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ABSTRACT 

Call Detail Records (CDRs) can be considered as big data 

source as it has a huge volume, variety of data and high data 

rate, as well. The analysis of CDRs can produce big value and 

offer opportunities to maximize revenue and improve the 

community's standard of living. However, the analysis of such 

data with those characteristics calls for using big data 

technology. Big data analytics is a rapidly growing field that 

has the potential to revolutionize the way we handle various 

aspects of our lives. One area where this technology is 

particularly relevant is in criminal investigations, where the 

analysis of call detail records (CDRs) can provide valuable 

insights into the activities and movements of individuals 

associated with criminal activity. This paper proposes a 

framework that leverages the massive amounts of data 

generated by telecommunication networks to uncover valuable 

insights that can help criminal investigators. Furthermore, the 

proposed framework is optimized to reduce the underlying 

computing resources needed to analyze such huge amount of 

data and to improve the overall performance of the proposed 

framework, as well. 
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1. INTRODUCTION 
The rapid expansion of the telecommunication network and the 

widespread use of mobile phones have generated a huge 

amount of data, including Call detail Records (CDRs). CDR is 

a data record that contains information about a telephone call 

or communication session, including details such as the time, 

date, duration, source number, destination number, 

Cell/Location ID, and any other relevant information about the 

call. CDRs are typically generated by telecommunication 

service providers or telephone companies for billing purposes, 

and they can also be used for charging, settlement, network 

analysis, troubleshooting, fraud detection, churn detection and 

security purposes.  

In addition, CDRs can be used by law enforcement agencies to 

investigate criminal activities such as fraud, harassment, and 

other types of illegal activities. The call detail records have 

proven to be valuable in various sectors, including criminal 

investigation, as they provide insights into communication 

patterns, movement, and activities of individuals [1-10].  

Due to the huge volume of the CDRs, the manual analysis of 

that data can be overwhelming for investigators. However, with 

the help of big data analytics tools, it is possible to identify 

patterns and relationships that would otherwise be impossible 

to discover. One of the key benefits of using big data analytics 

in criminal investigations is the ability to quickly identify 

potential criminals [4].Another benefit is the ability to track 

suspects and their movements [11]. Furthermore, big data 

analytics can also be used to identify and analyze relationships 

between individuals, which can provide valuable insights into 

criminal networks [3].Therefore the advancement of big data 

technology makes the analysis of CDRs necessary and 

enhances the effectiveness and efficiency of criminal 

investigations. 

The rest of the paper is organized as follows. Section 2 reviews 

the previous work related to analyzing CDRs to generated 

valuable insights.  Section 3 introduces the proposed 

framework. The experimental results are discussed in section 4. 

Finally, section 5 concludes the paper and sketches out the 

future work. 

2. LITERATURE REVIEW 
This section reviews the previous works that analyze CDRs and 

phone records to generate valuable insights in many different 

areas such as crime investigation, network optimization, and 

event detection. 

A new model that uses graphs and data analysis techniques to 

investigate crimes using Call Detail Records has been proposed 

in [1]. The authors suggested using Neo4j, a graph database, to 

store and analyze the CDR data. The model focuses on 

understanding how users behave and extracting valuable 

information from the CDR data.  

The authors in [2] discussed the importance of analyzing phone 

records in criminal investigations due to the widespread use of 

cell phones by both ordinary people and potential criminals. 

That study presented a graphical analytic model for the CDR 

database, which includes all past crimes and relationship 

between them, which if discovered, can help law enforcement 

agencies solve numerous cases. The main objective was to store 

all historical instances in a single centralized system for further 

and future analysis, rather than junk them. This helps to 

maintain connections and uncover trends in a graphical format. 

Another study [3] proposed a new model that employs graph 

technologies to analyze CDRs in order to find potential 

criminals. Specifically, the Neo4j graph database management 

system is used to store the CDR in forms of graph. Then, that 

graph data is analyzed in an attempt to detect abnormal 

behavior which might help the police investigators to find links 

between various suspects. 

