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ABSTRACT 
In this invstigation the oscillatory flow of visco-elastic fluid 

through a porous channel is considered. The fluid is subjected 

to a transverse magnetic field also slip velocity at the lower 

plate is taken into consideration. The vertical channel is 

maintained at non-uniform temperature The perturbation 

scheme has been used to solve the equations governing the 

flow. The expressions for the velocity, temperature, skin-

friction have been obtained. The results are illustrated 

graphically, for various values of flow parameters such as 

Darcy parameter, suction/injection parameter, magnetic 

parameter, Grashof number, Prandtl number, thermal radiation 

parameter, Navier-slip parameter and visco-elastic parameter. 

It is observed that the visco-elastic parameter plays a significant 

in role in flow field. The acquired knowledge in this study can 

be used in blood flow in arteries, oil industry. 

Keywords 
visco-elastic, porous medium, oscillatory, slip effects, skin-

friction. 

1. INTRODUCTION 
In different areas of science and engineering technology MHD 

oscillatory flow with heat transfer plays an important role in 

physiological and engineering applications. It is revealed from 

theoretical or experimental investigation that MHD flow of 

electrically conducting fluid assumes considerable importance 

because of various natural phenomena. These natural 

phenomena are generated by the action of Coriolis force and 

magnetic force. 

Also, the flow of an electrically conducting fluid through a 

porous channel saturated with porous medium has many 

engineering applications such as MHD generators, arterial 

blood flow, petroleum engineering and many more. A number 

of researchers [1-4] have studied the MHD flow with various 

perspectives. Adesanya[5], studied the  free convective flow of 

heat generating fluid through a porous vertical channel with 

velocity slip and temperature jump. 

The flow of visco-elastic fluid through has gained importance 

because of their increasing application in industry for certain 

special flows. Sivaraj et al.[6] have studied the unsteady MHD 

dusty visco-elastic fluid Couette flow in an irregular channel 

with varying mass diffusion. Adesanya[7] have decomposition 

approach to steady visco-elastic fluid flow with slip through a 

planer channel.  

The specific aim of this analysis is to extend the work done in 

[4] to the non-Newtonian case  characterized by Second order 

fluid [Coleman and Noll [9]] and [Coleman and Markovitz 

[10]]. Oscillatory flows of second grade fluid in a porous space 

have been considered by Hussain et al.[8]. A constant magnetic 

field is applied across the normal to the channel. Also, we 

assume that fluid has a very low electrical conductivity and the 

electromagnetic force produced is very small. Also, due to 

presence of suction /injection the flow of fluid is subjected to 

suction at the cold wall and injection at the heated wall. The 

velocity, skin friction coefficient have been presented 

graphically for various values of the non-Newtonian parameter 

along with other flow parameters.  

2. MATHEMATICAL ANALYSIS 
Consider the steady laminar flow of a non-Newtonian 

electrically conducting fluid through a channel with slip at the 

cold plate. An external magnetic field is placed across the 

normal to the channel. It is assumed that the fluid has small 

electrical conductivity and the electro-magnetic force produced 

is very small. The flow is subjected to suction at the cold wall 

and injection at the heated wall. We choose a Cartesian 

coordinate system ),( yx   where x  lies along the centre of 

the channel and y  is the distance measured in the normal 

section such that ay =  is the half channel width. 

Under the usual Bousinesq approximation the equations 

governing the flow are as follows 
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Where t   -time, u  -axial velocity,v0-constant horizontal 

velocity, ρ-fluid density, P -fluid pressure, 



 i

iv = , 

i=1,2where ρ is the density of the fluid, µ1-viscosity of the fluid 

µ2-elasticity of the fluid, K-porous permeability, e -electrical 

conductivity,B0-magnetic field intensity, g-gravitational 

acceleration, β-volumetric expansion, Cp-the specific heat at 

constant pressure, α-the term due to thermal radiation, k-

thermal conductivity,T  -fluid temperature and T0- referenced 

fluid temperature. 

