
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

12

Stock Market Prediction using RNN-based Models with

Random and Tuned Hyperparameters

Priyank Gupta
SOS Computer Science and

Applications, Jiwaji University,
Gwalior, MP, India

Sanjay Kumar Gupta
SOS Computer Science and

Applications, Jiwaji University,
Gwalior, MP, India

Rakesh Singh Jadon
Department of Computer

Science and Engineering, MITS,
Gwalior, MP, India

ABSTRACT
The stock market in India has become more passionate in recent

years. Because of the maneuverability of the stock market, it is

also difficult to predict future trends and patterns in the stock

market. Various Deep Learning (DL) methods, such as

Recurrent Neural Networks (RNN), produce excellent results

in stock market forecasting. In this paper, we integrate RNN-

based models such as Long-Short-Term Memory (LSTM),

Stacked LSTM, Gated Recurrent Unit (GRU), Stacked GRU,

Bidirectional LSTM, Bidirectional GRU, and a Hybrid model

to predict the Moving Average Convergence Divergence

(MACD) of National Stock Exchange (NSE) of India, i.e.,

NIFTY50 market index. Some hyperparameters are also

considered when training these models, as these

hyperparameters control the behavior and performance of such

models. Two experiments are carried out to train these RNN-

based models: manually selecting and tuning hyperparameters.

Metrics such as Mean Squared Error (MSE), Mean Absolute

Error (MAE), Root Mean Squared Error (RMSE), and Mean

Squared Percent Error (MAPE) are used to assess performance.

Both experimental results show that the Bidirectional GRU

model is the most effective at predicting MACD values in

India's NIFTY50 stock market index.

Keywords
RNN, LSTM, Stacked LSTM, Bidirectional LSTM, GRU,

Stacked GRU, Bidirectional GRU, Stock Market, MACD,

NIFTY50.

1. INTRODUCTION
Since the stock market is intricate, unpredictable, and

vulnerable to various factors that might affect its behavior,

predicting stock prices has long been a difficult challenge in

finance. Deep learning algorithms are increasingly being

considered for use in stock market forecasting because they

have demonstrated promise in spotting complex patterns in

financial data and generating better predictions. Nowadays,

sequential DL models (RNN and its variants) have been widely

employed for stock market prediction. Researchers have

applied numerous optimization strategies to enhance the

performance of these models. For instance, Hyejung Chung et

al. [1] suggested a hybrid strategy that uses GA to enhance the

LSTM architecture and the temporal window's size. In another

study by Abba Suganda Girsang et al. [2], A novel

metaheuristic optimization technique called Search Economics

was integrated with LSTM. By reaching a low RMSE, MAE,

and MAPE, their proposed Model, SE-LSTM, beat the non-

optimized LSTM and ARIMA models on the stock price

prediction. The authors in [3] developed a model based on the

LSTM and Differential Evolution algorithms for optimizing

network hyperparameters to estimate a company's stock price

for the next day. Nikolaos Gorgolis et al. [4] show that GA is

an efficient and viable method for fine-tuning an RNN model.

These studies show how well optimization approaches boost

deep learning-based models' performance in stock market

forecasting.

In this article, we evaluated the performance of seven

sequential DL models, namely LSTM, GRU, Stacked LSTM,

Stacked GRU, Bidirectional LSTM, Bidirectional GRU, and a

hybrid model to forecast the price of the Nifty50 index. The

dataset contains historical details of the Nifty50 index and its

technical indicators from 2013 to 2023. Historical parameters

include daily Open, High, Low, Close, Volume (OHLCV), and

Adjusted Close price. In addition, we derived the technical

indicators like MACD, Relative Strength Index (RSI),

Exponential Moving Average (EMA), Simple Moving Average

(SMA), and the Stochastic Oscillator (SO) with these features.

We choose MACD as the predicting feature with timesteps of

10 days. The study aimed to pinpoint the ideal model. The

findings of this study can help financial experts and stock

market investors make wise choices.

The work structure of this article is as follows: Section II

includes a brief outline of previous studies. Section III presents

the methodology applied in this article, followed by

experimental results and analysis in section IV. Finally, section

V presents the conclusion, and section VI covers all the

references of the proposed work.

2. LITERATURE SURVEY
The ability to predict stock prices effectively has become one

of the interesting research problems in recent years. Many

methods have been put forth. This study concentrates on recent

studies that used various optimization strategies and deep

learning models to forecast stock prices.

