
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 2, April 2023

11

Implementation of Text Similarity using Cosine Similarity

Method in Python

Ahmad Farhan AlShammari
Department of Computer and Information Systems

College of Business Studies, PAAET
Kuwait

ABSTRACT
The goal of this research is to develop a text similarity program

using cosine similarity method in Python. The steps of text

similarity process are: preprocessing text, word-tokenization,

creating list of words, creating bag of words, calculating word

frequency, and calculating cosine similarity. The developed

program was examined on two experimental texts from

Wikipedia. The program successfully performed the steps of

text similarity and provided the required results.

Keywords
Artificial Intelligence, Machine Learning, Text Similarity,

Natural Language Processing, Word-Tokenization, Word

Frequency, Cosine Similarity, Python, Programming.

1. INTRODUCTION
Now, with the huge amount of data in the Internet, it is

important to find the similarity between texts. The text

similarity process is applied in search engines, information

systems, and digital libraries. Automatic text similarity

programs are useful and help users to save time and effort

especially with long documents.

Text similarity is one of the important applications of machine

learning. Machine learning (ML) is a branch of Artificial

Intelligence (AI) which is focused on developing algorithms to

improve the performance of computer programs.

Text similarity is a common field between machine learning

and Natural Language Processing (NLP). It applies both the

techniques of NLP and the methods of ML to process text.

Fig 1: Field of Text Similarity

Text similarity is widely used a lot in many applications, for

example: searching, ranking, clustering, classification and

recommendation.

2. LIREATURE REVIEW
The early research in text similarity started in the sixties. It was

originally focused on Information Retrieval (IR) (Hotho,

Nürnberger, & Paass [1]). Salton, he was called the father of

IR, developed the first "automatic" information retrieval

system, SMART (Salton & Lesk [2], and Salton [3]).

The concept of "Vector Space Model" was introduced to

represent text in the vector form (Salton, Wong, & Yang [4]).

A text can be represented as a vector in the following form:

V = (w1, w2, …, wn)

Where: w1, w2, …, wn are "weights" given to the words in the

text.

Researchers developed different variations of weighting

methods based on "word frequency" such as TF-IDF method

(Salton & Buckley [5]).

The "cosine similarity" method was applied to measure the

similarity between vectors (Salton & McGill [6], and Salton,

Allan, & Buckley [7]).

The fundamental concepts of text similarity are explained in the

following section:

Text Similarity:
Text similarity is the process of measuring the similarity

between texts to determine if the texts are similar or not.

Methods of Text Similarity:
Text similarity can be measured by different methods such as:

Euclidean distance, Manhattan distance, Jacquard distance and

cosine similarity. Cosine similarity is the most widely used

method because of its simplicity and effectiveness.

This research, will apply the cosine similarity method.

Preprocessing Text:
The raw text should be "pre-processed" first to remove the

unwanted characters or words, for example: punctuation

characters and stopwords.

Word Tokenization:
Word Tokenization is the process of breaking text into smaller

units "tokens" (words).

List of Words:
List of words is the list of words in the text after removing

stopwords.

Bag of Words:
Bag of words (BoW) is the set of words in the text without

repetition.

Word Frequency:
Word frequency is the number of times a word occurs in the

text divided by the number of words in the text. It is calculated

AI Linguistics NLP ML

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 2, April 2023

12

by the following formula:

Freq(wi) =
 f(wi)

Nw
 (1)

Where: f(wi) is the number of times the word (wi) occurs in the

text, and Nw is the total number of words in the text.

Cosine Similarity:
Cosine similarity is a mathematical method used to measure the

similarity between texts. The concept is derived from the

calculus of vectors in mathematics.

For example, consider two vectors A and B in plane, as shown

in the following diagram:

Fig 2: Representation of Vectors A and B

The dot product of the two vectors (A.B) is calculated by the

following formula:

A∙B =‖𝐴‖ ‖𝐵‖ Cos(𝜃) (2)

Where: ||A|| and ||B|| are the norms of vectors A and B

respectively, and θ is the angle between the two vectors.

