
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 25, July 2023

11

High Performance Linpack (HPL) Benchmark on

Raspberry Pi 4B (8GB) Beowulf Cluster

Dimitrios Papakyriakou
PhD Candidate

Department of Electronic Engineering
Hellenic Mediterranean University

Crete, Greece

Ioannis S. Barbounakis
Assistant Professor

Department of Electronic
Engineering

Hellenic Mediterranean University
Crete, Greece

ABSTRACT

This paper focuses on a High Performance Linpack (HPL)

benchmarking performance analysis of a state of the Art

Beowulf cluster deployed with 24 Raspberry Pi’s 4 (model B)

(8GB RAM) computers with a CPU clocked at 1.5 GHz, 64-bit

quad-core ARMv8 Cortex-A72. In particular, it presents the

increased HPL performance of a Beowulf cluster with the use

of the default microSD usage in all the RPi’s in the cluster

(SDCS2 64GB micro SDXC 100R A1 C10) compared to using

a cluster set-up where the master-node uses a Samsung (1TB)

980 PCI-E 3 NVMe M.2 SSD and the slave-nodes uses each a

(256GB) Patriot P300P256GM28 NVME M.2 2280).

Moreover, it presents the test results of a multithread execution

of a C++ pi calculation program by using one to four cores in

one RPi 4 B (8GB) using the above-mentioned microSD. In

addition, it presents the test results of a multithread execution

of a C++ with MPI (pi) calculation program by using 24 RPi’s

4B with the above-mentioned microSD.

In terms of the HPL benchmarking performance testing of a

Beowulf cluster where the NVMe M.2 SSD disks are used, RPi

4-B supports and deployed the option to use the entire SSD

(MVMe) as a bootable external disk which the boot and root

partition (where the actual HPL runs) is hosted in the external

SSD. All of them are connected over two Gigabit switches (TL-

SG1024D) in a parallel mode of operation so that to build a

supercomputer.

Keywords

Raspberry Pi 4 cluster, Beowulf Cluster, Message Passing

Interface (MPI), MPICH, BLAS, High Performance Linpack

(HPL), Benchmarking HPL RPi clusters, Distributed Systems.

1. INTRODUCTION
The first Beowulf was developed in 1994 by Don Becker and

Thomas Sterling at the Center of Excellence in Space Data and

Information Sciences (CESDIS), a contractor to NASA at the

Goddard Space Flight Center in Greenbelt, Maryland [1].

Beowulf is a way of building a supercomputer consisting a

group of smaller computers which are connected and working

together by a high-speed local area network (LAN) usually an

Ethernet. A Beowulf Cluster in practice is usually a collection

of generic computers, either stock systems or wholesale parts

purchased independently and assembled, connected through an

internal network. A Beowulf Cluster has two types of

computers in the architecture, a master-node computer, and the

slave-node computers. When a large problem or set of data is

given to a Beowulf cluster, the master-node computer first runs

a program that breaks the problem into small discrete pieces; it

then sends a piece to each slave-node to compute. As slave-

nodes finish their tasks, the master-node computer continually

sends more pieces to them until the entire problem has been

computed [2]. In order for the master-node and slave-node

computers to communicate, some sort message passing control

structure is required so as to control where the Message Passing

Interface (MPI), is the most prominent programming model

used in scientific computing today and the most commonly

used. In this survey, the MPICH used which is a high

performance and widely portable implementation of the MPI

standard [3], [4].

Traditional high-performance computing (HPC) systems use

CPUs for double-precision floating-point computing, while

emerging supercomputing systems use CPUs, Graphics

Processor Units (GPUs), and field-programmable gate array

(FPGAs) for more powerful parallel computing [5], [6].

Supercomputing is measured in floating-point operations per

second (FLOPS). In this manuscript the High-Performance

Linpack (HPL) Benchmark for distributed-memory computers

is used where HPL rely on an efficient implementation of the

Basic Linear Algebra Subprograms (BLAS) [7], [8].

OpenBLAS library is an open-source optimized BLAS (Basic

Linear Algebra Subroutines) library, which contains a set of

routines that provide matrix/vector linear algebra functions.

Raspberry Pi (RPi) 4 Model B with 8GB ram “Figure 1” is used

in the Beowulf cluster which is equipped with a CPU processor

(64-bit quad-core ARMv8 Cortex-A72, 1.5 GHz) three times

more powerful than the RPi 3B+ model [9], [10]. The low cost

of the Raspberry Pi was the driving force to investigate a viable

option for building a high-performance cluster computer and to

study the Pi’s ability to perform in a parallel clustering mode

of operation.

Figure 1: Single Board Computer (SBC) - Raspberry Pi 4

Model B [9].

