
International Journal of Computer Applications (0975 – 8887) 

Volume 185 – No. 21, July 2023 

12 

Stock Market Prediction using RNN-based Models with 

Random and Tuned Hyperparameters 

Priyank Gupta 
SOS Computer Science and 

Applications, Jiwaji University, 
Gwalior, MP, India 

 
 

Sanjay Kumar Gupta 
SOS Computer Science and 

Applications, Jiwaji University, 
Gwalior, MP, India 

 
 

Rakesh Singh Jadon 
Department of Computer 

Science and Engineering, MITS, 
Gwalior, MP, India 

 
 

ABSTRACT 
The stock market in India has become more passionate in recent 

years. Because of the maneuverability of the stock market, it is 

also difficult to predict future trends and patterns in the stock 

market. Various Deep Learning (DL) methods, such as 

Recurrent Neural Networks (RNN), produce excellent results 

in stock market forecasting. In this paper, we integrate RNN-

based models such as Long-Short-Term Memory (LSTM), 

Stacked LSTM, Gated Recurrent Unit (GRU), Stacked GRU, 

Bidirectional LSTM, Bidirectional GRU, and a Hybrid model 

to predict the Moving Average Convergence Divergence 

(MACD) of National Stock Exchange (NSE) of India, i.e., 

NIFTY50 market index. Some hyperparameters are also 

considered when training these models, as these 

hyperparameters control the behavior and performance of such 

models. Two experiments are carried out to train these RNN-

based models: manually selecting and tuning hyperparameters. 

Metrics such as Mean Squared Error (MSE), Mean Absolute 

Error (MAE), Root Mean Squared Error (RMSE), and Mean 

Squared Percent Error (MAPE) are used to assess performance. 

Both experimental results show that the Bidirectional GRU 

model is the most effective at predicting MACD values in 

India's NIFTY50 stock market index. 
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1. INTRODUCTION 
Since the stock market is intricate, unpredictable, and 

vulnerable to various factors that might affect its behavior, 

predicting stock prices has long been a difficult challenge in 

finance. Deep learning algorithms are increasingly being 

considered for use in stock market forecasting because they 

have demonstrated promise in spotting complex patterns in 

financial data and generating better predictions. Nowadays, 

sequential DL models (RNN and its variants) have been widely 

employed for stock market prediction. Researchers have 

applied numerous optimization strategies to enhance the 

performance of these models. For instance, Hyejung Chung et 

al.  [1] suggested a hybrid strategy that uses GA to enhance the 

LSTM architecture and the temporal window's size. In another 

study by Abba Suganda Girsang et al. [2], A novel 

metaheuristic optimization technique called Search Economics 

was integrated with LSTM. By reaching a low RMSE, MAE, 

and MAPE, their proposed Model, SE-LSTM, beat the non-

optimized LSTM and ARIMA models on the stock price 

prediction. The authors in [3] developed a model based on the 

LSTM and Differential Evolution algorithms for optimizing 

network hyperparameters to estimate a company's stock price 

for the next day. Nikolaos Gorgolis et al. [4] show that GA is 

an efficient and viable method for fine-tuning an RNN model. 

These studies show how well optimization approaches boost 

deep learning-based models' performance in stock market 

forecasting. 

In this article, we evaluated the performance of seven 

sequential DL models, namely LSTM, GRU, Stacked LSTM, 

Stacked GRU, Bidirectional LSTM, Bidirectional GRU, and a 

hybrid model to forecast the price of the Nifty50 index. The 

dataset contains historical details of the Nifty50 index and its 

technical indicators from 2013 to 2023. Historical parameters 

include daily Open, High, Low, Close, Volume (OHLCV), and 

Adjusted Close price. In addition, we derived the technical 

indicators like MACD, Relative Strength Index (RSI), 

Exponential Moving Average (EMA), Simple Moving Average 

(SMA), and the Stochastic Oscillator (SO) with these features. 