Research [4] contributes to effective crime investigation by 

proposing a framework that enables efficient storage, retrieval, 

and analysis of CDR data. The proposed framework 

categorized the suspects to primary and secondary suspects via 

three-step process. In the first step, the CDRs related to the 

requested mobile number(s) are extracted from Hadoop 

distributed file system where the global CDRs are stored. Then, 

the extracted data is converted and stored in Hive data 

warehouse. Finally in the last step, the data is analyzed to 
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identify the most suspicious individual, and the result is 

provided as the output. 

Authors in study [5] explore the application of big data 

analytics and machine learning algorithms for crime prediction. 

The study uses a large dataset of crime records from Chicago 

and shows the importance of big data analytics in 

understanding and combating crime in urban areas. The study 

builds a big data analytics model for crime prediction and 

evaluates the performance of different machine learning 

algorithms including SVM and K-NN, Random Forest, and 

MLP. The findings show that SVM algorithm is the best 

algorithm for achieving high accuracy in crime prediction 

within a reasonable time frame. 

A new method that utilizes the CDRs to extract the abnormal 

communications of a given mobile network by using PageRank 

algorithm is presented in [6]. The proposed method takes the 

number of calls and the total call duration as inputs and uses a 

weighted version of the PageRank algorithm to analyze the 

impact of the communication flows on the whole network. The 

analysis results in detecting the abnormal communication 

patterns. Furthermore, combining the resulting patterns with 

the real events enables monitoring the traffic in real time. 

A hybrid model for detecting anomalies in mobile phone 

networks is proposed in [7]. The model combines GARCH, K-

means, and neural networks to identify anomalies, determine 

their causes, and gain insights into user behavior. The study 

shows that the hybrid model achieves lower false positive rates 

and higher accuracy compared to previous studies. The 

practical implications of this approach for mobile phone 

operators include real-time detection of security threats and 

technical issues, improving network performance, and 

enhancing user experience. 

In order to analyze the human movement patterns from CDR 

data, authors in study [8] proposed a data fusion approach to 

predict hidden visits and differentiate between trips and 

displacements. The proposed method involves three main steps 

which are (i) Localization, (ii) Movement-state-identification, 

and (iii) Hidden visit inference. The experimental results of this 

study show that the propose method outperforms the other 

methods employed by the previous studies. 

Research [9] is another study that focuses on analyzing human 

movement patterns using Call Data Records. The research 

objective of that study was to reduce the error in localizing the 

user by considering the load sharing effects of the CDR records 

and transmit power of the cell towers. Specifically, the study 

addressed two main issues: the load sharing effect and 

localization errors in CDRs. The research uses a large dataset 

of SIM cards from a mobile operator in Sri Lanka and proposes 

a method for preprocessing the data and reducing localization 

errors. User profiling techniques are used, and a load sharing 

record identification interface is introduced. The study 

demonstrates the potential of using CDRs and mobile data for 

transportation planning and analysis. 

The study [10] focuses on using Call Detail Records from 

mobile networks to analyze network traffic patterns and 

develop a machine learning model for classification. The 

research aims to optimize network resources and enhance 

service quality by understanding spatial and temporal 

dependencies of network traffic. To do that, the authors 

perform spatiotemporal analysis of CDR data at first. Then, 

they employed a clustering algorithm to categorize the mobile 

traffic patterns. Finally, they exploit the clustering results to 

train a neural network in order to classify the network traffic. 

The findings demonstrate that the actionable insights gained 

from CDR data analysis can be used for network optimization, 

resource allocation, and improving network deployment and 

operation. 

An efficient and user-friendly system (called swift) for 

analyzing Call Detail Records (CDRs) and Tower Dump (TD) 

data is presented in [11] to aid in crime investigations. The 

proposed system employs data mining techniques such as 

clustering and frequent pattern analysis to quickly identify local 

suspects and analyze their movements. It also integrates 

prediction techniques and mobile GIS for tracking suspect 

locations, providing comprehensive analysis of relevant 

patterns in CDR and TD data to aid in criminal investigations. 

Study [12] focuses on utilizing big data technologies, 

specifically Hadoop, for analyzing Call Detail Records (CDRs) 

in the telecom industry. The main goal of the study was to 

extract valuable insights from large volumes of CDR data for 

revenue maximization, network efficiency improvement, and 

customer service enhancement. The authors of that study 

discussed the challenges in analyzing CDRs, the benefits of 

using big data technologies, and presented a system for storing 

CDR data in Hadoop, performing ETL operations, clustering 

the data, and analyzing the impact of pricing and bundling 

schemes on customer behavior. 

