
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 26, August 2023

46

A Big Data Framework for Criminal Investigation using

Call Detail Records

Mohamed A. Zawra
Faculty of Computers and Artificial

Intelligence, Helwan University,
Egypt

O.E. Emam
Faculty of Computers and Artificial

Intelligence, Helwan University,
Egypt

M. Elemam.Shehab
Egyptian Armed Forces, Egypt

ABSTRACT

Call Detail Records (CDRs) can be considered as big data

source as it has a huge volume, variety of data and high data

rate, as well. The analysis of CDRs can produce big value and

offer opportunities to maximize revenue and improve the

community's standard of living. However, the analysis of such

data with those characteristics calls for using big data

technology. Big data analytics is a rapidly growing field that

has the potential to revolutionize the way we handle various

aspects of our lives. One area where this technology is

particularly relevant is in criminal investigations, where the

analysis of call detail records (CDRs) can provide valuable

insights into the activities and movements of individuals

associated with criminal activity. This paper proposes a

framework that leverages the massive amounts of data

generated by telecommunication networks to uncover valuable

insights that can help criminal investigators. Furthermore, the

proposed framework is optimized to reduce the underlying

computing resources needed to analyze such huge amount of

data and to improve the overall performance of the proposed

framework, as well.

Keywords

Call Detail Records (CDR), Big data analytics, Criminal

investigation.

1. INTRODUCTION
The rapid expansion of the telecommunication network and the

widespread use of mobile phones have generated a huge

amount of data, including Call detail Records (CDRs). CDR is

a data record that contains information about a telephone call

or communication session, including details such as the time,

date, duration, source number, destination number,

Cell/Location ID, and any other relevant information about the

call. CDRs are typically generated by telecommunication

service providers or telephone companies for billing purposes,

and they can also be used for charging, settlement, network

analysis, troubleshooting, fraud detection, churn detection and

security purposes.

In addition, CDRs can be used by law enforcement agencies to

investigate criminal activities such as fraud, harassment, and

other types of illegal activities. The call detail records have

proven to be valuable in various sectors, including criminal

investigation, as they provide insights into communication

patterns, movement, and activities of individuals [1-10].

Due to the huge volume of the CDRs, the manual analysis of

that data can be overwhelming for investigators. However, with

the help of big data analytics tools, it is possible to identify

patterns and relationships that would otherwise be impossible

to discover. One of the key benefits of using big data analytics

in criminal investigations is the ability to quickly identify

potential criminals [4].Another benefit is the ability to track

suspects and their movements [11]. Furthermore, big data

analytics can also be used to identify and analyze relationships

between individuals, which can provide valuable insights into

criminal networks [3].Therefore the advancement of big data

technology makes the analysis of CDRs necessary and

enhances the effectiveness and efficiency of criminal

investigations.

The rest of the paper is organized as follows. Section 2 reviews

the previous work related to analyzing CDRs to generated

valuable insights. Section 3 introduces the proposed

framework. The experimental results are discussed in section 4.

Finally, section 5 concludes the paper and sketches out the

future work.

2. LITERATURE REVIEW
This section reviews the previous works that analyze CDRs and

phone records to generate valuable insights in many different

areas such as crime investigation, network optimization, and

event detection.

A new model that uses graphs and data analysis techniques to

investigate crimes using Call Detail Records has been proposed

in [1]. The authors suggested using Neo4j, a graph database, to

store and analyze the CDR data. The model focuses on

understanding how users behave and extracting valuable

information from the CDR data.

The authors in [2] discussed the importance of analyzing phone

records in criminal investigations due to the widespread use of

cell phones by both ordinary people and potential criminals.

That study presented a graphical analytic model for the CDR

database, which includes all past crimes and relationship

between them, which if discovered, can help law enforcement

agencies solve numerous cases. The main objective was to store

all historical instances in a single centralized system for further

and future analysis, rather than junk them. This helps to

maintain connections and uncover trends in a graphical format.