We choose MACD as the predicting feature with timesteps of 

10 days. The study aimed to pinpoint the ideal model. The 

findings of this study can help financial experts and stock 

market investors make wise choices. 

The work structure of this article is as follows: Section II 

includes a brief outline of previous studies. Section III presents 

the methodology applied in this article, followed by 

experimental results and analysis in section IV. Finally, section 

V presents the conclusion, and section VI covers all the 

references of the proposed work. 

2. LITERATURE SURVEY 
The ability to predict stock prices effectively has become one 

of the interesting research problems in recent years. Many 

methods have been put forth. This study concentrates on recent 

studies that used various optimization strategies and deep 

learning models to forecast stock prices. 

To predict the daily Korea Stock Price Index (KOSPI) price, 

Hyejung Chung et al. [1] proposed a hybrid technique that 

blends Genetic Algorithm (GA) and LSTM networks. The 

authors determined the ideal temporal window size and 

topology for the LSTM network using GA. The experimental 

findings demonstrated that their hybrid approach performed 

better in prediction accuracy than the Conventional LSTM and 

Autoregressive Integrated Moving Average (ARIMA) models. 

In another study, Abba Suganda Girsang et al. [2] employed the 

Search Economics metaheuristic optimization algorithm to 

enhance the LSTM model's stock price prediction ability. The 

authors used the auto Arima function to test the performance of 

the optimized LSTM model against an unoptimized LSTM 

model and the ARIMA model. According to the result, the 

optimized LSTM model outperformed the other two models 

regarding RMSE, MAE, MAPE, and R2 scores. 

Ehsan Rokhsatyazdi et al. [3] introduced a unique RNN-based 

model on the LSTM and Differential Evolution (DE) algorithm 

to estimate a company's stock price for the next trading session. 
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The DE algorithm is utilized to optimize the hyperparameters 

of LSTM to achieve a lower RMSE for prediction. The study 

focused on tuning ten network hyperparameters relevant to the 

identification of temporal patterns of a particular dataset. The 

proposed model outperformed the top statistical forecasting 

models, including NAIVE, ETS, and SARIMA, with an 

objective value of 8.092 RMSE. Nikolaos Gorgolis et al. [4] 

show a simple GA approach used for the hyperparameter tuning 

of a model and achieves tuning efficiency without an 

exhaustive search. 

Five deep learning-based models (two CNN and three LSTM 

models) for the prediction of the NIFTY50 index of values are 

proposed by Jaydip Sen et al. [5]. Their study found that the 

univariate CNN model, which used data from the previous 

week as its input, was the correct and the fastest in its execution. 

On the other side, it was discovered that the encoder-decoder 

Convolutional Neural Network (CNN) LSTM model, which 

uses the data from the past two weeks as input, is the least 

accurate. A comparison between two RNN-based models, i.e., 

LSTM and Bidirectional LSTM, is proposed by Md Arif Istiake 

Sunny et al. [6] for stock market prediction, using the modified 

parameters between these two models BI-LSTM model shows 

the best result by generating lower RMSE compared to LSTM 

model. Anita Yadav et al. [7] proposed two experiments. In 

experiment one, they compared stateless and stateful LSTM 

models for Indian stock market prediction based on the result 

of standard deviation plot, box-plot, and whisker plots stateless 

LSTM model was more stable than the stateful one. In 

experiment two, the number of hidden layers for the model 

varied from one to seven. The findings suggested that having 

just one hidden layer was the optimal design for RMSE, and the 

test confirmed by the one-way ANOVA test was confirmed. 