In another research [13], authors focused on the use of big data 

technologies for analyzing Call Detail Record (CDR) data in 

the telecom industry. CDR data presents big data challenges 

due to its volume, velocity, and variety. Therefore, the research 

discussed the challenges in loading, processing, and optimizing 

time and resources for analyzing CDRs. It compared two main 

approaches, parallel DBMS and MapReduce, for big data 

analysis of CDRs, presented examples of CDR analysis using 

these approaches and highlighted their advantages and 

performance in different scenarios. 

A real-time framework for analyzing calling patterns and 

behaviors of mobile phone users using only Call Detail Records 

(CDR) data is presented in [14]. The framework utilizes 

evolving fuzzy systems to cluster caller behavior and detect 

outliers. The dataset used in the research contains 9,834 calls, 

and each CDR record includes caller and receiver identifiers, 

call time, duration, and tower location. The proposed solution 

adapts to evolving data by updating clusters recursively, 

providing a means to extract calling patterns and behaviors 

solely from CDRs. 

Finally paper [15] introduces a framework for detecting social 

events based on the location of users using mobile phone data. 

The framework aims to detect dangerous situations and predict 

the location of events such as rock concerts, sports events, 

protests, emergencies, and crises. The proposed method 

involves probabilistic location inference and clustering 

algorithms. The paper discusses the challenges of analyzing 

sparse and noisy mobile phone data and proposes a Bayesian 

approach for location inference. The method is evaluated using 

a dataset from the Dutch Royal Wedding. The findings 

demonstrate the high accuracy of the proposed method in 

detecting social events and highlight its potential applications 

in urban planning, event management, and public safety. The 

results emphasize the importance of considering uncertainty in 

location data, as well. 
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The research papers reviewed in this section show how the 

analysis of phone records and related data can be very helpful 

for many applications, such as crime investigation, network 

optimization, and event detection. The papers proposed many 

different methodologies, models, and algorithms to analyze 

CDRs and overcome the related challenges. They also provide 

valuable insights and directions for future research in areas 

such as transportation planning, anomaly detection, crime 

prediction, and network traffic optimization. 

 

3. THE PROPOSED ARCHITECTURE 
This section presents the proposed framework that includes all 

the components that are necessary to ingest daily CDRs data, 

query the records and do the necessary statistics and 

correlations between the captured information. The main 

objective of the proposed framework is to reduce latency of the 

analysis and increase the throughput during data ingestion and 

data querying. The overall architecture of the proposed 

framework is shown in figure 1. The framework consists of four 

main components: (i) Data ingestion, (ii) Data analysis, (iii) 

Data visualization part, and (iv) Monitoring and optimizing 

ElasticSearch. These four components are discussed in the 

following subsections. 

 

Figure 1: The Overall Architecture of the proposed 

Framework 

3.1 Data ingestion  
 Data ingestion component is used to ingest CDRs data from 

different data sources. Then it transforms and loads the data 

into the ElasticSearch cluster. Data sources involve the 

operator data and data from other sources. The operator data 

may be stored in relational database, files, and message queues. 

Logstash [16] is used as ETL in the proposed framework. It 

supports the ingestion of data from multiple sources like 

RDBMs, files, and message queues and can be Scaled-out by 

providing multiple instances to increase the ingestion rates 

when necessary with relatively small server resources 

footprints. 

3.2 Data analysis  
The main objective of this component is to help the criminal 

investigators to conduct the required analysis in order to find 

the potential suspects. The analysis is tailored to the queries 

posed by the investigators. The ElasticSearch is used as a 

database to fulfill the performance and scalability requirements 

for the proposed framework [17]. ElasticSearch is a document 

database that supports indexing data and supports full text 

search in milliseconds-to-seconds response time. It helps the 

investigators to formulate the questions they want to ask and 

then it answers that questions and draws conclusions. Finally, 

the analysis results are visualized through the visualization 

component. 

 

3.3 Data visualization  

This component visualizes the results of criminal analysis. For 

example, figure 2 views the relationship graph or social 

network for a specific subscriber. 

 
Figure 2: Social Network for Subscriber 

As another example, figure 3 illustrates the results of the 

analysis related to tracking the movement profile or the heat 

map for a subscriber. 