Another study [3] proposed a new model that employs graph

technologies to analyze CDRs in order to find potential

criminals. Specifically, the Neo4j graph database management

system is used to store the CDR in forms of graph. Then, that

graph data is analyzed in an attempt to detect abnormal

behavior which might help the police investigators to find links

between various suspects.

Research [4] contributes to effective crime investigation by

proposing a framework that enables efficient storage, retrieval,

and analysis of CDR data. The proposed framework

categorized the suspects to primary and secondary suspects via

three-step process. In the first step, the CDRs related to the

requested mobile number(s) are extracted from Hadoop

distributed file system where the global CDRs are stored. Then,

the extracted data is converted and stored in Hive data

warehouse. Finally in the last step, the data is analyzed to

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 26, August 2023

47

identify the most suspicious individual, and the result is

provided as the output.

Authors in study [5] explore the application of big data

analytics and machine learning algorithms for crime prediction.

The study uses a large dataset of crime records from Chicago

and shows the importance of big data analytics in

understanding and combating crime in urban areas. The study

builds a big data analytics model for crime prediction and

evaluates the performance of different machine learning

algorithms including SVM and K-NN, Random Forest, and

MLP. The findings show that SVM algorithm is the best

algorithm for achieving high accuracy in crime prediction

within a reasonable time frame.

A new method that utilizes the CDRs to extract the abnormal

communications of a given mobile network by using PageRank

algorithm is presented in [6]. The proposed method takes the

number of calls and the total call duration as inputs and uses a

weighted version of the PageRank algorithm to analyze the

impact of the communication flows on the whole network. The

analysis results in detecting the abnormal communication

patterns. Furthermore, combining the resulting patterns with

the real events enables monitoring the traffic in real time.

A hybrid model for detecting anomalies in mobile phone

networks is proposed in [7]. The model combines GARCH, K-

means, and neural networks to identify anomalies, determine

their causes, and gain insights into user behavior. The study

shows that the hybrid model achieves lower false positive rates

and higher accuracy compared to previous studies. The

practical implications of this approach for mobile phone

operators include real-time detection of security threats and

technical issues, improving network performance, and

enhancing user experience.

In order to analyze the human movement patterns from CDR

data, authors in study [8] proposed a data fusion approach to

predict hidden visits and differentiate between trips and

displacements. The proposed method involves three main steps

which are (i) Localization, (ii) Movement-state-identification,

and (iii) Hidden visit inference. The experimental results of this

study show that the propose method outperforms the other

methods employed by the previous studies.

Research [9] is another study that focuses on analyzing human

movement patterns using Call Data Records. The research

objective of that study was to reduce the error in localizing the

user by considering the load sharing effects of the CDR records

and transmit power of the cell towers. Specifically, the study

addressed two main issues: the load sharing effect and

localization errors in CDRs. The research uses a large dataset

of SIM cards from a mobile operator in Sri Lanka and proposes

a method for preprocessing the data and reducing localization

errors. User profiling techniques are used, and a load sharing

record identification interface is introduced. The study

demonstrates the potential of using CDRs and mobile data for

transportation planning and analysis.

The study [10] focuses on using Call Detail Records from

mobile networks to analyze network traffic patterns and

develop a machine learning model for classification. The

research aims to optimize network resources and enhance

service quality by understanding spatial and temporal

dependencies of network traffic. To do that, the authors

perform spatiotemporal analysis of CDR data at first. Then,

they employed a clustering algorithm to categorize the mobile

traffic patterns. Finally, they exploit the clustering results to

train a neural network in order to classify the network traffic.

The findings demonstrate that the actionable insights gained

from CDR data analysis can be used for network optimization,

resource allocation, and improving network deployment and

operation.

An efficient and user-friendly system (called swift) for

analyzing Call Detail Records (CDRs) and Tower Dump (TD)

data is presented in [11] to aid in crime investigations. The

proposed system employs data mining techniques such as

clustering and frequent pattern analysis to quickly identify local

suspects and analyze their movements. It also integrates

prediction techniques and mobile GIS for tracking suspect

locations, providing comprehensive analysis of relevant

patterns in CDR and TD data to aid in criminal investigations.