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 25, July 2023

12

2. SYSTEM DESCRIPTION

2.1 Hardware Equipment
The Beowulf cluster is composed of 24 Raspberry Pi 4’s

“Figure 2”. One RPi 4B (8GB) is deployed to be the master (or

head) node of the cluster, responsible for distributing jobs and

resources and the rest 23 RPi’s are simply the worker nodes

obeying in the master node instructions. All the nodes are

stacked together in four groups of 6 RPi’s each, and are

connected to two Gigabit switch (TL-SG1024D) where the

maximum LAN network throughput for any individual node is

1000 Mbps. All of them are connected over two Gigabit switch

(TL-SG1024D so that to build a kind of supercomputer. The

whole cluster is powered by two switch-mode power supplies

(60 Amp each) with 5V output boosted to 5.56V so as to adjust

the voltage drop through the wires.

Each RPi requires a microSD card for booting and operating

purposes. The size of each microSD card is 64GB. The used

microSD is the Kingston SDCS2 64GB micro SDXC 100R A1

C10 with maximum 100MB/sec read (UHS-I Speed class 1

(U1).

In the second stage of benchmarking a Samsung (1TB) 980

PCI-E 3 NVMe M.2 SSD external disk is hosted in the master-

node where the boot and root partition is in there and the slave-

nodes host each one of a (256 GB) Patriot P300P256GM28

NVME M.2 2280 as external disk. At this stage of the test the

external NVMe is the only bootable disk and the microSD is

not used.

Figure 2: Deployment of the Beowulf Cluster with (24)

RPi-4B (8GB)

2.2 Software Tools
The Operating System used to setup the RPi’s in the cluster is

the Raspbian GNU/Linux 10 (buster) which is one of the

official supported Operating System (OS) with system 32 bit,

and Kernel version 6.1.34-v8+ [11].

The 2nd Software Package we needed to install is the Message

Passing Interface (MPI) where the MPICH is used. MPICH is

a high performance widely portable implementation of the

Message Passing Interface (MPI) which is the most widely used

implementations of MPI in the world. The MPI is not a library

but a standard for development of message-passing libraries

based on recommendations of the MPI Forum. There are two

prominent implementations of MPI that can be used on the

Raspberry Pi. These are: OpenMPI and MPICH. In our case we

use MPICH, which originally standing for Message Passing

Interface Chameleon. It’s an implementation of the MPI

standard that supports C, C++ and FORTRAN applications.

MPICH is a high performance and wide portable

implementation of the Message Passing Interface (MPI)

standard [12].

The 3th software package we needed to install is the (GNU

Compiler Collection) GCC Fortran compiler which has

optimization and multi-threading features. It’s the default

compiler suite in High Performance Computing (HPC).

The 4th SW package we needed to install so that to configure

properly the cluster is the OpenBLAS which is a standard

BLAS (Basic Linear Algebra Subprograms) library that is used

to perform linear algebra operations.

The 5th SW package is the High Performance Linpack (HPL)

[13]. The High Performance Linpack benchmark used to

measure the performance of a HPC system. HPL is a software

package that solves a (random) dense linear system in double

precision (64 bits) arithmetic on distributed-memory

computers. The HPL benchmark is based on the original

Linpack benchmark, measuring performance based on solving

a system of linear equations using LU factorization [14], [15].

2.3 Design
The below mentioned “Figure 3” depicts the RPI cluster

architecture diagram.

Figure 3: RPi-4B Beowulf cluster architecture diagram.

The Cluster design is composed of 24 Raspberry Pi’s 4B with

(8GB) memory connected to the 24-Port 1000 Mbps Ethernet

switch. One out of the 24 Pi’s is the master or head of the cluster

and the rest 23 are slaves or workers. The network

configuration is built with static addressing where each node

has a static IP address and the configuration is in such a way

where the master can only communicate to every node with

secure shell.

In the first stage of the study the used microSD is the Kingston

SDCS2 64GB micro SDXC 100R A1 C10 with maximum

100MB/sec read (UHS-I Speed class 1 (U1). The HPL

benchmarking is run in the microSD card as the only bootable

disk per master and slave nodes. The HPL benchmarking starts

with one node and gradually the involved nodes are increased

by three RPi’s each time depicting the cluster performance in

GFlops with the respective time.

In the second stage of the study, a Samsung (1TB) 980 PCI-E

3 NVMe M.2 SSD external disk is used for the master node

where the theoretical maximum write-speed is up to 3000 MB/s

and read-speed up to 3500 MB/s. For the rest of the slave nodes

(or worker nodes) a (256 GB) Patriot P300P256GM28 NVME

M.2 2280 is used as external disk where is the only bootable

disk. The particular Patriot NVMe SSD has write-speed up to

1100 MB/s and read-speed 1700 MB/s. At this stage of the

testing the external NVMe is the only bootable disks and the

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 25, July 2023

13

microSD are not used since the RPi 4B support this feature. In

this phase of the HPL benchmarking only the external NVMe

disks are used where are mounted in USB3.0 in every RPi 4B.