 

Figure 3: Movement Profile for Subscriber 

3.4 Monitoring and optimizing Elastic 

Search 
 This component monitors the indexing rate, search rate, 

indexing latency, searching latency, shard size over time, the 

utilization of the resources such as the CPU consumption, and 

thread count. Many different performance experiments have 

been conducted through this component to optimize the 

underlying computing resources and improve the overall 

performance. All the details related to the conducted 

experiments and the results are presented in the following 

section. 
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4. EXPERIMENTS AND RESULTS  
The experiments have been conducted on a cluster consists of 

two servers. The first server has CPU with 48 cores, 64 GB of 

RAM, and 2 HDDs giving a total 3 TB of disk storage. The 

second server has CPU with 48 cores, 64 GB of RAM, and an 

SSD of 400 GB. The dataset used for the most of conducted 

experiments are collected from Egyptian telecom operators and 

contains about 500,000 records of CDR data. 

The experiments divided into two types: (i) indexing 

throughput optimization, (ii) evaluating the effect of the shard 

size, the type of search queries, number of concurrent requests, 

bulk size on the analysis throughput. The following subsections 

present the experimental results of those two types of 

experiments. 

Indexing Throughput Optimization 
In the first kind of the conducted experiments, the Batch Size, 

number of workers, and the type of the input data source 

(Database source vs File System based source) are factors used 

to test the optimization of the indexing throughput. The main 

goal of this type of experiments is: 

− Figuring out the optimal number of workers and 

batch sizes that will achieve the maximum indexing 

throughput using a Database source 

− Figuring out the optimal number of workers and 

batch sizes that will achieve the maximum indexing 

throughput using the File System besides comparing 

the speed of the data availability of the File System 

with that of the Database. 

Experiment 1: Evaluating Batch size with number of 

workers 

In this experiment, we wanted to find the appropriate batch size 

to use for a single worker. We have the following Logstash 

configurations: pipeline.workers is 1, different batch sizes 

(7000, 8000, 10000, 15000), queue.type: persisted and default 

database fetch size (jdbc_fetch_size) which is 10 rows. As 

shown in table 1, the indexing rates are not more than 5000 

events/sec. 

Table 1: Indexing rate with single worker and different 

batch sizes with default fetch size  

Trial 

No. 

No. of 

Workers 

Batch 

Size 

Queue 

Max 

Avg 

Indexing 

Rate 

(docs/sec) 

Avg ES 

CPU% 

Avg 

LS 

CPU% 

1 1 7000 10000 5000 1 3.5 

2 1 15000 10000 4000 1 3 

3 1 10000 10000 5100 1 4 

4 1 8000 10000 5000 1 3.5 

 

In an attempt to increase the indexing rate, we change the 

variable of jdbc_fetch_size to be 8000, 16000 and 20000 as 

shown in table 2. The results show that the indexing rate has 

increased slight a bit up to around 5300 doc/s and of average 

5200 doc/sec along with slight improvements in CPU 

utilization. 

Table 2: Indexing rate with single worker and different 

batch sizes with different fetch size 

Trial 

No. 
No. of 

Workers 
Batch 

Size 
Queue 

Max 
Avg 

Indexing 

Rate 

(docs/sec) 

Avg ES 

CPU% 
Avg 

LS 

CPU% 

1 1 8000 8000 10000 5200 1 

2 1 8000 16000 10000 5200 1 

3 1 10000 20000 10000 5300 1 

 

We changed the number of workers to be 6, 24 and 48 as 

depicted in table 3. Doubling the number of workers seems to 

have no effect and the CPU utilization did not increase above 

9%. 

Table 3: Indexing rate with different number of workers 

and different fetch size 

Trial 

No. 

No. of 

Workers 

Batch 

Size 

Queue 

Max 

Avg 

Indexing 

Rate 

(docs/sec) 

Avg ES 

CPU% 

Avg 

LS 

CPU% 

1 24 10000 20000 10000 9000 2 

2 48 10000 20000 10000 9000 2 

3 6 10000 20000 10000 8500 2 

4 6 10000 60000 10000 8500 2 

 
When the Logstash Queue is used instead of reading data 

directly from database, the indexing rate has increased to 22000 

as shown in table 4. 