To predict the volatility of the Chinese stock market, Weiling 

Chen et al. [8] offer various technical indicators with a 

sentiment influence feature, which they then incorporate into a 

two layers RNN-GRU model. The experiment results 

demonstrate that their method and characteristics can predict 

well with minor mistakes with the GRU model. For both short- 

and long-term stock market forecasting using S&P500 index 

historical data, Khaled A. Althelaya et al. [9] compare and 

assess the utilization of Stacked LSTM, Stacked GRU, 

Bidirectional LSTM, and Bidirectional GRU architectures, 

their findings demonstrate that stacked architectures, such as 

Stacked LSTM and Stacked GRU, outperformed bidirectional 

architecture-developed Bidirectional LSTM and Bidirectional 

GRU models in terms of performance. In the method for stock 

market closing price prediction presented in the study of 

Mehrnaz Faraz et al. [10], some technical indicators and 

oscillators are made and added to the dataset as additional 

characteristics. Simulation experiments are run on the S&P 500 

stock index, and the findings show that AutoEncoder (AE) 

LSTM is virtually more accurate than Generative Adversarial 

Network (GAN) at predicting the daily price. 

3. METHODOLOGY 

3.1 Data Description 
In this work, the historical data for the Nifty50 stock market 

index, which represents the top 50 businesses listed on the NSE 

of India, was obtained from Yahoo Finance [11]. The data was 

collected from January-01-2013 to March-05-2023, and the 

information comprised daily stock prices for the Nifty50 index, 

including the OHLCV and Adjacent Close Volume.  

To increase the predictive power of the deep learning models, 

we used technical indicators such as the RSI, MACD, EMA, 

and Stochastic Oscillator; SMA was added to the dataset in 

addition to the stock prices. The Python pandas_ta [12] package 

calculated these technical indicators.  

The MACD was calculated with a short period of 12, a long 

period of 26, and a signal period of 9, whereas the stochastic 

oscillator, which displays two lines: %K & %D was calculated 

with a window of 14. Using the Python Pandas [13] package, 

these indicators were added as additional columns to the 

Nifty50 dataset. 

The data was cleaned and pre-processed using an SK-Learn[14] 

min-max scaler, which scales each data point in a range of 0 

and 1, and the backward fill approach is used to fill for any 

missing values to guarantee the accuracy of the dataset. With 

timesteps of 10 days (past two weeks' data), MACD is selected 

as the predictive feature as it enables traders to determine short-

term trends. The time-series split method was used to divide the 

selected feature into training and testing sets in a ratio of 80:20. 

The resulting training and testing sets had 2,000 and 499 data 

points, each representing a single MACD value. These 

variables are then used to train and evaluate our proposed deep-

learning models for stock market prediction, as described in the 

following sections. 

3.2 Models Used   

As we discussed, we use seven different RNN-based models 

such as LSTM, GRU, SLSTM, SGRU, BI-LSTM, BI- GRU 

and a Hybrid model (combination of BI-LSTM and a GRU 

layer) for predicting the stock market of India, i.e., NIFTY50. 

The models were implemented in Python using Keras deep 

learning library with Tensorflow [15] backend. 

A. RNN 
An RNN is a Deep Neural Network (DNN) that handles 

sequential data. RNNs are commonly implemented for tasks 

like time series prediction, speech recognition, and natural 

language processing. Also, they have been used for other 

structures line LSTM and GRU, designed to address the 

vanishing gradient issue, which is the major problem with 

RNNs as it can restrict their capacity to capture long-term 

dependencies and their computational cost due to sequential 

processing. Fig 1 shows the internal structure of RNN.   

 
Fig. 1: Internal structure of RNN [16] 

B. LSTM 
LSTM, a variant of RNN, is designed to solve the vanishing 

gradient issue and enhance the network's capacity to recognize 

long-term dependencies in sequential data. LSTM can also 

perform all the tasks of RNN, such as speech recognition, 

Natural Language Processing (NLP), and time series 

prediction, as the LSTM network employs a unique cell unit 

with gates such as an input gate, forget gate, and output gate 

that selectively allow information to be stored or discarded 

from the cell state. This allows the network to retain important 

information longer while avoiding the issue of Vanishing and 

exploding gradients. Fig 2 shows the repeating structure of the 

LSTM network. 
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Fig. 2: Repeating Structure of LSTM network [16] 

C. GRU  
GRU is also a type of RNN architecture; like LSTM, GRU uses 

gates such as reset gate and update gate to selectively renew 

and delete the hidden state of the network, thus allowing the 

network to learn long-term dependencies while avoiding 

vanishing gradient problem that generally occurs with 

traditional RNNs. GRU is simple as well as faster to train as 

compared to LSTM architecture. Fig 3 shows the structure of 

GRU. 