To predict the daily Korea Stock Price Index (KOSPI) price,

Hyejung Chung et al. [1] proposed a hybrid technique that

blends Genetic Algorithm (GA) and LSTM networks. The

authors determined the ideal temporal window size and

topology for the LSTM network using GA. The experimental

findings demonstrated that their hybrid approach performed

better in prediction accuracy than the Conventional LSTM and

Autoregressive Integrated Moving Average (ARIMA) models.

In another study, Abba Suganda Girsang et al. [2] employed the

Search Economics metaheuristic optimization algorithm to

enhance the LSTM model's stock price prediction ability. The

authors used the auto Arima function to test the performance of

the optimized LSTM model against an unoptimized LSTM

model and the ARIMA model. According to the result, the

optimized LSTM model outperformed the other two models

regarding RMSE, MAE, MAPE, and R2 scores.

Ehsan Rokhsatyazdi et al. [3] introduced a unique RNN-based

model on the LSTM and Differential Evolution (DE) algorithm

to estimate a company's stock price for the next trading session.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

13

The DE algorithm is utilized to optimize the hyperparameters

of LSTM to achieve a lower RMSE for prediction. The study

focused on tuning ten network hyperparameters relevant to the

identification of temporal patterns of a particular dataset. The

proposed model outperformed the top statistical forecasting

models, including NAIVE, ETS, and SARIMA, with an

objective value of 8.092 RMSE. Nikolaos Gorgolis et al. [4]

show a simple GA approach used for the hyperparameter tuning

of a model and achieves tuning efficiency without an

exhaustive search.

Five deep learning-based models (two CNN and three LSTM

models) for the prediction of the NIFTY50 index of values are

proposed by Jaydip Sen et al. [5]. Their study found that the

univariate CNN model, which used data from the previous

week as its input, was the correct and the fastest in its execution.

On the other side, it was discovered that the encoder-decoder

Convolutional Neural Network (CNN) LSTM model, which

uses the data from the past two weeks as input, is the least

accurate. A comparison between two RNN-based models, i.e.,

LSTM and Bidirectional LSTM, is proposed by Md Arif Istiake

Sunny et al. [6] for stock market prediction, using the modified

parameters between these two models BI-LSTM model shows

the best result by generating lower RMSE compared to LSTM

model. Anita Yadav et al. [7] proposed two experiments. In

experiment one, they compared stateless and stateful LSTM

models for Indian stock market prediction based on the result

of standard deviation plot, box-plot, and whisker plots stateless

LSTM model was more stable than the stateful one. In

experiment two, the number of hidden layers for the model

varied from one to seven. The findings suggested that having

just one hidden layer was the optimal design for RMSE, and the

test confirmed by the one-way ANOVA test was confirmed.

To predict the volatility of the Chinese stock market, Weiling

Chen et al. [8] offer various technical indicators with a

sentiment influence feature, which they then incorporate into a

two layers RNN-GRU model. The experiment results

demonstrate that their method and characteristics can predict

well with minor mistakes with the GRU model. For both short-

and long-term stock market forecasting using S&P500 index

historical data, Khaled A. Althelaya et al. [9] compare and

assess the utilization of Stacked LSTM, Stacked GRU,

Bidirectional LSTM, and Bidirectional GRU architectures,

their findings demonstrate that stacked architectures, such as

Stacked LSTM and Stacked GRU, outperformed bidirectional

architecture-developed Bidirectional LSTM and Bidirectional

GRU models in terms of performance. In the method for stock

market closing price prediction presented in the study of

Mehrnaz Faraz et al. [10], some technical indicators and

oscillators are made and added to the dataset as additional

characteristics. Simulation experiments are run on the S&P 500

stock index, and the findings show that AutoEncoder (AE)

LSTM is virtually more accurate than Generative Adversarial

Network (GAN) at predicting the daily price.

3. METHODOLOGY

3.1 Data Description
In this work, the historical data for the Nifty50 stock market

index, which represents the top 50 businesses listed on the NSE

of India, was obtained from Yahoo Finance [11]. The data was

collected from January-01-2013 to March-05-2023, and the

information comprised daily stock prices for the Nifty50 index,

including the OHLCV and Adjacent Close Volume.

To increase the predictive power of the deep learning models,

we used technical indicators such as the RSI, MACD, EMA,

and Stochastic Oscillator; SMA was added to the dataset in

addition to the stock prices. The Python pandas_ta [12] package

calculated these technical indicators.

