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ABSTRACT 

Developers of ARM microcontrollers now have access to the 

first neural network software development tools, making 

machine learning in embedded systems a possibility. This study 

examines the application of one such tool, the STM Cube AI, 

on popular ARM Cortex-M microcontrollers. It evaluates and 

contrasts its performance with that of two others widely 

employed supervised machine learning (ML) algorithms, 

namely Support Vector Machines (SVM) and k-Nearest 

Neighbors (k-NN). The outcomes of three datasets demonstrate 

that X-Cube-AI consistently delivers good performance despite 

the shortcomings of the embedded platform. Popular desktop 

programs like TensorFlow and Keras are seamlessly 

incorporated into the workflow.    
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1. INTRODUCTION 
Numerous new field applications are being made possible by 
the Internet of Things (IoT). The enormous amount of data 
produced by IoT sensors is increasingly being processed close 
to the source, at the edge, which limits privacy concerns while 
reducing latencies, bandwidth, and overhead of the cloud and 
remote units [1]. The edge computing paradigm is an addition 
to the widely recognized cloud computing model. Within this 
framework, artificial intelligence, particularly Machine 
Learning (ML), has gained significance. ARM recently 
unveiled the Project Trillium ML platform, which encompasses 
machine learning and object detection intellectual property (IP) 
designed for highly advanced smartphones.However, it is 
probable that widespread adoption will primarily occur on 
already popular platforms. For instance, in 2018, ARM 
developed CMSIS NN, an open source library of optimized 
kernels, with the objective of maximizing Neural Network 
(NN) performance specifically on Cortex-M processors. These 
processors are widely utilized in the field, making them the 
preferred choice for maximizing NN capabilities. Google 
launched TensorFlow Lite for ARM 64 microcontrollers, with 
a focus on NNs . STM has recently introduced the STM Cube 
AI extension kit, which is designed specifically for 32-bit 
microcontrollers. This kit aims to provide enhanced 
capabilities for integrating artificial intelligence functionalities 

into microcontroller-based systems.However, there are 
significantly fewer articles discussing experiences with ML on 
the edge than there are for desktop/cloud computing. This is 
made worse by the dearth of publicly accessible IoT datasets, 
which hinders the  
creation of research initiatives. The purpose of this paper is to 
investigate and evaluate the performance of one of the 

aforementioned N N libraries, X Cube AI, on popular ARM 
Cortex-M microcontrollers while also taking into account two 
additional widely used supervised machine learning (ML) 
algorithms, Support Vector Machine (SVM) and k-Nearest 
Neighbors (k-NN). Since the training step is extremely labor-
intensive [2] the study is initially focused on classification 
because it frequently calls for human supervision, which is 
easier to carry out in the cloud.  

available, try the font named Computer Modern Roman. On a 

Macintosh, use the font named Times.  Right margins should be 

justified, not ragged. 

2. SURVEY  
Numerous studies are being conducted to integrate ANNs into 

autonomous devices, addressing difficulties with accuracy, 

resource utilization, and energy efficiency. A thorough 

examination of the current work in this area is  given in [3].  

Challenges of deploying neural networks on microcontrollers 
with limited memory, compute, and power budgets [4].The 
authors introduce the CMSIS-NN library of effective software 
kernels, which allows the implementation of NNs on Cortex-M 
cores. They also discuss techniques for NN algorithm 
development to build compact models appropriate for resource-
constrained systems using the example of keyword spotting. 
The integration of a low resolution thermal imaging camera 
using cutting edge feature extraction techniques like 
convolutional layers is demonstrated in [6] as a unique system. 

The research demonstrates the capability of changing the 
classification process to a resource-constrained platform 
without appreciably decreasing performance by analyzing 
information on a 32-bit low power microcontroller. Using 6 
kB of RAM, they attain a 77 percent accuracy. In addition to 
other techniques like genetic and reinforcement learning, it 
implements a NN for classification.  

3.  IMPLEMENTATION  

As many have already said, NNs have become more popular in 
the realm of embedded systems. One of the recently published 
libraries described above, the STM Cube AI expansion 
package, which may be used with the STM32CubeMX 
configuration tool, is the subject of our investigation in 
particular. Pre-trained neural networks are automatically 
converted by the programme, and the generated optimized 
library is integrated into the user's project. The method we are 
familiar with entails building a NN in Python using the 
Tensorflow package and Keras as a framework on a computer.  
In order to speed up convergence,the vectors are  normalized. 
When the developer discovers a NN configuration that, in 
testing conducted on a PC, provides sufficient accuracy, the 
model is stored in a HDF5 file and imported by CubeMX. After 
estimating the memory footprint (including Flash and RAM), 
the CubeMX ``Analyze" function then proposes a list of 
potential target microcontrollers. A new project, which 
includes the AI and CUBE AI packs, can be launched once the 
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target has been chosen (or the developers have verified the 
suitability of the current target).  