 
Fig.3: Structure of GRU [17] 

D. Stacked LSTM AND Stacked GRU  
Both Stacked LSTM and Stacked GRU are RNN architectures 

used for sequential data processing as both Stacked LSTM and 

Stacked GRU are made up of multiple layers of recurrent units 

of their defined types, with the output of one layer serving as 

the input to the next layer in a stacked network. The key 

difference is the gate mechanism used inside them; Stacked 

LSTM uses LSTM gating mechanism. On the other side, a 

Stacked GRU uses the gating mechanism of a GRU. 

E. Bidirectional LSTM 
Bidirectional Directional LSTM is a variant of LSTM that 

processes the sequential data in forward and backward 

directions. A Bidirectional LSTM architecture comprises two 

separate LSTMs: one that processes the sequence forward and 

another that processes the sequence backward. Each layer of 

the LSTM has its own set of weights and biases. The forward 

LSTM computes a forward hidden state at each time step based 

on the current input and the previous hidden state in the forward 

direction. Similarly, the backward LSTM computes a backward 

hidden state based on the current input and the previous 

backward direction. The final hidden state concatenates the 

forward and backward hidden states at each time step. 

Bidirectional LSTMs have been used in various applications, 

including natural language processing, speech recognition, and 

time series analysis, as they can learn short-term and long-term 

dependencies in sequential data, making them ideal for 

modeling complex sequences. Fig 4 shows the architecture of 

Bidirectional LSTM. 

 

Fig.4: Architecture of BI-LSTM [18] 

F. Bidirectional GRU 
Similar to Bidirectional LSTM, Bidirectional GRU also 

processes sequential data in forward and backward directions; 

in Bidirectional GRU, there are two different layers of GRU, 

one of which processes the sequence in the forward direction 

and the other which processes the sequence in the backward 

direction. The Bidirectional GRU architecture is depicted in 

Fig. 5. 

 

Fig.5: Architecture of BI-GRU [19] 

G. Hybrid Model  
Our proposed work also develops a hybrid model with two 

recurrent layers: the GRU layer and a Bidirectional LSTM 

layer. The Bidirectional LSTM layer does forward and 

backward processing on the input sequence and produces 

output. This output is then passed on to the GRU layer, which 

performs additional processing on the sequence to identify any 

pertinent relationships. This model may capture long-term 

dependencies in sequential data and enhance task performance 

by integrating the strengths of both LSTM and GRU. 

3.3 Neuro-Evolution for Hyperparameter 

Tuning 

Neuro-evolution is a wrapper and slightly modified 

implementation of Matt Harvey's [20] approach, proposed by 

Alexander Osipenko [21]. In their study, Osipenko briefly 

mentions neuro-evolution as an alternative to traditional 

optimization methods for neural networks. Instead of designing 

and optimizing the architecture of a neural network by hand, 

neuro-evolution uses evolutionary algorithms such as genetic 

algorithms to evolve the architecture of the network 

automatically. Neuro-evolution is frequently used to solve 

problems where traditional optimization methods fail, such as 

those with high-dimensional search spaces or non-convex 

objective functions. It is also helpful when the optimal network 

architecture is unknown or difficult to define. 