Hopefully, RPi 4B supports two USB 3.0 and two USB 2.0.

The external SSDs (NVMe’s) are connected to USB3.0, where

the theoretical transfer speed of USB 3.0 is 4.8 Gbit/s

(600MB/s) vs USB2.0 with 480 Mbit/s (60MB/s). In any case

write-read capabilities of NVMe’s exceeds by far the USB 3.0

data transfer throughputs. As a result, with the use of NVMe’s

it’s expected much better performance of the cluster compared

with related research [16].

3. MUNTITHREADED C++ and C++ with

MPI
- Multithreaded C++. – When we refer to cores in a Central

Processor Unit (CPU) we mean the hardware-based processing

units within a CPU, while threads are the software-based

instructions that can be processed by a CPU. The Raspberry Pi

4B (Broadcom BCM2711) comprises one socket (or chip) with

4 physical cores where each core can support 1 thread “Figure

4”. On larger systems, it is common to see multiple threads

supported per core. This is an example of simultaneous multi-

threading (SMT), or Hyperthreading (HT) on Intel systems

enabling multiple threads to run on a physical core. A multicore

CPU allows multiple processes to execute simultaneously, or

in parallel. A multi-threaded program, while capable of parallel

execution, runs concurrently on a system with only a single

CPU core. The primary goal of creating multi-threaded

programs is to decrease the time of a program’s execution. In a

program which is perfectly parallelizable, it is possible to

distribute the associated to program tasks, equally among all

the threads. As a result, if we have a program named (𝐴) which

is equally distributed in (𝑡) threads, eventually it will take

approximately (
𝐴

𝑡
) time provided that it is executed on (𝑡)

cores meaning each core executes one thread.

Figure 4: RPi-4B cores and threads supported.

Modern C++ makes launching threads very easy. There is a

very important caveat to keep in mind that code in parallel has

access to the same memory, hence it is crucial to avoid having

multiple threads write to the same memory location. In “Figure

6”, we see the compilation and running a C++ code with one to

four threads and the respective execution time. “Figure 5”

presents the 4 CPU cores involved in code execution when 4

threads are called by the command in the Command Line

Interface (CLI).

Figure 5: Multithreaded (4 threads) C++ execution time

with 4 CPU cores involvement.

Figure 6: Multithreaded C++ code execution time per (1 to

4) threads in one CPU.

“Figure 6” depicts the multithread execution time per threads

and “Figure 7” depicts the respective speedup when we

increase the CPU cores in the code execution from (1-4) cores.

Figure 7: Multithreaded C++ execution time with Speedup

performance by increasing CPU cores up to 4.

- Multithreaded C++ with MPI in one CPU (one RPi-4B). –

The main disadvantage of multithreading is that it’s dependent

43.4

25

17.4

14.1

1.000

1.736

2.494

3.078

0 10 20 30 40 50

1 thread

2 thread

3 threads

4 threads

Speedup
(1 thread)

Speedup
(2 threads)

Speedup
(3 threads)

Speedup
(4 threads)

Seconds

Th
re

ad
s

Th
re

ad
s

Sp
e

e
d

u
p

RPi-4 B
Multithreaded C++ [one CPU (1-4 Cores)]

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 25, July 2023

14

and limited to the available number of relatively few computing

cores on a single CPU. The way to overcome this is to split the

computation across multiple physical computers. The solution

is the Message Passing Interface (MPI) which is a library that

allows different processes to communicate with each other

primarily over the network but support multiple processes on

the same physical computer as well. “Figure 8” presents an

example of a C++ code execution time with the use of MPI and

the CPU cores from one to four. “Figure 8” depicts the

multithreaded C++ code execution time with the use of MPI

per one to four threads (or processes) in one CPU (1 RPi 4B).

Figure 8: Multithreaded C++ code execution time with

MPI per (1 to 4) processes in one CPU

Figure 9: Multithreaded C++ code execution time with

MPI Speedup performance per CPU cores up to 4

“Figure 9” depicts the performance results of the C++ code

execution with MPI and the respective speedup performance

when the involved CPU cores increased from one to four. By

using 4 CPU cores (4 processes or threads, - one process per

core) the performance is increased according to the “Figure 9”.

- Multithreaded C++ with MPI in four CPUs (4 RPi’s). –

As an example, and in terms of multithreaded C++ code

execution time with MPI with the involvement of 4 RPi’s, that

is to say, 4 CPUs with 4 threads (or processes) per CPU,

“Figure 10”, “Figure 11” shows the results. In particular:

Command “time mpiexec -f machinefile -np 4 ./pi-mpi”

involves 1 CPU (1 RPi), 4 cores, (1 process per core).