Introducing the dimensionless parameters and variables 

𝑥 =
𝑥 ′

ℎ1
, 𝑦 =

𝑦′

ℎ1
, 𝑢 =

ℎ1𝑢
′

𝜈1
, 𝑡 =

𝑣𝑡 ′

ℎ1
2 , 𝑝 =

ℎ1
2𝑝′

𝜌𝑣2
, 
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𝐺𝑟 =
𝑔𝛽(𝑇1 − 𝑇0)ℎ1

3

𝑣1
2 , 𝐺𝑟𝑎𝑠ℎ𝑜𝑓𝑛𝑢𝑚𝑏𝑒𝑟 

𝑃𝑟 =
𝜌𝐶𝑝𝑣1

𝑘
, 𝑃𝑟 𝑎 𝑛𝑑𝑡𝑙𝑛𝑢𝑚𝑏𝑒𝑟, 

𝑅 =
4𝛼2ℎ1

2

𝜌𝐶𝑝𝑣1
, 𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

ℎ =
√𝐾

𝛼𝑠ℎ1
, 𝑁𝑎𝑣𝑖𝑒𝑟𝑠𝑙𝑖𝑝𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 

𝑀2 =
𝜎𝑒𝐵0

2ℎ1
2

𝜌𝑣1
, 𝐻𝑎𝑟𝑡𝑚𝑎𝑛𝑛'𝑠𝑛𝑢𝑚𝑏𝑒𝑟 

𝐷𝑎 =
𝐾

ℎ1
2 , 𝐷𝑎𝑟𝑐𝑦𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 

𝑠 =
𝑣0ℎ1
𝑣1

, 𝑠𝑢𝑐𝑡𝑖𝑜𝑛/𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 

𝜃 =
𝑇 − 𝑇0
𝑇1 − 𝑇0

.

 
The following dimensionless equations are obtained: 

∂𝑣

∂𝑦
= 0(5) 

∂𝑢

∂𝑡
− 𝑠

∂𝑢

∂𝑦
= −

∂𝑝

∂𝑥
+
∂2𝑢

∂𝑦2
+𝐷0(

∂3𝑢

∂𝑦2 ∂𝑡
− 𝑠

∂3𝑢

∂𝑦3
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−
𝑢

𝐷𝑎
−𝑀𝑢 + 𝐺𝑟𝜃(6) 

∂𝜃
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− 𝑠

∂𝜃

∂𝑦
=

1

𝑃𝑟
∂2𝜃

∂𝑦2

With the appropriate boundary condition 

𝑢 = ℎ
𝑑𝑢

𝑑𝑦
, 𝜃 = 0𝑜𝑛𝑦 = 0

𝑢 = ℎ
𝑑𝑢

𝑑𝑦
, 𝜃 = 0𝑜𝑛𝑦 = 0

}
 

 

                      (8)

 

3. METHOD OF SOLUTION 
It is assumed that an oscillatory pressure gradient, such that 

solutions of the dimensionless equations  [6]-[7] is in the 

following form: 

−
∂𝑝

∂𝑥
= 𝐿𝑒𝑖𝜔𝑡 , 𝑢(𝑦, 𝑡) = 𝑢0(𝑦)𝑒

𝑖𝜔𝑡 , 

𝜃(𝑦, 𝑡) = 𝜃0(𝑦)𝑒
𝑖𝜔𝑡          (9)

 
Where L is any positive constant and ω is the frequency of 

oscillation.  

In view of [9], equations [6] to [7] reduced to a boundary –

valued problem in the following form: 
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The relevant boundary conditions are: 
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The coefficient of skin friction at y=0 is
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4. RESULTS AND DISCUSSIONS 
In this analysis, convective visco-elastic fluid flow through a 

saturated porous medium with slip effect is studied. The flow 

through a vertical channel takes place due to increase in 

pressure gradient and free convection. The non- zero value of 

d represents the visco-elastic parameter. 

In figure 1, exhibit the effect of visco-elastic parameter on fluid 

flow. It is observed from the figure that the velocity of visco-

elastic fluid increases as compared to Newtonian fluid. 

In figure 2, the effect of magnetic parameter(M) on velocity 

profile is represented. The velocity of visco-elastic fluid  

deaccelerating with the rise of magnetic parameter. This is 

because the effect of Lorentz force which is the combination of 

electric and magnetic force on the moving fluid particles which 

deaccelates the flow of fluid. 

In figure 3, represents the effect of Grashof number(Gr) on 

fluid velocity. Grashof number is the ratio of buoyancy force to 

the viscous. So, magnification in Grashof number  leads to the 

increase in buoyancy force hence the velocity of the fluid is 

also accelerating . 

The effects of Navier slip-parameter(h) on velocity profile are 

represented in figure 4. It is revealed from the figure that 

velocity of fluid increases with the rising values Navier slip-

parameter(γ).    