The MACD was calculated with a short period of 12, a long

period of 26, and a signal period of 9, whereas the stochastic

oscillator, which displays two lines: %K & %D was calculated

with a window of 14. Using the Python Pandas [13] package,

these indicators were added as additional columns to the

Nifty50 dataset.

The data was cleaned and pre-processed using an SK-Learn[14]

min-max scaler, which scales each data point in a range of 0

and 1, and the backward fill approach is used to fill for any

missing values to guarantee the accuracy of the dataset. With

timesteps of 10 days (past two weeks' data), MACD is selected

as the predictive feature as it enables traders to determine short-

term trends. The time-series split method was used to divide the

selected feature into training and testing sets in a ratio of 80:20.

The resulting training and testing sets had 2,000 and 499 data

points, each representing a single MACD value. These

variables are then used to train and evaluate our proposed deep-

learning models for stock market prediction, as described in the

following sections.

3.2 Models Used

As we discussed, we use seven different RNN-based models

such as LSTM, GRU, SLSTM, SGRU, BI-LSTM, BI- GRU

and a Hybrid model (combination of BI-LSTM and a GRU

layer) for predicting the stock market of India, i.e., NIFTY50.

The models were implemented in Python using Keras deep

learning library with Tensorflow [15] backend.

A. RNN
An RNN is a Deep Neural Network (DNN) that handles

sequential data. RNNs are commonly implemented for tasks

like time series prediction, speech recognition, and natural

language processing. Also, they have been used for other

structures line LSTM and GRU, designed to address the

vanishing gradient issue, which is the major problem with

RNNs as it can restrict their capacity to capture long-term

dependencies and their computational cost due to sequential

processing. Fig 1 shows the internal structure of RNN.

Fig. 1: Internal structure of RNN [16]

B. LSTM
LSTM, a variant of RNN, is designed to solve the vanishing

gradient issue and enhance the network's capacity to recognize

long-term dependencies in sequential data. LSTM can also

perform all the tasks of RNN, such as speech recognition,

Natural Language Processing (NLP), and time series

prediction, as the LSTM network employs a unique cell unit

with gates such as an input gate, forget gate, and output gate

that selectively allow information to be stored or discarded

from the cell state. This allows the network to retain important

information longer while avoiding the issue of Vanishing and

exploding gradients. Fig 2 shows the repeating structure of the

LSTM network.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

14

Fig. 2: Repeating Structure of LSTM network [16]

C. GRU
GRU is also a type of RNN architecture; like LSTM, GRU uses

gates such as reset gate and update gate to selectively renew

and delete the hidden state of the network, thus allowing the

network to learn long-term dependencies while avoiding

vanishing gradient problem that generally occurs with

traditional RNNs. GRU is simple as well as faster to train as

compared to LSTM architecture. Fig 3 shows the structure of

GRU.

Fig.3: Structure of GRU [17]

D. Stacked LSTM AND Stacked GRU
Both Stacked LSTM and Stacked GRU are RNN architectures

used for sequential data processing as both Stacked LSTM and

Stacked GRU are made up of multiple layers of recurrent units

of their defined types, with the output of one layer serving as

the input to the next layer in a stacked network. The key

difference is the gate mechanism used inside them; Stacked

LSTM uses LSTM gating mechanism. On the other side, a

Stacked GRU uses the gating mechanism of a GRU.

E. Bidirectional LSTM
Bidirectional Directional LSTM is a variant of LSTM that

processes the sequential data in forward and backward

directions. A Bidirectional LSTM architecture comprises two

separate LSTMs: one that processes the sequence forward and

another that processes the sequence backward. Each layer of

the LSTM has its own set of weights and biases. The forward

LSTM computes a forward hidden state at each time step based

on the current input and the previous hidden state in the forward

direction. Similarly, the backward LSTM computes a backward

hidden state based on the current input and the previous

backward direction. The final hidden state concatenates the

forward and backward hidden states at each time step.

Bidirectional LSTMs have been used in various applications,

including natural language processing, speech recognition, and

time series analysis, as they can learn short-term and long-term

dependencies in sequential data, making them ideal for

modeling complex sequences. Fig 4 shows the architecture of

Bidirectional LSTM.

Fig.4: Architecture of BI-LSTM [18]

F. Bidirectional GRU
Similar to Bidirectional LSTM, Bidirectional GRU also

processes sequential data in forward and backward directions;

in Bidirectional GRU, there are two different layers of GRU,

one of which processes the sequence in the forward direction

and the other which processes the sequence in the backward

direction. The Bidirectional GRU architecture is depicted in

Fig. 5.