Command “time mpiexec -f machinefile -np 8 ./pi-mpi”

involves 2 CPUs (2 RPi’s), 8 cores, (1 process per core).

Command “time mpiexec -f machinefile -np 12 ./pi-mpi”

involves 3 CPUs (3 RPi’s), 12 cores, (1 process per core).

Command “time mpiexec -f machinefile -np 16 ./pi-mpi”

involves 4 CPUs (4 RPi’s), 16 cores, (1 process per core).

Figure 10: Multithreaded C++ code execution time with

MPI per (1 to 4) in 4 RPi’s (4 – 16 CPU cores)

Figure 11: Multithreaded C++ code execution time with

MPI and Speedup performance per RPi (4 – 16 CPU

cores)

As an observation in terms of the multithreaded C++ code

execution time per (1 to 4) threads in one CPU “Figure 6” and

“Figure 7” contrary to the multithreaded C++ code execution

time with MPI in one CPU (one RPi-4B) gives approximately

43.458

21.784

14.528

11.099

1.000

1.995

2.991

3.915

0 10 20 30 40 50

1 process

2 processes

3 processes

4 processes

Speedup
(1 process)

Speedup
(2 processes)

Speedup
(3 processes)

Speedup
(4 processes)

Seconds

P
ro

se
ss

e
s

P
ro

se
ss

e
s

Sp
e

e
d

u
p

RPi-4B (One)
Multithreaded C++ with MPI -

[one CPU (1-4 Cores)]

11.092

5.888

4.11

3.245

1.000

1.884

2.699

3.418

0 5 10 15

1 CPU
4 processes

2 CPUs
8 processes

3 CPUs
12 processes

4 CPUs
16 processes

Speedup
(4 process)

Speedup
(8 processes)

Speedup
(12 processes)

Speedup
(16 processes)

Seconds

Th
re

ad
s

Th
re

ad
s

Sp
e

e
d

u
p

RPi-4B (1 to 4)
Multithreaded C++ with MPI -

(1 to 4 CPUs)

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 25, July 2023

15

the same results with a remark of better performance with the

use of MPI.

The multithreaded C++ code execution time with MPI per (1 to

4) RPi’s (4 – 16 CPU cores) “Figure 10” and “Figure 11” in

comparison with multithreaded C++ code execution time per (1

to 4) threads in one CPU (1 RPi 4B) and with multithreaded

C++ code execution time with MPI in four CPU (four RPi-4B

with 16 parallel processes) gives a striking better performance

of about 70%. This is a justification that the parallel processing

introduces much better performance in the multithreaded

execution of a program and in particular in C++.

4 HIGH PERFORMANCE LINPACK

BENCHMARK
The HPL benchmarking tool is a portable application working

across various platforms and suitable for parallel workloads

that are core-limited and memory intensive. Linpack is a

floating-point benchmark that solves a dense system of linear

equations in parallel and determines the upper bound of double

precision floating point performance on a distributed parallel

system. In other words, measures how fast a computer solves a

random dense linear system of equations of order (n), [𝛢 × 𝑥 =
𝑏; 𝐴 ∈ 𝑅𝑛𝑥𝑛; 𝑥, 𝑏 ∈ 𝑅𝑛] by first computing the LU

factorization [14], [15], with row partial pivoting of

[𝑛 𝑏𝑦 (𝑛 + 1)] coefficient matrix [𝛢 𝑏] = [[L, U]y]. The left

side of the equation [𝛢 × 𝑥 = 𝑏; 𝐴 ∈ 𝑅𝑛𝑥𝑛; 𝑥, 𝑏 ∈ 𝑅𝑛]

comprises matrix (𝐴), while the right-hand side is a vector (𝑏),

where the solution to the problem is established by calculating

the factor (𝐴). Provided a matrix (𝐴), and vector (𝑏), the HPL

algorithm performs a (𝐿𝑈), factorization calculation through

partial pivoting of rows of the matrix (𝐴 𝑏 = [[𝐿, 𝑈]]𝑦]) , with

the coefficient of (𝑛 − 𝑏𝑦 − 𝑛 + 1), in order to solve a linear

system with the order (𝑛), in equation. To make sure that

the load balancing is well-adjusted and the ability to scale to

multiple computers, the results of calculation is allocated onto

a two-dimensional (𝑃 − 𝑏𝑦 − 𝑄) grid of processes and

structured using block-cyclic organization. The matrix (𝑛 −
𝑏𝑦 − 𝑛 + 1) coefficient is then segregated into (𝑁𝐵 − 𝑏𝑦 −
𝑁𝐵) blocks which in turn are intermittently distributed into the

(𝑃 − 𝑏𝑦 − 𝑄 process grid [17]. Dense linear algebra

calculations are applicable to many problems and is considered

a good method to measure peak performance for a system. The

data is distributed onto a two-dimensional grid of

processes (𝑃 𝑏𝑦 𝑄), according to the block-cyclic scheme, to

ensure optimum load balance, as well as the scalability of the

algorithm [18], [19]. To determine the scalability of the cluster,

the problem size or matrix size (N) was kept constant and the

number of processors was gradually varied from 4 (1 RPi) to

96 (24 RPi). In order to achieve the best performance possible,

it is needed to define accurately some critical parameters in

HPL.dat file, focusing especially in the Number of problems

size (N), the Number of the block size (NBs) in the grid and the

Number of process grids (𝑃 × 𝑄) [20].