Study [12] focuses on utilizing big data technologies,

specifically Hadoop, for analyzing Call Detail Records (CDRs)

in the telecom industry. The main goal of the study was to

extract valuable insights from large volumes of CDR data for

revenue maximization, network efficiency improvement, and

customer service enhancement. The authors of that study

discussed the challenges in analyzing CDRs, the benefits of

using big data technologies, and presented a system for storing

CDR data in Hadoop, performing ETL operations, clustering

the data, and analyzing the impact of pricing and bundling

schemes on customer behavior.

In another research [13], authors focused on the use of big data

technologies for analyzing Call Detail Record (CDR) data in

the telecom industry. CDR data presents big data challenges

due to its volume, velocity, and variety. Therefore, the research

discussed the challenges in loading, processing, and optimizing

time and resources for analyzing CDRs. It compared two main

approaches, parallel DBMS and MapReduce, for big data

analysis of CDRs, presented examples of CDR analysis using

these approaches and highlighted their advantages and

performance in different scenarios.

A real-time framework for analyzing calling patterns and

behaviors of mobile phone users using only Call Detail Records

(CDR) data is presented in [14]. The framework utilizes

evolving fuzzy systems to cluster caller behavior and detect

outliers. The dataset used in the research contains 9,834 calls,

and each CDR record includes caller and receiver identifiers,

call time, duration, and tower location. The proposed solution

adapts to evolving data by updating clusters recursively,

providing a means to extract calling patterns and behaviors

solely from CDRs.

Finally paper [15] introduces a framework for detecting social

events based on the location of users using mobile phone data.

The framework aims to detect dangerous situations and predict

the location of events such as rock concerts, sports events,

protests, emergencies, and crises. The proposed method

involves probabilistic location inference and clustering

algorithms. The paper discusses the challenges of analyzing

sparse and noisy mobile phone data and proposes a Bayesian

approach for location inference. The method is evaluated using

a dataset from the Dutch Royal Wedding. The findings

demonstrate the high accuracy of the proposed method in

detecting social events and highlight its potential applications

in urban planning, event management, and public safety. The

results emphasize the importance of considering uncertainty in

location data, as well.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 26, August 2023

48

The research papers reviewed in this section show how the

analysis of phone records and related data can be very helpful

for many applications, such as crime investigation, network

optimization, and event detection. The papers proposed many

different methodologies, models, and algorithms to analyze

CDRs and overcome the related challenges. They also provide

valuable insights and directions for future research in areas

such as transportation planning, anomaly detection, crime

prediction, and network traffic optimization.

3. THE PROPOSED ARCHITECTURE
This section presents the proposed framework that includes all

the components that are necessary to ingest daily CDRs data,

query the records and do the necessary statistics and

correlations between the captured information. The main

objective of the proposed framework is to reduce latency of the

analysis and increase the throughput during data ingestion and

data querying. The overall architecture of the proposed

framework is shown in figure 1. The framework consists of four

main components: (i) Data ingestion, (ii) Data analysis, (iii)

Data visualization part, and (iv) Monitoring and optimizing

ElasticSearch. These four components are discussed in the

following subsections.

Figure 1: The Overall Architecture of the proposed

Framework

3.1 Data ingestion
 Data ingestion component is used to ingest CDRs data from

different data sources. Then it transforms and loads the data

into the ElasticSearch cluster. Data sources involve the

operator data and data from other sources. The operator data

may be stored in relational database, files, and message queues.

Logstash [16] is used as ETL in the proposed framework. It

supports the ingestion of data from multiple sources like

RDBMs, files, and message queues and can be Scaled-out by

providing multiple instances to increase the ingestion rates

when necessary with relatively small server resources

footprints.