Then, using the Multiply and Accumulate Operation to 
estimate complexity, CubeMX enables executing a validation 
both on the desktop and on the target. By utilizing the 
"network" package, constructing the system using the collected 
weights, establishing the input and output tensors, and doing 
the prediction, the target C programme may be written in a few 
lines of code. Two algorithms were used as a comparative 
basis, 

3.1 K-nearest neighbors 
In k-NN, the entire training set is recorded instead of any model 
being learned. Using majority voting and the Euclidean 
distance criterion, we completely rewrote the system in C.  

3.2 Support Vector Machine 
On a computer,the SVM was trained using the Sklearn 

Python framework using a linear kernel and a cross-validation 
model. Both the SVM method and gpu acceleration are not 
supported by sklearn, and multi core architectures cannot be 
utilized by the SVM method. This is a drawback of our strategy 
because the lengthy training periods precluded us from 
thoroughly examining the choices (kernels). Executing the 
prediction z = x*y+w on the target is all that is required for 
implementation, where z and y represent the inputs and output, 
x the support vectors, and w the bias.  

4. ANALYSIS  

F446RE and F746 from STM, two well-known ARM 
microcontrollers, were used to carry out the experimental 
analysis. The former is a member of the popular Cortex-M4 
family, while the latter is a member of the high-performance 
M7. Results are typically only presented for the F4 scenario in 
Tables 1-4, while Table 3 expressly takes into account the F7 
condition. In each case, Prior to deploying the classifiers on the 
target machine and making the required adjustments, notably 
in terms of performance, the classifiers were first developed on 
a PC. 
Sonar (207 samples x 58 features) , the UCI Heart illnesses 
dataset on Kaggle (301 x 11),were the two binary classification 
datasets used. In accordance with the intended execution 
platform, each dataset is converted to a float32. Table 1 shows 
the Sonar dataset's data for a NN having 2 hidden thick layers. 
(30 and 20 after a first ReLU thick layer with 99 nodes, tan h 
neurons each). A more complicated network results in a 243 kB 
Flash footprint and an accuracy of 83 %. The ideal k for k-NN 
is 1. Accuracy for all classifiers is equivalent to that of an i4-
core computer.  

Table.1 Sonar dataset classification results  

Classifier  50 features 

 Flash  Time  Accuracy 

K NN  45kB  24ms  79% 

SVM  249B  < 1ms  83.4% 

NN  49kB  < 1ms  91% 

The presentation of the k-NN (for 11 features k=13) required 
feature selection (Orthogonal Matching Pursuit algorithm), 
which is shown in Heart infection dataset classification Table 
2. A 3-layer NN with 40, 20, and 1 node was employed, and 
output was nonlinear for all nodes. Despite utilizing the same 
code and dataset for every classifier, precision is identical to 

that on an i4 core PC, with the exception of the SVM.  

Table.2 Heart infection dataset classification results 

CLASSIFIER  11 FEATURES 

 Flash  Time  Accuracy 

K NN  11kB  32ms  71% 

SVM  28B  < 1ms  86.4% 

NN  1.8kB  < 1ms  92.3% 

 

5. CONCLUSION  

Developers have access to the initial NN firmware development 
tools already, making ML in embedded devices a possibility. 
Using two different algorithms and three various datasets for 
analysis, we discovered that the NNs integrated by the STM 
Cube AI library consistently deliver good performance despite 
the embedded platform's constraints. Common desktop tools like 
Tensorflow and Keras are well integrated into the workflow. 
Additionally, SVM has a compact footprint and performs 
admirably.  

Comparatively to NNs, however, its growth is not as effectively 
supported by tools. It is well known that as training set size 
increases, k-NN highly reliable to deteriorate [7].Openly 
accessible IoT datasets are currently lacking, which would help 
researchers and practitioners learn about various application 
domains.A  more in-depth investigation in the future using 
more NN types and more pertinent datasets, with a focus on the 
space-time tradeoff. is to be conducted because they don't 
require human data processing during the training stage, 
uncontrolled classification algorithms are much more suitable 
for field deployment, and will also be fascinating to explore in 
terms of performance and application. Finally, spreading 
embedded ML compute is anticipated to emerge as a significant 
architectural problem in the coming years given the constrained 
facilities of the edge. 
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