Fig.5: Architecture of BI-GRU [19]

G. Hybrid Model
Our proposed work also develops a hybrid model with two

recurrent layers: the GRU layer and a Bidirectional LSTM

layer. The Bidirectional LSTM layer does forward and

backward processing on the input sequence and produces

output. This output is then passed on to the GRU layer, which

performs additional processing on the sequence to identify any

pertinent relationships. This model may capture long-term

dependencies in sequential data and enhance task performance

by integrating the strengths of both LSTM and GRU.

3.3 Neuro-Evolution for Hyperparameter

Tuning

Neuro-evolution is a wrapper and slightly modified

implementation of Matt Harvey's [20] approach, proposed by

Alexander Osipenko [21]. In their study, Osipenko briefly

mentions neuro-evolution as an alternative to traditional

optimization methods for neural networks. Instead of designing

and optimizing the architecture of a neural network by hand,

neuro-evolution uses evolutionary algorithms such as genetic

algorithms to evolve the architecture of the network

automatically. Neuro-evolution is frequently used to solve

problems where traditional optimization methods fail, such as

those with high-dimensional search spaces or non-convex

objective functions. It is also helpful when the optimal network

architecture is unknown or difficult to define.

4. PROPOSED WORK
To achieve our objective, we conduct two experiments; in the

first experiment, we manually select some hyperparameters

like the number of epochs, dropout, layers, neurons, batch size,

hidden layer activation function, output layer activation

function, losses, metrics and optimizer to train the models.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

15

Comparing these models' performances to identify which one

is best at forecasting stock market prices is our primary goal.

MAE, MSE, and RMSE are some of the metrics we use to

assess the performance of the models.

In the second experiment, we incorporate neuro-evolution to

enhance the hyperparameters of the models. We change the

number of neurons, layers, epochs, batch size, dropout, loss,

metrics, and activation functions of the hidden and final layers.

The models are then trained using the ideal hyperparameters

discovered by the neuro-evolution method, which runs with a

generation size of 10 and population size of the total numbers

of tuning hyperparameters required; their performance is

assessed using the same set of metrics.

4.1 Hyperparameters

Table 1: Hyperparameters for Experiment 1

Hyperparameters Values

Epochs 50

Batch size 32

Number of layers 4

Number of neurons 60

Dropout 0.3

Optimizer Adam

The activation function for

hidden layers

Tanh

The activation function of

the output layer

Linear

Loss function MAE

Metrics MSE

Table 2: Hyperparameters for experiment 2 (Before tuning)

Hyperparameters Values

Epochs 10 to 250

Batch size [10, 16, 32, 40, 64, 128]

Number of layers 1 to 7

Number of neurons 15 to 160

Dropout [0.1, 0.2, 0.3, 0.4, 0.5]

Optimizer [Adam, nadam]

The activation function

in hidden layers

[tanh, relu]

The activation function

in the output layer

Linear

Loss function [MAE, MSE]

Metrics [MSE, MAE]

Table 3: Hyperparameters for experiment 2 (After tuning)

5. RESULT AND ANALYSIS
In this section, we present the result of our proposed seven

models such as LSTM, GRU, Stacked LSTM, Stacked GRU,

Bi-Directional LSTM, Bi-Directional GRU, and Hybrid model;

the details about these models were presented in section III. We

performed two individual experiments to train all the models

with different hyperparameters to evaluate which is best out of

seven in forecasting MACD values of the NIFTY50 index. The

evaluation metrics like MSE, MAE, RMSE, and MAPE are

applied to assess the performance of each model. The formula

for these metrics is presented below-.

Where,

- yi - is the ith observed value.

- ŷi - is the corresponding predicted value.

- n - the number of observations.

Where,

- yi - is the ith observed value.

- ŷi - is the predicted value of y

- N – the number of observations

Where,

- yi - is the ith observed value.

- ŷi - is the corresponding predicted

value.

- N - the number of observations.

- √ - Square root

- n - is the number of fitted points,

- At - is the actual value,

- It - is the forecast value.

- Σ - is summation notation (the absolute value

is summed for every forecasted point in time).

