
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

8

Machine Learning on Standard Embedded Device

Umapriya Selvam
Electronics & Communication

Engineering,
Coimbatore Institute of Technology,

Coimbatore, India

P. Muthu Subramanian
Assistant Professor

Electronics & Communication
Engineering,

Coimbatore Institute of Technology,
Coimbatore, India

A. Rajeswari
Professor

Electronics & Communication
Engineering,

Coimbatore Institute of
Technology, Coimbatore,

India

ABSTRACT

Developers of ARM microcontrollers now have access to the

first neural network software development tools, making

machine learning in embedded systems a possibility. This study

examines the application of one such tool, the STM Cube AI,

on popular ARM Cortex-M microcontrollers. It evaluates and

contrasts its performance with that of two others widely

employed supervised machine learning (ML) algorithms,

namely Support Vector Machines (SVM) and k-Nearest

Neighbors (k-NN). The outcomes of three datasets demonstrate

that X-Cube-AI consistently delivers good performance despite

the shortcomings of the embedded platform. Popular desktop

programs like TensorFlow and Keras are seamlessly

incorporated into the workflow.

General Terms

k- Nearest Neighbors, X-Cube-AI, ARM Cortex-M

Keywords

Machine.learning,.Artificial..neural..networks,

Microcontrollers, Edge Computing

1. INTRODUCTION
Numerous new field applications are being made possible by
the Internet of Things (IoT). The enormous amount of data
produced by IoT sensors is increasingly being processed close
to the source, at the edge, which limits privacy concerns while
reducing latencies, bandwidth, and overhead of the cloud and
remote units [1]. The edge computing paradigm is an addition
to the widely recognized cloud computing model. Within this
framework, artificial intelligence, particularly Machine
Learning (ML), has gained significance. ARM recently
unveiled the Project Trillium ML platform, which encompasses
machine learning and object detection intellectual property (IP)
designed for highly advanced smartphones.However, it is
probable that widespread adoption will primarily occur on
already popular platforms. For instance, in 2018, ARM
developed CMSIS NN, an open source library of optimized
kernels, with the objective of maximizing Neural Network
(NN) performance specifically on Cortex-M processors. These
processors are widely utilized in the field, making them the
preferred choice for maximizing NN capabilities. Google
launched TensorFlow Lite for ARM 64 microcontrollers, with
a focus on NNs . STM has recently introduced the STM Cube
AI extension kit, which is designed specifically for 32-bit
microcontrollers. This kit aims to provide enhanced
capabilities for integrating artificial intelligence functionalities

into microcontroller-based systems.However, there are
significantly fewer articles discussing experiences with ML on
the edge than there are for desktop/cloud computing. This is
made worse by the dearth of publicly accessible IoT datasets,
which hinders the
creation of research initiatives. The purpose of this paper is to
investigate and evaluate the performance of one of the

aforementioned N N libraries, X Cube AI, on popular ARM
Cortex-M microcontrollers while also taking into account two
additional widely used supervised machine learning (ML)
algorithms, Support Vector Machine (SVM) and k-Nearest
Neighbors (k-NN). Since the training step is extremely labor-
intensive [2] the study is initially focused on classification
because it frequently calls for human supervision, which is
easier to carry out in the cloud.

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should be

justified, not ragged.

2. SURVEY
Numerous studies are being conducted to integrate ANNs into

autonomous devices, addressing difficulties with accuracy,

resource utilization, and energy efficiency. A thorough

examination of the current work in this area is given in [3].

Challenges of deploying neural networks on microcontrollers
with limited memory, compute, and power budgets [4].The
authors introduce the CMSIS-NN library of effective software
kernels, which allows the implementation of NNs on Cortex-M
cores. They also discuss techniques for NN algorithm
development to build compact models appropriate for resource-
constrained systems using the example of keyword spotting.
The integration of a low resolution thermal imaging camera
using cutting edge feature extraction techniques like
convolutional layers is demonstrated in [6] as a unique system.

The research demonstrates the capability of changing the
classification process to a resource-constrained platform
without appreciably decreasing performance by analyzing
information on a 32-bit low power microcontroller. Using 6
kB of RAM, they attain a 77 percent accuracy. In addition to
other techniques like genetic and reinforcement learning, it
implements a NN for classification.

3. IMPLEMENTATION

As many have already said, NNs have become more popular in
the realm of embedded systems. One of the recently published
libraries described above, the STM Cube AI expansion
package, which may be used with the STM32CubeMX
configuration tool, is the subject of our investigation in
particular. Pre-trained neural networks are automatically
converted by the programme, and the generated optimized
library is integrated into the user's project. The method we are
familiar with entails building a NN in Python using the
Tensorflow package and Keras as a framework on a computer.
In order to speed up convergence,the vectors are normalized.
When the developer discovers a NN configuration that, in
testing conducted on a PC, provides sufficient accuracy, the
model is stored in a HDF5 file and imported by CubeMX. After
estimating the memory footprint (including Flash and RAM),
the CubeMX ``Analyze" function then proposes a list of
potential target microcontrollers. A new project, which
includes the AI and CUBE AI packs, can be launched once the

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

9

target has been chosen (or the developers have verified the
suitability of the current target).