Table 4: Indexing rate with using Logstash queue 

Trial 

No. 

No. of 

Workers 

Batch 

Size 

Queue 

Max 

Avg 

Indexing 

Rate 

(docs/sec) 

Avg ES 

CPU% 

Avg 

LS 

CPU% 

1 6 10000 60000 1gb 22000 6 

2 6 10000 60000 5gb 23000 N/A 

 

When the number of workers is increased, the indexing rates 

are increased as well, as shown in table 5. 
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Table 5: Indexing rate when using queue and increasing 

number of workers  

Trial 

No. 

No. of 

Workers 

Batch 

Size 

Queue 

Max 

Avg 

Indexing 

Rate 

(docs/sec) 

Avg ES 

CPU% 

Avg 

LS 

CPU% 

3 12 10000 60000 5gb 33000 N/A 

4 12 15000 60000 5gb 33000 N/A 

5 24 10000 60000 5gb 35000 9 

 

As illustrated in the above experiments, using the full-queue 

mechanism leads to better results when compared to using the 

database. 

Experiment 2: The effect of the type of the input data source 

(file vs database) 

This experiment checks the effect of using a single instance of 

Logstash with different chunk size when keeping the number 

of workers and batch size constant. The results shown in table 

6 illustrate that except for chunk_size of 100, all results are 

almost similar regarding indexing rates and CPU utilization. 

Furthermore, increasing chunk size above 10000 does not have 

any impact given the same configuration parameters. 

Table 6: Using file as a source with different chunk size  

Trial 

No. 

No. of 

Workers 

Batch 

Size 

Queue 

Max 

Avg 

Indexing 

Rate 

(docs/sec) 

Avg ES 

CPU% 

Avg 

LS 

CPU% 

1 
9 3000 1048576 18500 4 15 

2 9 3000 100 15000 4 15 

3 9 3000 20000 18500 4 15 

4 9 3000 777000 18500 4 15 

5 9 3000 7000000 18500 4 15 

6 9 3000 10000 18500 4 15 

 

Another experiment has been conducted to evaluate the effect 

of using a single instance of Logstash, batch size of 3000, 

chunk size of 10000, and increasing the number of workers 

from 6 to 48. The findings shown in table 7 illustrate that there 

is no change in the indexing rate when using 48, 24, 12, and 9 

workers. For 6 workers, however, the indexing rate is ever-so-

slightly less and Logstash starts queuing. We decided that we 

will proceed with 9 workers. 

 

Table 7: Using file as a data source with different number 

of workers 

Trial 

No. 

No. of 

Workers 

Batch 

Size 

Queue 

Max 

Avg 

Indexing 

Rate 

(docs/sec) 

Avg ES 

CPU% 

Avg 

LS 

CPU% 

7 
48 3000 10000 18500 5 15 

8 24 3000 10000 18500 5 15 

9 12 3000 10000 18500 5 15 

10 9 3000 10000 18500 5 15 

11 6 3000 10000 18000 5 15 

 
When running more Logstash instances side by side on the 

same server has a high impact on gaining a better indexing rate, 

as shown in table 8. Therefore, we recommend using different 

instances of Logstash because it uses separate Queues to do the 

job. 

Table 8: Using Queue as a data source with different 

number of instances of Logstash 
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6 
2 

CDR 9 3000 10000 16000 
 

15 

CDR 9 3000 10000 16000 
 

15 

Total 
   

32000 9 
 

7 3 

CDR 9 3000 10000 13500 
 

15 

CDR 9 3000 10000 13500 
 

15 

CDR 9 3000 10000 13500 
 

15 

Total    41000 
13 

 

 

Evaluating the effect of the shard size, the 

type of search queries, Number of 

Concurrent Requests, Bulk Size on the 

Analysis Throughput 
In the second type of experiments, the Shard Size, Bulk Size, 

Number of Concurrent Requests (clients), and the type of 

search queries are the factors that are used to evaluate the 

analysis Throughput. 
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4.2.1 Shard Size Factor 
The indexing process and the searching process are two main 

ElasticSearch operations of the highest resource-demanding. 