Then, the cosine of the angle is calculated by the following

formula:

Cos(𝜃) =
A∙B

‖𝐴‖ ‖𝐵‖
 (3)

In general, for any two vectors A and B in space, where:

A = (a1, a2, … , an)

B = (b1, b2,… ,bn)

Then, the cosine of the angle is calculated by the following

formula:

Cos(θ) =
∑ (ai bi)

 √∑ ai
2 ∑ bi

2

 (4)

Where: ai and bi are the vector values of vectors A and B

respectively.

The cosine similarity value shows the "percentage" of

similarity between the two vectors. For example: if the cosine

value is close to (1), then the two vectors are similar, and if the

cosine value is close to (0), then the two vectors are not similar.

Python:
Python [8] is a general high-level programming language. It is

simple, easy to learn, and powerful. It is the best choice for

many programmers, especially in the field of machine learning.

Python provides additional libraries for processing numbers,

plots, texts, and images, such as: Numpy [9], Pandas [10],

Matplotlib [11], NLTK [12], and Scikit [13].

This research, will apply the standard functions of Python

without any additional library.

3. RESEARCH METHODOLOGY
Text similarity is done by the following steps: preprocessing

text, word-tokenization, creating list of words, creating bag of

words, calculating word frequency, and calculating cosine

similarity.

Fig 3: Steps of Text Similarity

Fig 4: Flowchart of Text Similarity

The steps of text similarity are explained in the following

section:

1.Preprocessing Text:
The text is preprocessed to remove the unwanted characters and

1. Preprocessing Text

2. Word-Tokenization

3. Creating List of Words

4. Creating Bag of Words

5. Calculating Word Frequency

6. Calculating Cosine Similarity

Word-Tokenization

Preprocessing Text

Calculating

Cosine Similarity

Word

Freq 1,2

Words 1,2

Cosine

Similarity

Raw

Text 1,2

Text 1,2

Bag of

Words

1,2

Tokens

1,2

Calculating

Word Freq

Creating

Bag of

Words

Creating List of Words

A

B

θ

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 2, April 2023

13

words. It is done by the following steps:

1.1 Converting Text into Lower Case:
The text is converted into lower case form. It is done by the

following code:

text = raw_text.lower()

1.2 Removing Punctuation Symbols:
The punctuation symbols are removed from the text. It is done

by the following code:

letters = "abcdefghijklmnopqrstuvwxyz"

for c in text:

 if (c not in letters):

 text = text.replace(c," ")

1.3 Defining Stopwords:
Stopwords are words that have no importance in the text. For

example: "i", "he", "she", "it", etc. The stopwords list is defined

by the following code:

stopwords = ["i", "we", "am", "he", "she",

 "it", "is", "are", "the",

 "they", "that", "this", ...]

2. Word-Tokenization:
The text is split into tokens (words). It is done by the following

code:

tokens = text.split()

3. Creating List of Words:
The list of words is created by removing the stopwords. It is

done by the following code:

words = []

for word in tokens:

 word = word.strip()

 if (word != "" and word not in stopwords):

 words.append(word)

4. Creating Bag of Words:
The bag of words is created by removing the repetition. It is

created by the following code:

bag_of_words = set(words)

5. Calculating Word Frequency:
The word frequency holds the frequency of the words.

Fig 5: Representation of Word Frequency

Where: freq(wi) is the frequency of the word (wi). It is

calculated by the following code:

Nw = len(words)

freq = {}

for word in bag_of_words:

 freq[word] = words.count(word) / Nw

6. Calculating Cosine Similarity:
The cosine similarity is calculated using formula (4). It is

calculated by the following code:

calculate the dot product of two vectors

def dot(vector1, vector2):

 sum = 0

 for key in vector1:

 if key in vector2:

 sum += vecor1[key] * vector2[key]

 return sum

calculate the norm of a vector

def norm(vector):

 sum = 0

 for key in vector:

 sum += vector[key]**2

 return math.sqrt(sum)

calculate the cosine similarity

value1 = dot(freq1, freq2)

value2 = norm(freq1) * norm(freq2)

cosine = value1 / value2

print("cosine similarity =", cosine)

4. RESULTS AND DISCUSSION
The developed program was tested on two experimental texts

from Wikipedia [14]. The program performed the steps of text

similarity and provided the following results:

List of Words:
The list of words is created for the two texts. It is shown in the

following view:

List of Words (Text 1):

0 abstract

1 analogous

2 available

3 based

4 chooses

5 clinical

...

