s. It can be

concluded that using 4096 key bits on both Windows and Linux

took a lower time to generate the keys after the 2048 key bit.

Fig 2 also depicts a similar pattern to fig 1. Using 512 key bit

in generating public keys on Linux shows a speed of 116.656

MB/s while 4096 also shows the lowest times in producing the

public keys on Windows and Linux. It can be concluded that

both RSA private and public key generations were faster on

Linux than on Windows for all key bit sizes tested. It was also

observed that as the key bits increases in size, the speed

decreases. Fig 3 shows the time taken to generate signature for

RSA algorithms with different input key sizes and it can be seen

that using 512 key bits on Linux can generate up to 20955.5

signatures per second. The experimental values in Table IV and

V show that as the speed decreases as the key bit size increases.

Figure 4 also depicts the time required for RSA signature

verification with various input key sizes. It can be shown that

4096 took the least amount of time to validate signatures across

all key length sizes.

7. CONCLUSION
This paper presents a comparison set on one of the most well-

known asymmetric cryptography algorithms. In this work, it

was proven that Linux operating system has better overall

performance than Windows operating system. From the

obtained results, both RSA private and public key creation were

faster on Linux than on Windows operating systems. It was also

discovered that when the size of the key bit increases, the

throughput decreases. For all RSA key bit sizes, the test for

digital signature and verification throughput found that total

signings and verification per second were greater on Linux than

on Windows. Finally, when the RSA key bits increased, the

throughput for both signings and verification decreased in both

operating systems. The study also identified future works to

consider, such as the measurement of other performance

metrics such as memory consumption, and energy

consumption.

8. ACKNOWLEDGMENTS
Our gratitude to all the people and groups who helped to

complete this study piece. Our gratitude is also expressed to the

research team and our colleagues, who helped us out by sharing

their skills, information, and encouragement. They played a

critical role in carrying out the studies and collecting the results.

9. REFERENCES
[1] R. S. Cordova, R. L. R. Maata, A. S. Halibas, and R. Al-

Azawi, “Comparative analysis on the performance of

selected security algorithms in cloud computing,” 2017

Int. Conf. Electr. Comput. Technol. Appl. ICECTA 2017,

vol. 2018-Janua, pp. 1–4, 2017, doi:

10.1109/ICECTA.2017.8252030.

[2] M. E. Haque, S. Zobaed, M. U. Islam, and F. M. Areef,

“Performance Analysis of Cryptographic Algorithms for

Selecting Better Utilization on Resource Constraint

Devices,” 2018 21st Int. Conf. Comput. Inf. Technol.

ICCIT 2018, pp. 21–23, 2019, doi:

10.1109/ICCITECHN.2018.8631957.

[3] S. Omer, A. Faroog, M. Koko, A. Babiker, and N.

Mustafa, “Comparison of Various Encryption Algorithms

and Techniques for improving secured data

Communication,” IOSR J. Comput. Eng. Ver. III, vol. 17,

no. 1, pp. 2278–661, 2015, doi: 10.9790/0661-17136269.

[4] A. V. Mota, A. Sami, K. C. Shanmugam, Bharanidharan

Yeo, and K. Krishnan, “Comparative Analysis of

Different Techniques of Encryption for Secured Data

Transmission,” IEEE Int. Conf. Power, Control. Signals

Instrum. Eng., vol. 54, no. 4, pp. 847–860, 2017.

[5] S. Al Busafi and B. Kumar, “Review and analysis of

cryptography techniques,” Proc. 2020 9th Int. Conf. Syst.

Model. Adv. Res. Trends, SMART 2020, pp. 323–327,

2020, doi: 10.1109/SMART50582.2020.9336792.

[6] I. Jahan, M. Asif, and L. Jude Rozario, “Improved RSA

cryptosystem based on the study of number theory and

public key cryptosystems,” Am. J. Eng. Res., no. 1, pp.

143–149, 2015, [Online]. Available: www.ajer.org.

[7] M. Panda, “Performance analysis of encryption

algorithms for security,” in International Conference on

Signal Processing, Communication, Power and

Embedded System, SCOPES 2016 - Proceedings, 2017,

pp. 278–284, doi: 10.1109/SCOPES.2016.7955835.

[8] H. Kim and S. Lee, “Design and implementation of a

private and public key crypto processor for next-

generation it security applications,” Malaysian J. Comput.

Sci., vol. 19, no. 1, pp. 29–45, 2006.

[9] H. Dibas and K. E. Sabri, “A comprehensive performance

empirical study of the symmetric algorithms:AES, 3DES,

Blowfish and Twofish,” 2021 Int. Conf. Inf. Technol. ICIT

2021 - Proc., pp. 344–349, 2021, doi:

10.1109/ICIT52682.2021.9491644.