Briefly, the most important parameters in HPL.dat file that we

had to configure are analyzed below:

Number of problems sizes (N). – Parameter (N) specifies the

problem size and in other words, dictates the size of the matrix

to be decomposed. The aim is to find the largest problem size

that fits into the main memory of a specific cluster and for this

reason, the main memory capacity for storing double precision

(8 Bytes) numbers is calculated. A larger problem size engages

more processing power in finding the solution and thus

resulting in a higher computation speed. The max problem size

is calculated as suggests: 𝑁𝑚𝑎𝑥 = 𝑍 √𝑚 × 𝑛, where (𝑍), is the

reduction coefficient, taking values between (80-90) percent

[21], (m) is the free memory in doubles for the machine with

the least available free memory and (n) is the number of nodes.

The mathematical expression can be seen as such:

 Nmax = √(
Memory in Gbytes × 10243 × No of Nodes

8
) × Z, [22].

The (N) in overall must consider the (80-90) % of the size of

the total memory where (𝑍), is the reduction coefficient, taking

values between (80-90) percent, and as a result we have below:

 N = √(
8GB ×10243 ×24

8
) × 90% = 144476.78 During the

optimization process it is needed to find the (𝑁𝐵) value that

gives the best performance. In this case following testing (HPL

testing in one RPi) with the range of [96, 104, 112, 120, 128…

256], it has been found that the (𝑁𝐵 = 224) gives the best

performance and it was chosen that value. The optimization

between (𝑁) and (𝑁𝐵) follows as such:

we calculate (
144476.78

224
 = 644.9856) and next (224 ×

645 = 144480). In any case a round up and round down (or

little lower values than 90%) is applied for further optimization

in terms of (𝑁) so that not to face up System Memory

saturation and then we put these parameters in the HPL.dat. The

same logic and optimization take place when executing the

benchmark with different values using all the nodes, in an order

such as [1, 3, 6, 9, 12, 15, 18, 21, 24] nodes since there is

different proportion of the systems’ total memory usage within

the cluster.

Number of block size (NBs). – NB is the block size which is

used for data distribution and data reuse. The distribution size

dictates the block size of the problem to be decomposed and

distributed among the nodes. As a rule of thumb, small block

sizes will limit the performance because there is less data reuse

in the highest level of memory and more messaging. On the

other hand, when block sizes are too big, there is a waste

memory space and extra computation. the data distribution and

for the computational granularity. Usually block sizes giving

good results are within [96, 104, 112, 120, 128… 256] set of

values.

Number of process grids (𝑃 × 𝑄). – (𝑃 × 𝑄) is the size of the

grid where P (the number of process rows) and Q (the number

of process columns) should be close to being a “square”.

According to the developers of the (HPL) [23], [24] the (P) and

(Q) should be approximately equal, with Q slightly larger than

P which is equal to the number of processors that the cluster

has. (𝑃 × 𝑄) is the total number of processes that the cluster

runs per test phase meaning per involved RPi’s nodes.

4.1 HPL Benchmark with microSD
The computing performance vs the number of nodes in the

cluster when the microSD is used as bootable disk is depicted

in “Table 1”. The highest measured HPL performance of the

Beowulf cluster with the use of microSD can be seen in “Figure

12” and is about 160 GFlops. Needless to say, that it was taken

full attention on updating, and upgrading the RPi’s with the

latest software releases whereas Kernel version uploaded with

the latest version as well (6.1.34-V8+).

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 25, July 2023

16

Table 1. Beowulf cluster setup parameters and testing

results with ≈ 90% System Memory Utilization and

microSD disk usage

Figure 12: Highest measured HPL performance with

(microSD) for the whole cluster (≈ 90% System Memory

Utilization).

4.2 HPL Benchmark with NVMe M.2 SSD
The corresponding computing performance vs the number of

nodes in the cluster when the NVMe SSD disk is used as

bootable disk is depicted in “Table 2”. The expected results by

the use of NVMe SSDs was to see a better or a much better

HPL performance with the restriction of the USB3.0 that RPi

4B supports and indeed there is a decent improvement.