Then, using the Multiply and Accumulate Operation to
estimate complexity, CubeMX enables executing a validation
both on the desktop and on the target. By utilizing the
"network" package, constructing the system using the collected
weights, establishing the input and output tensors, and doing
the prediction, the target C programme may be written in a few
lines of code. Two algorithms were used as a comparative
basis,

3.1 K-nearest neighbors
In k-NN, the entire training set is recorded instead of any model
being learned. Using majority voting and the Euclidean
distance criterion, we completely rewrote the system in C.

3.2 Support Vector Machine
On a computer,the SVM was trained using the Sklearn

Python framework using a linear kernel and a cross-validation
model. Both the SVM method and gpu acceleration are not
supported by sklearn, and multi core architectures cannot be
utilized by the SVM method. This is a drawback of our strategy
because the lengthy training periods precluded us from
thoroughly examining the choices (kernels). Executing the
prediction z = x*y+w on the target is all that is required for
implementation, where z and y represent the inputs and output,
x the support vectors, and w the bias.

4. ANALYSIS

F446RE and F746 from STM, two well-known ARM
microcontrollers, were used to carry out the experimental
analysis. The former is a member of the popular Cortex-M4
family, while the latter is a member of the high-performance
M7. Results are typically only presented for the F4 scenario in
Tables 1-4, while Table 3 expressly takes into account the F7
condition. In each case, Prior to deploying the classifiers on the
target machine and making the required adjustments, notably
in terms of performance, the classifiers were first developed on
a PC.
Sonar (207 samples x 58 features) , the UCI Heart illnesses
dataset on Kaggle (301 x 11),were the two binary classification
datasets used. In accordance with the intended execution
platform, each dataset is converted to a float32. Table 1 shows
the Sonar dataset's data for a NN having 2 hidden thick layers.
(30 and 20 after a first ReLU thick layer with 99 nodes, tan h
neurons each). A more complicated network results in a 243 kB
Flash footprint and an accuracy of 83 %. The ideal k for k-NN
is 1. Accuracy for all classifiers is equivalent to that of an i4-
core computer.

Table.1 Sonar dataset classification results

Classifier 50 features

 Flash Time Accuracy

K NN 45kB 24ms 79%

SVM 249B < 1ms 83.4%

NN 49kB < 1ms 91%

The presentation of the k-NN (for 11 features k=13) required
feature selection (Orthogonal Matching Pursuit algorithm),
which is shown in Heart infection dataset classification Table
2. A 3-layer NN with 40, 20, and 1 node was employed, and
output was nonlinear for all nodes. Despite utilizing the same
code and dataset for every classifier, precision is identical to

that on an i4 core PC, with the exception of the SVM.

Table.2 Heart infection dataset classification results

CLASSIFIER 11 FEATURES

 Flash Time Accuracy

K NN 11kB 32ms 71%

SVM 28B < 1ms 86.4%

NN 1.8kB < 1ms 92.3%

5. CONCLUSION

Developers have access to the initial NN firmware development
tools already, making ML in embedded devices a possibility.
Using two different algorithms and three various datasets for
analysis, we discovered that the NNs integrated by the STM
Cube AI library consistently deliver good performance despite
the embedded platform's constraints. Common desktop tools like
Tensorflow and Keras are well integrated into the workflow.
Additionally, SVM has a compact footprint and performs
admirably.

Comparatively to NNs, however, its growth is not as effectively
supported by tools. It is well known that as training set size
increases, k-NN highly reliable to deteriorate [7].Openly
accessible IoT datasets are currently lacking, which would help
researchers and practitioners learn about various application
domains.A more in-depth investigation in the future using
more NN types and more pertinent datasets, with a focus on the
space-time tradeoff. is to be conducted because they don't
require human data processing during the training stage,
uncontrolled classification algorithms are much more suitable
for field deployment, and will also be fascinating to explore in
terms of performance and application. Finally, spreading
embedded ML compute is anticipated to emerge as a significant
architectural problem in the coming years given the constrained
facilities of the edge.

6. REFERENCES
[1] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu (2016) “Edge

Computing: Vision and Challenges”, in IEEE Internet of

Things Journal, vol. 3, no. 5, pp. 637-646.

[2] A. Parodi, F. Bellotti, R. Berta, A. De Gloria (2018),

“Developing a Machine Learning Library for

Microcontrollers” Springer Lecture Notes in Electrical

Engineering, vol 550.

[3] L. Andrade, A. Prost-Boucle, and F. Pétrot, Overview of

the state of the art in embedded machine learning, (2018),

“ Design, Automation & Test” in Europe Conference &

Exhibition (DATE), Dresden, pp. 1033-1038.

[4] L. Lai and N. Suda (2018), "Enabling Deep Learning at

the LoT Edge," in IEEE/ACM International Conference

on Computer-Aided Design (ICCAD), San Diego, CA, pp.

1-6.

[5] G. Cerutti, R. Prasad and E. Farella (2019),

"Convolutional Neural Network on Embedded Platform

for People Presence Detection in Low Resolution Thermal

Images," IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), Brighton,

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No.19, June 2023

10

United Kingdom, 2019, pp. 7610-7614.

[6] M. J. Islam, Q. M. J. Wu, M. Ahmadi, and M. A. Sid-

Ahmed, (2007), “Investigating the Performance of Naive-

Bayes Classifiers and K- Nearest Neighbor Classifiers”,

Int.l Conf. on Convergence Information Technology ,

Gyeongju, pp. 1541-1546.

IJCATM : www.ijcaonline.org