[10] O. G. Abood and S. K. Guirguis, “A Survey on

Cryptography Algorithms,” Int. J. Sci. Res. Publ., vol. 8,

no. 7, 2018, doi: 10.29322/ijsrp.8.7.2018.p7978.

[11] N. Thein, H. A. Nugroho, T. B. Adji, and I. W. Mustika,

“Comparative Performance Study on Ordinary and Chaos

Image Encryption Schemes,” Proc. - 2017 Int. Conf. Adv.

Comput. Appl. ACOMP 2017, pp. 122–126, 2018, doi:

10.1109/ACOMP.2017.25.

[12] M. Panda and A. Nag, “Plain Text Encryption Using AES,

DES and SALSA20 by Java Based Bouncy Castle API on

Windows and Linux,” Proc. - 2015 2nd IEEE Int. Conf.

Adv. Comput. Commun. Eng. ICACCE 2015, pp. 541–548,

2015, doi: 10.1109/ICACCE.2015.130.

[13] M. Gobi and R. Sridevi, “An Approach for Secure Data

Storage in Cloud Environment,” Int. J. Comput. Commun.

Eng., vol. 2, no. 2, pp. 206–209, 2013, doi:

10.7763/ijcce.2013.v2.171.

[14] S. B. Sadkhan and R. S. B. Sadkhan, “Analysis of

Different Types of Digital Signature,” 8th IEC 2022 - Int.

Eng. Conf. Towar. Eng. Innov. Sustain., pp. 241–246,

2022, doi: 10.1109/IEC54822.2022.9807502.

[15] Mitali, V. Kumar, and A. Sharma, “A Survey on Various

Cryptography Techniques,” Int. J. Emerg. Trends

Technol. Comput. Sci., pp. 191–199, 2014, doi:

10.2307/j.ctt46nrzt.12.

[16] N. Ferguson, B. Schneier, and T. Kohno, “Chapter 9.

Generating Randomness,” Cryptogr. Eng. Des. Princ.

Pract. Appl., pp. 137–161, 2010.

[17] M. S. A. Mohamad, R. Din, and J. I. Ahmad, “Research

trends review on RSA scheme of asymmetric

cryptography techniques,” Bull. Electr. Eng. Informatics,

vol. 10, no. 1, pp. 487–492, 2021, doi:

10.11591/eei.v10i1.2493.

[18] S. Saxena and B. Kapoor, “State of the Art Parallel

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

20

Approaches For Rsa Public Key Based Cryptosystem,”

Int. J. Comput. Sci. Appl., vol. 5, no. 1, pp. 81–88, 2015,

doi: 10.5121/ijcsa.2015.5108.

[19] G. Mogoş and G. Radu, “Hybrid secure socket layer

protocol,” Int. Conf. Sci. Pap. AFASES, vol. 2, no. 2, pp.

91–96, 2014.

[20] Y. Yu et al., “Cloud data integrity checking with an

identity-based auditing mechanism from RSA,” Futur.

Gener. Comput. Syst., vol. 62, pp. 85–91, 2016, doi:

10.1016/j.future.2016.02.003.

[21] M. Alam, I. Jahan, L. J. Rozario, and I. Jerin, “A

Comparative Study of RSA and ECC and Implementation

of ECC on Embedded Systems,” Int. J. Innov. Res. Adv.

Eng., vol. 3, no. 03, pp. 86–93, 2016, [Online]. Available:

http://www.ijirae.com/volumes/Vol3/iss3/15.MRAE1009

6.pdf.

[22] B. K. Alese, E. D. Philemon, and S. O. Falaki,

“Comparative analysis of public-key encryption

schemes,” Int. J. Eng. Technol., vol. 2, no. 9, pp. 1152–

1568, 2012, [Online]. Available: http://iet-

journals.org/archive/2012/sep_vol_2_no_9/12981413364

54596.pdf.

[23] P. Sha and Z. Zhu, “The modification of RSA algorithm

to adapt fully homomorphic encryption algorithm in cloud

computing,” Proc. 2016 4th IEEE Int. Conf. Cloud

Comput. Intell. Syst. CCIS 2016, vol. 2, no. 1, pp. 388–

392, 2016, doi: 10.1109/CCIS.2016.7790289.

[24] X. Zhou and X. Tang, “Research and implementation of

RSA algorithm for encryption and decryption,” Proc. 6th

Int. Forum Strateg. Technol. IFOST 2011, vol. 2, pp.

1118–1121, 2011, doi: 10.1109/IFOST.2011.6021216.

[25] P. R. Vijayalakshmi and K. B. Raja, “Performance

Analysis of RSA and ECC in Identity- Based

Authenticated New Multiparty Key Agreement Protocol,”

Int. Conf. Comput. Commun. Appl., 2012.

IJCATM : www.ijcaonline.org