Hot-Warm architecture in ElasticSearch suggests that, with the 

time series data that are indexed over time, if some nodes are 

dedicated for just searching operations that nodes are called 

“Warm” nodes. While, the Hot nodes receive both indexing and 

searching requests. In order to get better performance 

combined with better hardware costs, only the Hot nodes 

should be built using high-cost hardware and the other Warm 

nodes can be built using low-cost hardware. This also helps to 

increase the amount of the stored data since it can reside, after 

being indexed, on the Warm nodes. 

To mimic the behaviors of the different types of nodes we 

decided to: 

1. Test the effect of the shard size factor on the indexing rate 

during indexing-only load to have a basic run that we can 

compare different benchmarks against it. 

2. Test the effect of the shard size factor on the searching rate 

during searching-only load and this would mimic the behavior 

of the Warm nodes. 

(1) Evaluating Shard Size on Indexing Rate 

At this test we indexed 520 million documents (193 G) of data 

using 8 parallel indexing clients with 5000 bulk size on a single 

CDR shard to test the effect of increasing the shard size on the 

indexing rate. No searching activity is involved at this phase. 

The bulk size has been chosen of medium size and is consistent 

throughout the experiment, so it should not be a factor in the 

collected results.  

 

Figure 4: Shard Size vs Indexing Rate Only 

(2) Evaluating Shard Size on Searching Rate 

In this experiment, we indexed documents with incremental shard size 

of 27G, 60G, and 90G of CDR data. We issued 60 basic search 

operations on each size and monitored the effect of the increased shard 

size on the search latency and the search throughput. 

As depicted on figure 5, the throughput of searching at different 

shard sizes up to 90 G were the same (60 ops/sec) which means 

that up to that size, ElasticSearch can still perform the 60 basic 

search operations within a sec. The search service times are of 

averages 40 ms, 45ms, 60 ms for the sizes 27 G, 60 G, 90 G, 

respectively. 

 

 

 

Figure 5: Shard Size vs Searching Rate 

 

Figure 6: Throughput of Searching 

4.2.2 Type of Search Query  
In this experiment, we indexed incremental shard sizes of 40 G, 

80G, 125G, and 170G of CDR data in one shard then issued 60 

mixed search operations (match queries, aggregation queries, 

AND & OR operators joined queries, wild card queries, with 

and without time range conditions) per sec for 10 minutes 

(including 3 min warm-up) on each shard size and monitored 

the effect of increasing the shard size on the search service time 

and the search throughput. 

As depicted in figure 6, the average of the search throughput 

for the 4 shard sizes is 64 ops/sec, 63 ops/sec, 62 ops/sec, and 

56 ops/sec, respectively. This means that the throughput 

decreased when increasing the size but within an acceptable 

level due to the increased data size. The mixed search is 

showing a higher response time when compared with the results 

of the basic search. 

4.2.3 Number of Concurrent Search Clients Factor 

(parallel clients) 
This experiment tests how the searching throughput effected by 

using different numbers of parallel basic search queries (16, 32, 

48, 64, 80, 96, 112, 128, 144 ) and shard of size 107 G on ES 

node that have 48 CPU threads . The results ensure that search 

service time increases when increasing the number of parallel 

requests whether the parallel requests exist in a concurrent CPU 

cycles for all the existing cores or not. 

4.2.4 Bulk Size Factor   
In this experiment, we vary the bulk size from 10k to 30k using 

increments of 2k and monitor the indexing rate. The results 
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show that the indexing has a consistent rate of around 15.5k 

docs/sec with all the used bulk sizes. We can conclude that 

working on bulks with small size finishes faster because the ES 

can execute more than one of them at the same time. On the 

other hand, working on bulks with larger size takes more time 

but index a huge amount of data. Therefore, both ways seem to 

have the same effect. 

5. CONCLUSION  
This paper proposes a framework for analyzing CDRs using big 

data tools and techniques. The framework helps the low 

enforcement agencies in criminal investigation. Many 

performance tests have been conducted to optimize the 

proposed framework in terms of reducing the required 

computing power and to improving the overall performance at 

the same time. Future research can explore the use of different 

machine learning methods to analyze CDRs in order to extract 

hidden patterns that can guide the criminal investigation. 

Another area of future research is to build real-time crime 

detection models by analyzing the CDRs streams in order to 

detect the crimes when they occur 
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