Table 2. Beowulf cluster setup parameters and testing

results with ≈ 90% System Memory Utilization and NVMe

SSD disk usage

(≈ 90%) memory utilization (NVMe disk usage)

(NB=224)

N
Node

s

Time

(sec)

GFlop

s

Speedu

p

Scaling

Efficienc

y

(GFlops)

(%)

29440 1
1714.2

9
9.96 1 100

51200 3
3372.6

6
26.53 1.66 166.37

72320 6
4789.1

3
52.65 4.29 428.61

88448 9
6024.6

2
76.56 6.69 668.67

10214

4
12

7077.4

9
100.39 9.08 907.93

11417

6
15

8007.9

2
123.91 11.44 1144.08

12505

6
18

8856.1

8

 147.6

8
13.83 1382.73

13516

8
21

9760.9

9

168.67
15.93 1593.47

14438

4
24

10747.

4
186.71 17.75 1774.60

The highest measured value in GFlops when using the NVMe

disk can be seen in “Table 2” and “Figure 13” as well which is

186.71 GFlops.

Figure 13: Highest measured HPL performance with

(NVMe) for the whole cluster (≈ 90% System Memory

Utilization).

4.3 Results and Conclusions
The summation of the results of this research per testing

category is analyzed below:

 - Multithreaded C++. – A multicore CPU allows multiple

processes to execute simultaneously and as result the primary

goal of creating multi-threaded programs is to decrease the time

of a program’s execution. “Figure 5”, “Figure 6”, “Figure 7”,

presents the results of the Multithreaded C++ program

(≈90%) System Memory Utilization (microSD disk usage)

(NB=128)

N Nodes
Time

(sec)
GFlops Speedup

Scaling

Efficiency

(GFlops)

(%)

29440 1 1883.03 9.03 1 100

51200 3 3980.47 22.48 1.49 148.84

72320 6 5720.26 44.08 3.88 387.93

88448 9 7043.71 65.49 6.25 624.93

102144 12 8276.69 85.84 8.50 850.19

114176 15 9347.27 106.16 10.75 1075.12

125184 18 10329.64 126.61 13.01 1301.48

135168 21 11935.96 137.94 14.27 1426.90

144384 24 12491.43 160.64 16.78 1678.17

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 25, July 2023

17

executed in a CPU (1 RPi 4B) with 4 cores. Whenever we add

more cores in the program execution the performance gets

higher reducing the execution time. The speedup time

(performance) by using four cores of the CPU reaches three

times better contrary to use only one core.

- Multithreaded C++ with MPI in one CPU. – Similar results

and slightly better are depicted when we run a C++ program

with the use of MPI. “Figure 8”, “Figure 9” presents an

example of a C++ code execution time with the use of MPI and

the CPU cores from one to four. The speedup time

(performance) by using four cores of the CPU using the MPI

routines in the C++ program reaches almost four times better

results contrary to use only one core (process or thread).

- Multithreaded C++ with MPI in four CPUs (4 RPi’s). –

“Figure 10”, “Figure 11” shows the results of the Multithreaded

C++ with MPI in four CPUs (4 RPi’s) with remarkable results.

One CPU (4 cores-4 processes) takes approximately 11 sec to

execute the C++ program with MPI and 3.2 second when four

RPi’s (4 CPUs – 16 cores) are involved in the parallel program

execution. Obviously, whenever more CPU cores are involved,

there is a decent performance improvement.

- HPL Benchmark with microSD vs NVMe SSD disks. –

“Table 3” presents the scaling efficiency in (time) when the

NVMe SSD disk is used in a Raspberry Pi 4B when HPL

benchmarking testing is applied contrary to the condition when

microSD is used as a bootable disk. Taking into account that

the external SSDs (NVMe) are connected to USB3.0, where the

theoretical transfer speed of USB 3.0 is 4.8 Gbit/s (600MB/s)

the increased performance is more than decent compared to

microSD write-read data throughput capabilities [24].

Table 3. Beowulf cluster scaling efficiency in terms of

(time) between microSD disk vs NVMe disk

microSD disk vs NVMe disk usage

Efficiency in (time)

Nodes

Time

(microSD)

(sec)

Time

(NVMe)

(sec)

Scaling Efficiency in

time (%)

1 1883.03 1714.29 100

3 3980.47 3372.66 15.27

6 5720.26 4789.13 16.28

9 7043.71 6024.62 14.47

12 8276.69 7077.49 14.49

15 9347.27 8007.92 14.33

18 10329.64 8856.18 14.26

21 11935.96 9760.99 18.22

24 12491.43 10747.39 13.96

The theoretical transfer speed of USB 3.0 is approximately 4.8

Gbit/s (600MBps) vs. USB 2.0 which is approximately 480

Mbit/s (60MBps) meaning more or less tenfold improvement.