Table 4: Result of each model obtained from experiment 1

Models MSE MAE RMSE MAPE

LSTM 7069.64 67.74 84.08 1.07

SLSTM 663.93 21.15 25.77 0.37

GRU 2192.88 38.11 46.83 0.45

SGRU 559.37 19.28 23.65 0.27

BI-

LSTM
1831.3 35.5 42.79 0.58

BI-GRU 523.12 17.39 22.87 0.38

HYBRID 580.72 19.03 24.1 0.34

https://www.statisticshowto.com/calculus-definitions/summation-notation-sigma-function/

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

16

Table 5: Hyperparameters for experiment 1

Hyperparameters Values

Epochs 193

Batch size 16

Number of layers 1

Number of neurons 43

Dropout 0.3

Optimizer Adam

The activation function

in hidden layers

Relu

The activation function
in the output layer

Linear

Loss function MSE

Metrics MAE

Experiment 1: Manual Selection of

Hyperparameters

In the first experiment, we manually select some

hyperparameter values shown in Table 1. We noted

performances in terms of MSE, MAE, RMSE, and MAPE of

all these seven models. Table 4 presents the performance result

of these seven models obtained from experiment 1.

Based on the result shown in Table 4, the model which

outperforms the rest of the six models in terms of performance

metrics was a bidirectional gated recurrent unit in short BI-

GRU as BI-GRU has much smaller values of MSE, MAE,

RMSE, and MAPE, which is 382.95, 14.73, 19.57 and 0.32 as

compared to LSTM, SLSTM, GRU, SGRU, BI-LSTM, and

Hybrid model. Conversely, SLSTM performs worst in

predicting the MACD values for NIFTY50. Fig 6 depicts the

graphical representation of MACD values predicted by the

well-performed Bi-GRU model and their actual values for

NIFTY50.

Fig. 6: Predicted vs. Actual values from Experiment 1

Experiment 2: Hyperparameters Tuning

In experiment second, the hyperparameters selected for tunning

are shown in Table 2, we tuned these hyperparameters using

neuro-evolution with ten iterations, and the population size of

the total number of hyperparameters required for tunning in this

experiment is ten as we try to tune up ten hyperparameters

required for training the individual Model, The

hyperparameters obtained after successful tunning is present in

Table 3.

Fig 7: Predicted Vs. Actual Values from Experiment 2

We trained and validated the seven selected models with these

obtained hyperparameters (Table 3). After running them

through these hyperparameters, each model's result is presented

in Table 6.

Table 6: Result of each model obtained from experiment 2

Models MSE MAE RMSE MAPE

LSTM 1081.45 25.3 32.89 0.49

SLSTM 13330.14 93.95 115.46 1.35

GRU 841.3 23.95 29.01 0.37

SGRU 595.26 19.29 24.4 0.35

BI-

LSTM

1130.48 28.67 33.62 0.42

BI-GRU 382.95 14.73 19.57 0.32

HYBRID 502.61 17.77 22.42 0.32

According to the result shown in Table 5, Bidirectional GRU

appears to have the best performance of the seven models, with

the lowest MSE (523.12), MAE (17.39), and RMSE (22.87)

values and reasonably low MAPE (0.38) value. On the other

hand, the Stacked GRU model has slightly higher MSE, MAE,

and RMSE values, which may indicate that it predicts the target

variable less accurately than Bidirectional GRU. The LSTM

model has the highest RMSE value, indicating that its

predictions are more inaccurate from the actual values, making

it the worst among the seven. Fig 7 shows the graphical

representation between predicted MACD values by the best

model obtained from experiment 2 and actual MACD values

for NIFTY50.

6. CONCLUSION
Based on the result of the two experiments conducted to find

the best prediction Model for the Indian NIFTY50 index price,

the Bidirectional GRU model provided the best results in

comparison to others based on evaluation metrics used in

experiment 1 (MSE, MAE, RMSE, and MAPE). In experiment

2, neuro-evolution was used to tune hyperparameters after that,

and then our proposed models were trained with these tuned

hyperparameters. The result shows that the Bidirectional GRU

and Stacked GRU models used the MAPE metrics best.

Significantly, the Bidirectional GRU model outperformed all

other models examined in both experiments regarding its ability

to predict the MACD value of the NIFTY50 stock market

index. In addition to giving traders and investors a more reliable

tool for making educated decisions, this advancement in

predictive modeling also offers new directions for research in

finance and deep learning. The Bidirectional GRU model offers

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 21, July 2023

17

a substantial improvement in our understanding of market

sentiment and forecasting and has the potential to transform

stock market analysis.