4. PROPOSED WORK 
To achieve our objective, we conduct two experiments; in the 

first experiment, we manually select some hyperparameters 

like the number of epochs, dropout, layers, neurons, batch size, 

hidden layer activation function, output layer activation 

function, losses, metrics and optimizer to train the models. 
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Comparing these models' performances to identify which one 

is best at forecasting stock market prices is our primary goal. 

MAE, MSE, and RMSE are some of the metrics we use to 

assess the performance of the models. 

In the second experiment, we incorporate neuro-evolution to 

enhance the hyperparameters of the models. We change the 

number of neurons, layers, epochs, batch size, dropout, loss, 

metrics, and activation functions of the hidden and final layers. 

The models are then trained using the ideal hyperparameters 

discovered by the neuro-evolution method, which runs with a 

generation size of 10 and population size of the total numbers 

of tuning hyperparameters required; their performance is 

assessed using the same set of metrics. 

4.1 Hyperparameters 

Table 1: Hyperparameters for Experiment 1 

Hyperparameters Values 

Epochs 50 

Batch size 32 

Number of layers 4 

Number of neurons 60 

Dropout 0.3 

Optimizer Adam 

The activation function for 

hidden layers 

Tanh 

The activation function of 

the output layer 

Linear 

Loss function MAE 

Metrics MSE 

 

Table 2: Hyperparameters for experiment 2 (Before tuning) 

Hyperparameters Values 

Epochs 10 to 250 

Batch size [10, 16, 32, 40, 64, 128] 

Number of layers 1 to 7 

Number of neurons 15 to 160 

Dropout [0.1, 0.2, 0.3, 0.4, 0.5] 

Optimizer [Adam, nadam] 

The activation function 

in hidden layers 

[tanh, relu] 

The activation function 

in the output layer 

Linear 

Loss function [MAE, MSE] 

Metrics [MSE, MAE] 

Table 3: Hyperparameters for experiment 2 (After tuning) 

5. RESULT AND ANALYSIS 
In this section, we present the result of our proposed seven 

models such as LSTM, GRU, Stacked LSTM, Stacked GRU, 

Bi-Directional LSTM, Bi-Directional GRU, and Hybrid model; 

the details about these models were presented in section III. We 

performed two individual experiments to train all the models 

with different hyperparameters to evaluate which is best out of 

seven in forecasting MACD values of the NIFTY50 index. The 

evaluation metrics like MSE, MAE, RMSE, and MAPE are 

applied to assess the performance of each model. The formula 

for these metrics is presented below-.  

 
Where, 

- yi - is the ith observed value. 

- ŷi - is the corresponding predicted value. 

- n - the number of observations. 

 

Where, 

- yi - is the ith observed value. 

- ŷi - is the predicted value of y 

- N – the number of observations 

 

Where, 

- yi - is the ith observed value. 

- ŷi - is the corresponding predicted 

value. 

- N - the number of observations. 

- √ - Square root 

 

- n - is the number of fitted points, 

- At - is the actual value, 

- It - is the forecast value. 

- Σ - is summation notation (the absolute value 

is summed for every forecasted point in time).  
 

Table 4: Result of each model obtained from experiment 1 

Models MSE MAE RMSE MAPE 

LSTM 7069.64 67.74 84.08 1.07 

SLSTM 663.93 21.15 25.77 0.37 

GRU 2192.88 38.11 46.83 0.45 

SGRU 559.37 19.28 23.65 0.27 

BI-

LSTM 
1831.3 35.5 42.79 0.58 

BI-GRU 523.12 17.39 22.87 0.38 

HYBRID 580.72 19.03 24.1 0.34 

https://www.statisticshowto.com/calculus-definitions/summation-notation-sigma-function/
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Table 5: Hyperparameters for experiment 1 

Hyperparameters Values 

Epochs 193 

Batch size 16 

Number of layers 1 

Number of neurons 43 

Dropout 0.3 

Optimizer Adam 

The activation function 

in hidden layers 

Relu 

The activation function 
in the output layer 

Linear 

Loss function MSE 

Metrics MAE 

 

Experiment 1:  Manual Selection of 

Hyperparameters 

In the first experiment, we manually select some 

hyperparameter values shown in Table 1. We noted 

performances in terms of MSE, MAE, RMSE, and MAPE of 

all these seven models. Table 4 presents the performance result 

of these seven models obtained from experiment 1. 