Figure 5, depict the velocity profile of fluid with the variation 

of permeability of porous medium parameter(Da). Since the 

obstacles on the flow of fluid reduces due to increase in 

permeability of the medium. Hence the velocity of fluid 

enhanced  with the magnification  of porous medium 

parameter(Da). 

Figure 6, display the velocity profile of fluid flow with the 

variation radiation parameter(R). When the thermal radiation 

parameter increases than internal heat generation capacity also 

increases and hence heat gained by the fluid particles also gets 

more energy. This is lead to increase in velocity of fluid. 

Figure 7 and 8 represents the profile of skin friction against 

time. 

It is revealed from the figures that the skin friction coefficient 

of fluid diminishing with time. Also, it is noticed that the 

magnitude of skin coefficient for visco-elastic fluid less as 

compared to Newtonian flow in figure 8. Again, from figure 9 

it is observed that the with rise of magnetic parameter the 

coefficient of skin friction decreases for visco-elastic fluid as 

compared to Newtonian. 

Figure9, display the coefficient of skin friction against Grashof 

number(Gr). It is observed that the skin friction coefficient 

enhanced with the rise in Grashof number (Gr). Also, skin 

friction coefficient increases in case of non-Newtonian fluid as 

compared to Newtonian fluid. 
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5. CONCLUSIONS 
From the above analysis, following conclusions have been 

drawn:  

1. The velocity of fluid is significantly effected by visco-elastic 

parameter. 

2. The coefficient of skin friction of fluid is significantly 

effected by visco-elastic parameter. 

3. The velocity of fluid  increases with the rise of Grashof 

number(Gr), Navier slip parameter(h), radiation parameter(R) , 

permeability of porous medium(Da ) and reverse is the 

phenomena for the rise of Magnetic parameter(M). 

4. The coefficient of skin friction of fluid increases with the rise 

of Grashof number(Gr) but shows the reverse trend for the rise 

of magnetic parameter(M). 
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Fig. 1:Velocity profile for variation of visco-

elastic parameter (d)  against the displacement 

variable y for Gr=4, M=3,Pr=.71,ω=π, 

t=1,s=.2,Da=.1,R=.3,h=.5,,L=1. 

 

Fig. 2:Velocity profile for variation of Magnetic 

Parameter(M)  against the displacement variable y for for 

Gr=4,Pr=.71,ω=π, t=1,s=.2,Da=.1,R=.3,h=.5,,L=1,d= -.03 

 

Fig. 3:Velocity profile  for variation of Grashof 

number(Gr)  against the displacement variable y for for  

M=3,Pr=.71,ω=π, t=1,s=.2,Da=.1,R=.3,h=.5,,L=1,d= -.03 

 

Fig. 4:Velocity profile  for variation of Navier slip-

parameter(h)  against the displacement variable y for for 

Gr=4, M=3,Pr=.71,ω=π, t=1,s=.2,Da=.1,R=.3,L=1,d= -.03 
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Fig. 5:Velocity profile of  for variation of permeability of 

porous medium parameter(Da) against the displacement 

variable y for for Gr=4, M=3,Pr=.71,ω=π, 

t=1,s=.2,R=.3,h=.5,,L=1,d= -.03 

 

Fig.6:Velocity profile of dust particle for variation of 

radiation parameter(R)  against the displacement variable 

y for for Gr=4, M=3,Pr=.71,ω=π, 

t=1,s=.2,Da=.1,h=.5,L=1,d= -.03 

Fig.7:Variation of Shearing stress (Cf) against Time(t) for 

for Gr=4, M=3,Pr=.71,ω=π, t=1,s=.2,Da=.1,R=.3,h=.5,L=1. 

 

Fig.8: Variation of Shearing stress (Cf) against Time(t) for 

for Gr=4,Pr=.71,ω=π, t=1,s=.2,Da=.1,R=.3,h=.5,,L=1,d= -

.03 

 

Fig.9: Variation of Shearing stress (Cf) against Grashof 

number(Gr) for M=3,Pr=.71,ω=π, 

t=1,s=.2,Da=.1,R=.3,h=.5,,L=1,d= -.03 

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y

u

Da=0.5,1,1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

y

u

R=0.5,1.5,2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

t

c
f

 

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

t

c
f

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Gr

c
f

d=0,-.03 

M=4, 5 

d=0, -.03 

IJCATM : www.ijcaonline.org 