7. REFERENCES
[1] Chung, Hyejung, and Kyung-shik Shin. "Genetic

algorithm-optimized long short-term memory network for

stock market prediction." Sustainability 10, no. 10 (2018):

3765.

[2] Girsang, Abba Suganda, Fernando Lioexander, and Daniel

Tanjung. "Stock price prediction using LSTM and search

economics optimization." IAENG International Journal of

Computer Science 47, no. 4 (2020): 758-764.

[3] Rokhsatyazdi, Ehsan, Shahryar Rahnamayan, Hossein

Amirinia, and Sakib Ahmed. "Optimizing LSTM Based

Network For Forecasting Stock Market." In 2020 IEEE

Congress on Evolutionary Computation (CEC), pp. 1-7.

IEEE, 2020.

[4] Gorgolis, Nikolaos, Ioannis Hatzilygeroudis, Zoltan

Istenes, and Lazlo–Grad Gyenne."Hyperparameter

optimization of LSTM network models through genetic

algorithm." In 2019 10th International Conference on

Information, Intelligence, Systems and Applications

(IISA), pp. 1-4. IEEE, 2019.

[5] Sen, Jaydip, Sidra Mehtab, and Gourab Nath. "Stock price

prediction using deep learning models." Lattice: The

Machine Learning Journal 1, no. 3 (2020): 34-40.

[6] Sunny, Md Arif Istiake, Mirza Mohd Shahriar Maswood,

and Abdullah G. Alharbi. "Deep learning-based stock

price prediction using LSTM and bi-directional LSTM

model." In 2020 2nd Novel Intelligent and Leading

Emerging Sciences Conference (NILES), pp. 87-92.

IEEE, 2020.

[7] Yadav, Anita, C. K. Jha, and Aditi Sharan. "Optimizing

LSTM for time series prediction in Indian stock market."

Procedia Computer Science 167 (2020): 2091-2100.

[8] Chen, Weiling, Yan Zhang, Chai Kiat Yeo, Chiew Tong

Lau, and Bu Sung Lee. "Stock market prediction using

neural network through the news on online social

networks." In 2017 international smart cities conference

(ISC2), pp. 1–6. IEEE, 2017.

[9] Althelaya, Khaled A., El-Sayed M. El-Alfy, and Salahadin

Mohammed. "Stock market forecast using multivariate

analysis with bidirectional and stacked (LSTM, GRU)." In

2018 21st Saudi Computer Society National Computer

Conference (NCC), pp. 1–7. IEEE, 2018.

[10] Faraz, Mehrnaz, Hamid Khaloozadeh, and Milad Abbasi.

"Stock market prediction-by-prediction based on

autoencoder long short-term memory networks." In 2020

28th Iranian Conference on Electrical Engineering

(ICEE), pp. 1-5. IEEE, 2020.

[11] URL: https://finance.yahoo.com

[12] URL: https://pypi.org/project/pandas-ta/

[13] URL: https://pypi.org/project/pandas/

[14] URL: https://scikit-learn.org/stable/

[15] URL: https://www.tensorflow.org/

[16] C. Olah, “Understanding Lstm,” accessed: 2020-03-12.

[Online]. Available: https://colah.github.io/posts/2015-08-

Understanding-LSTMs/

[17] Muhammad, L. J., Ahmed Abba Haruna, Usman Sani

Sharif, and Mohammed Bappah Mohammed. "CNN-

LSTM deep learning based forecasting model for COVID-

19 infection cases in Nigeria, South Africa, and

Botswana." Health and Technology (2022): 1–18.

[18] “Deep dive into Bidirectional LSTM” 2019 [Online].

[19] Available:https://www:i2tutorials:com/deep-dive-into-

bidirectional-lstm/

[20] Ju, Yun, Min Zhang, and Huixian Zhu. "Study on a New

Deep Bidirectional GRU Network for Electrocardiogram

Signals Classification." In 3rd International Conference on

Computer Engineering, Information Science &

Application Technology (ICCIA 2019), pp. 355-359.

Atlantis Press, 2019.

[21] URL: https://github.com/harvitronix/neural-network-

genetic-algorithm

[22] Osipenko, Alexander. "Genetic algorithms and

hyperparameters—Weekend of a Data Scientist."(2019)

[Online].

Available:https://medium.com/cindicator/genetic-

algorithms-and-hyperparameters-weekend- of-a-

data-scientist-8f069669015e

IJCATM : www.ijcaonline.org