Based on the result shown in Table 4, the model which 

outperforms the rest of the six models in terms of performance 

metrics was a bidirectional gated recurrent unit in short BI-

GRU as BI-GRU has much smaller values of MSE, MAE, 

RMSE, and MAPE, which is 382.95, 14.73, 19.57 and 0.32 as 

compared to LSTM, SLSTM, GRU, SGRU, BI-LSTM, and 

Hybrid model. Conversely, SLSTM performs worst in 

predicting the MACD values for NIFTY50. Fig 6 depicts the 

graphical representation of MACD values predicted by the 

well-performed Bi-GRU model and their actual values for 

NIFTY50. 

 

Fig. 6: Predicted vs. Actual values from Experiment 1 

Experiment 2: Hyperparameters Tuning  

In experiment second, the hyperparameters selected for tunning 

are shown in Table 2, we tuned these hyperparameters using 

neuro-evolution with ten iterations, and the population size of 

the total number of hyperparameters required for tunning in this 

experiment is ten as we try to tune up ten hyperparameters 

required for training the individual Model, The 

hyperparameters obtained after successful tunning is present in 

Table 3. 

 

Fig 7: Predicted Vs. Actual Values from Experiment 2 

We trained and validated the seven selected models with these 

obtained hyperparameters (Table 3). After running them 

through these hyperparameters, each model's result is presented 

in Table 6. 

Table 6: Result of each model obtained from experiment 2 

Models MSE MAE RMSE MAPE 

LSTM 1081.45 25.3 32.89 0.49 

SLSTM 13330.14 93.95 115.46 1.35 

GRU 841.3 23.95 29.01 0.37 

SGRU 595.26 19.29 24.4 0.35 

BI-

LSTM 

1130.48 28.67 33.62 0.42 

BI-GRU 382.95 14.73 19.57 0.32 

HYBRID 502.61 17.77 22.42 0.32 

 

According to the result shown in Table 5, Bidirectional GRU 

appears to have the best performance of the seven models, with 

the lowest MSE (523.12), MAE (17.39), and RMSE (22.87) 

values and reasonably low MAPE (0.38) value. On the other 

hand, the Stacked GRU model has slightly higher MSE, MAE, 

and RMSE values, which may indicate that it predicts the target 

variable less accurately than Bidirectional GRU. The LSTM 

model has the highest RMSE value, indicating that its 

predictions are more inaccurate from the actual values, making 

it the worst among the seven. Fig 7 shows the graphical 

representation between predicted MACD values by the best 

model obtained from experiment 2 and actual MACD values 

for NIFTY50. 

6. CONCLUSION 
Based on the result of the two experiments conducted to find 

the best prediction Model for the Indian NIFTY50 index price, 

the Bidirectional GRU model provided the best results in 

comparison to others based on evaluation metrics used in 

experiment 1 (MSE, MAE, RMSE, and MAPE). In experiment 

2, neuro-evolution was used to tune hyperparameters after that, 

and then our proposed models were trained with these tuned 

hyperparameters. The result shows that the Bidirectional GRU 

and Stacked GRU models used the MAPE metrics best. 

Significantly, the Bidirectional GRU model outperformed all 

other models examined in both experiments regarding its ability 

to predict the MACD value of the NIFTY50 stock market 

index. In addition to giving traders and investors a more reliable 

tool for making educated decisions, this advancement in 

predictive modeling also offers new directions for research in 

finance and deep learning. The Bidirectional GRU model offers 
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a substantial improvement in our understanding of market 

sentiment and forecasting and has the potential to transform 

stock market analysis. 
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