On the other side, sustained transfer speeds in real life for

external hard drives are about 85MBps for USB 3.0 and about

22MBps for USB 2.0, so about a fivefold improvement but still

a significant advancement in transfer speed.

From that perspective, -despite the use of the state of the arts

NVMe SSDs – the HPL computing performance using the USB

3.0 is more than decent. The scaling efficiency in (time) is

around (14-16 %) better performance in saving time in

calculation.

Table 4. Beowulf cluster scaling efficiency in terms of

(GFlops) between microSD disk vs NVMe disk

microSD disk vs NVMe disk usage

Efficiency in (GFlops)

Nodes
GFlops

(microSD)

GFlops

(NVMe)

Scaling

Efficiency in

GFlops (%)

1 9.03 9.96 100

3 22.48 26.53 18.02

6 44.08 52.65 19.44

9 65.49 76.56 16.90

12 85.84 100.39 16.95

15 106.16 123.91 16.72

18 126.61 147.68 16.64

21 137.94 168.67 22.28

24 160.64 186.71 16.23

On the other side, “Table 4” presents the scaling efficiency in

(GFlops) -when the microSD disk is used- in a Raspberry Pi 4B

when HPL benchmarking testing is applied contrary to the

condition when NVMe SSD is used as a bootable disk. In this

case, there is a decent performance improvement of about (16-

22 %) in terms of GFlops.

“Figure 14”, presents in a chart the HPL performance of the

Beowulf cluster when the microSD is used. The scaling

efficiency of the cluster starts with a 148% with 3 nodes

(compared to one RPi) till 1678% with the use of 24 RPi’s in

the whole cluster “Table 1”.

Moreover, “Figure 15”, presents a chart with the HPL

performance of the Beowulf cluster when the NVMe SSD disk

is used. The scaling efficiency of the cluster starts with a 166%

with 3 nodes (compared to one RPi) till 1774% with the use of

24 RPi’s in the whole cluster “Table 2”.

In overall, the increased performance in (time) and (GFlops)

with the use of the NVMe SSD disks are good enough taking

into account that the external SSDs are connected in the USB

3.0 of the raspberry Pi’s and it is as expected based on USB 3.0

throughput capabilities.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 25, July 2023

18

Figure 14: HPL Beowulf cluster performance results in GFlops with (≈ 90%) System Memory Utilization (microSD usage)

Figure 15: HPL Beowulf cluster performance results in GFlops with (≈ 90%) System Memory Utilization (NVMe SSD usage)

1883.03

3980.47

5720.26

7043.71

8276.69

9347.27
10329.64

11935.96 12491.43

9.03

22.48

44.08

65.49

85.84

106.16

126.61
137.94

160.64

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

0

2000

4000

6000

8000

10000

12000

14000

1 3 6 9 12 15 18 21 24

G
Fl

o
p

s

Ti
m

e
 (

se
c)

RPi 4B Nodes in Cluster (90 % system memory utilization)

HPL Performance (Time, GFlops, RPi 4-B nodes)
(microSD disk usage)

Nodes Time
(sec)

GFlops

1714.29

3372.66

4789.13

6024.62

7077.49

8007.92

8856.18

9760.99

10747.39

9.96

26.53

52.65

76.56

100.39

123.91
147.68

168.67

186.71

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

0

2000

4000

6000

8000

10000

12000

1 3 6 9 12 15 18 21 24

G
Fl

o
p

s

Ti
m

e
 (

se
c)

RPi 4B Nodes in Cluster (90 % system memory utilization)

HPL Performance (Time, GFlops, RPi 4-B nodes)
(NVMe SSD disk usage)

Nodes Time
(sec)

GFlops

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 25, July 2023

19

5. FUTURE WORK
The RPi 4B (8GB) ram introduced in overall very good

performance results in the Beowulf cluster and it is intended by

the authors to be used in different cluster architectures, such as,

Hadoop, Spark and Kubernetes to evaluate the cluster

performance. Moreover, there is a planning to run data mining

algorithms and tested in such a clusters architecture to evaluate

the performance when applying Big Data Analytics with Data

Mining Algorithms in High Performance Computing systems.

6. ACKNOWLEDGMENTS
My sincere gratitude to Assistance Professor Ioannis S.

Barbounakis for the precious guidelines, knowledge and

contribution for the completion of this research.

In addition, a sincere appreciation to NETTOP company in

Greece which is an Approved Reseller of Raspberry Pi’s and

donate some RPi’s and supported this project to complete the

Beowulf cluster deployment for the shake of the science [25].

7. REFERENCES
[1] Beowulf Computer Cluster. [Online]. Available:

https://www.spacefoundation.org/space_technology_hal/

beowulf-computing-cluster/.

[2] Sterling T. 2001. Beowulf clusters computing with Linux.

Cambridge, Massachusetts: MIT Press.