List of Words (Text 2):

0 abstraction

1 abstractive

2 abstractive

3 abstractive

4 applied

5 apply

...

Bag of Words:
The bag of words is created for the two texts. It is shown in the

following view:

Bag of Words (Text 1):

0 abstract

1 analogous

2 available

3 based

4 chooses

5 clinical

...

Bag of Words (Text 2):

0 abstraction

1 abstractive

Word Frequency

w1 freq(w1)

w2 freq (w2)

w3 freq (w3)

… …

wn freq(wn)

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 2, April 2023

14

2 applied

3 apply

4 based

5 build

...

Word Frequency:
The word frequency is calculated for the two texts. It is shown

in the following view:

Word Frequency (Text 1):

abstract : 0.013513513513513514

analogous : 0.013513513513513514

available : 0.013513513513513514

based : 0.013513513513513514

chooses : 0.013513513513513514

clinical : 0.013513513513513514

...

Word Frequency (Text 2):

abstraction : 0.013513513513513514

abstractive : 0.04054054054054054

applied : 0.013513513513513514

apply : 0.013513513513513514

based : 0.013513513513513514

build : 0.013513513513513514

...

Cosine Similarity:
The cosine similarity is calculated for the two texts. It is shown

in the following view:

Cosine Similarity = 0.3467255099282032

The resulting cosine value shows that the percentage of

similarity between the two texts is about (35%).

5. CONCLUSION
Text similarity is one of the important applications of machine

learning. It is used to measure the similarity between texts and

determine if they are similar or not. Text similarity is used a lot

in many applications, for example: searching, ranking,

clustering, classification, and recommendation.

In this research, the researcher developed a program in Python

to measure the similarity between texts using cosine similarity

method. The developed program performed the basic steps of

text similarity: preprocessing text, word-tokenization, creating

list of words, creating bag of words, calculating word

frequency, and calculating cosine similarity.

The program successfully provided the required results: list of

words, bag of words, word frequency, and cosine similarity.

The resulting cosine value shows the percentage of similarity

between the texts.

In the future, more work needs to be done to examine the cosine

similarity method in other languages such as Arabic.

6. REFERENCES
[1] Hotho, A., Nürnberger, A., & Paass, G. (2005). "A Brief

Survey of Text Mining". LDV Forum - GLDV Journal for

Computational Linguistics and Language Technology. 20,

19-62.

[2] Salton, G. & Lesk, M. E. (1965). "The SMART Automatic

Document Retrieval Systems: An Illustration".

Communications of the ACM. 8 (6): 391-398.

[3] Salton, G. (1971). "The SMART Retrieval System:

Experiments in Automatic Document Retrieval".

Englewood Cliffs, N.J.: Prentice Hall Inc.

[4] Salton, G., Wong, A., & Yang, C. (1975). "A Vector

Space Model for Automatic Indexing". Communications

of the ACM, 18(11), 613-620.

[5] Salton, G., & Buckley, C. (1988). "Term-Weighting

Approaches in Automatic Text Retrieval". Information

Processing and Management, 24(5), 513-523.

[6] Salton, G. & McGill, M. (1983). "Introduction to Modern

Information Retrieval". McGraw Hill Book Co, New

York.

[7] Salton, G., Allan, J., & Buckley, C. (1994). "Automatic

Structuring and Retrieval of Large Text Files".

Communications of the ACM, 37(2), 97-108.

[8] Python: https://www.python.org

[9] Numpy: https://www.numpy.org

[10] Pandas: https:// pandas.pydata.org

[11] Matplotlib: https://www. matplotlib.org

[12] NLTK: https://www.nltk.org

[13] SciKit: https://scikit-learn.org

[14] Wikipedia: https://en.wikipedia.org

IJCATM : www.ijcaonline.org

https://doi.org/10.1145%2F364955.364990
https://doi.org/10.1145%2F364955.364990