[3] MPI. MPI Forum. [Online]. Available: http://mpi-

forum.org/

[4] MPI. MPICH. [Online]. Available:

https://www.mpich.org/

[5] Five Trends Shaping Next-gen, Data-intensive

Supercomputing. [Online]. Available:

https://www.huawei.com/en/huaweitech/publication/202

202/data-intensive-supercomputing.

[6] An Analysis of System Balance and Architectural Trends

Based on Top500 Supercomputers. [Online]. Available:

https://dl.acm.org/doi/10.1145/3432261.3432263.

[7] High-Performance Linpack (HPL) benchmarking on UL

HPC platform. [Online]. Available: https://ulhpc-

tutorials.readthedocs.io/en/latest/parallel/mpi/HPL/

[8] Open Basic Linear Algebra Subprograms (OpenBLAS).

[Online]. Available:

http://sporadic.stanford.edu/reference/spkg/openblas.htm

l.

[9] Raspberry Pi 4 Model B. [Online]. Available:

raspberrypi.com/products/raspberry-pi-4-model-b/.

[10] Dimitrios Papakyriakou and Ioannis S Barbounakis.

Benchmarking and Review of Raspberry Pi (RPi) 2B vs

RPi 3B vs RPi 3B+ vs RPi 4B (8GB). International

Journal of Computer Applications 185(3):37-52, April

2023.

[11] Raspberry Pi Operating System images. [Online].

Available:

https://www.raspberrypi.com/software/operating-

systems/#raspberry-pi-os-64-bit

[12] Message Passing Interface Chameleon MPICH. [Online].

Available: https://www.mpich.org/

[13] Netlib. HPL. [Online]. Available:

http://www.netlib.org/benchmark/hpl/

[14] LU factorization. [Online]. Available:

https://www.geeksforgeeks.org/l-u-decomposition-

system-linear-equations/

[15] Mathematics. LU Decomposition of a System of Linear

Equations. [Online]. Available:

https://www.geeksforgeeks.org/l-u-decomposition-

system-linear-equations/

[16] Dimitrios Papakyriakou, Dimitra Kottou and Ioannis

Kostouros. (April 2018). “Benchmarking Raspberry Pi 2

Beowulf Cluster. International Journal of Computer

Applications” 179(32):21-27.

[17] Petitet, A., R. C. Whaley, J. Dongarra, and A. Cleary.

“HPL – A portable Implementation of the High-

Performance Linpack Benchmark for Distributed-

Memory Computers.” Accessed December 15, 2016

[18] Dunlop, D., Varrette, S. and Bouvry, P. 2010. Deskilling

HPL, Vol. 6068 of Lecture Notes in Computer Science,

Springer, Heidelberg, Berlin, 102–114.

[19] Luszczek, P., Dongarra, J., Koester, D., Rabenseifner, R.,

Lucas, B., Kepner, J., McCalpin, J., Bailey, D. and

Takahashi, D. 2005. Introduction to the HPC Challenge

Benchmark Suite, Technical Report, ICL, University of

Tennessee at Knoxville.

[20] Netlib. HPL Tuning.

http://www.netlib.org/benchmark/hpl/tuning.html#tips

[21] Dunlop, D., Varrette, S. and Bouvry, P. 2008. On the use

of a genetic algorithm in high performance computer

benchmark tuning, Proceedings of the International

Symposium on Performance Evaluation of Computer and

Telecommunication Systems, SPECTS 2008, Art.

No.:4667550, 105-113

[22] Mathieu GAILLARD. (August 2022) How to compile

HLP LINPACK on Ubuntu 22.04. [Online]. Available:

https://www.mgaillard.fr/2022/08/27/benchmark-with-

hpl.html

[23] HPL Frequently Asked Questions. [Online]. Available:

http://www.netlib.org/benchmark/hpl/faqs.html

[24] Sindi, M. 2009. HowTo – High Performance Linpack

(HPL), Technical Report, Center for Research

Computing, University of Notre Dame

[24] Dimitrios Papakyriakou and Ioannis S Barbounakis.

Benchmarking and Review of Raspberry Pi (RPi) 2B vs

RPi 3B vs RPi 3B+ vs RPi 4B (8GB). International

Journal of Computer Applications 185(3):37-52, April

2023.

[25] NETTOP. Approved and Official Raspberry Pi Reseller

in Greece. [Online]. Available: https://nettop.gr/

IJCATM : www.ijcaonline.org

http://mpi-forum.org/
http://mpi-forum.org/
https://www.mpich.org/
http://www.netlib.org/benchmark/hpl/
https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equations/
https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equations/
https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equations/
https://www.geeksforgeeks.org/l-u-decomposition-system-linear-equations/
http://www.netlib.org/benchmark/hpl/tuning.html#tips
http://www.netlib.org/benchmark/hpl/faqs.html