3.2 Data analysis
The main objective of this component is to help the criminal

investigators to conduct the required analysis in order to find

the potential suspects. The analysis is tailored to the queries

posed by the investigators. The ElasticSearch is used as a

database to fulfill the performance and scalability requirements

for the proposed framework [17]. ElasticSearch is a document

database that supports indexing data and supports full text

search in milliseconds-to-seconds response time. It helps the

investigators to formulate the questions they want to ask and

then it answers that questions and draws conclusions. Finally,

the analysis results are visualized through the visualization

component.

3.3 Data visualization

This component visualizes the results of criminal analysis. For

example, figure 2 views the relationship graph or social

network for a specific subscriber.

Figure 2: Social Network for Subscriber

As another example, figure 3 illustrates the results of the

analysis related to tracking the movement profile or the heat

map for a subscriber.

Figure 3: Movement Profile for Subscriber

3.4 Monitoring and optimizing Elastic

Search
 This component monitors the indexing rate, search rate,

indexing latency, searching latency, shard size over time, the

utilization of the resources such as the CPU consumption, and

thread count. Many different performance experiments have

been conducted through this component to optimize the

underlying computing resources and improve the overall

performance. All the details related to the conducted

experiments and the results are presented in the following

section.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 26, August 2023

49

4. EXPERIMENTS AND RESULTS
The experiments have been conducted on a cluster consists of

two servers. The first server has CPU with 48 cores, 64 GB of

RAM, and 2 HDDs giving a total 3 TB of disk storage. The

second server has CPU with 48 cores, 64 GB of RAM, and an

SSD of 400 GB. The dataset used for the most of conducted

experiments are collected from Egyptian telecom operators and

contains about 500,000 records of CDR data.

The experiments divided into two types: (i) indexing

throughput optimization, (ii) evaluating the effect of the shard

size, the type of search queries, number of concurrent requests,

bulk size on the analysis throughput. The following subsections

present the experimental results of those two types of

experiments.

Indexing Throughput Optimization
In the first kind of the conducted experiments, the Batch Size,

number of workers, and the type of the input data source

(Database source vs File System based source) are factors used

to test the optimization of the indexing throughput. The main

goal of this type of experiments is:

− Figuring out the optimal number of workers and

batch sizes that will achieve the maximum indexing

throughput using a Database source

− Figuring out the optimal number of workers and

batch sizes that will achieve the maximum indexing

throughput using the File System besides comparing

the speed of the data availability of the File System

with that of the Database.

Experiment 1: Evaluating Batch size with number of

workers

In this experiment, we wanted to find the appropriate batch size

to use for a single worker. We have the following Logstash

configurations: pipeline.workers is 1, different batch sizes

(7000, 8000, 10000, 15000), queue.type: persisted and default

database fetch size (jdbc_fetch_size) which is 10 rows. As

shown in table 1, the indexing rates are not more than 5000

events/sec.

Table 1: Indexing rate with single worker and different

batch sizes with default fetch size

Trial

No.

No. of

Workers

Batch

Size

Queue

Max

Avg

Indexing

Rate

(docs/sec)

Avg ES

CPU%

Avg

LS

CPU%

1 1 7000 10000 5000 1 3.5

2 1 15000 10000 4000 1 3

3 1 10000 10000 5100 1 4

4 1 8000 10000 5000 1 3.5

In an attempt to increase the indexing rate, we change the

variable of jdbc_fetch_size to be 8000, 16000 and 20000 as

shown in table 2. The results show that the indexing rate has

increased slight a bit up to around 5300 doc/s and of average

5200 doc/sec along with slight improvements in CPU

utilization.

Table 2: Indexing rate with single worker and different

batch sizes with different fetch size

Trial

No.
No. of

Workers
Batch

Size
Queue

Max
Avg

Indexing

Rate

(docs/sec)

Avg ES

CPU%
Avg

LS

CPU%

1 1 8000 8000 10000 5200 1

2 1 8000 16000 10000 5200 1

3 1 10000 20000 10000 5300 1

We changed the number of workers to be 6, 24 and 48 as

depicted in table 3. Doubling the number of workers seems to

have no effect and the CPU utilization did not increase above

9%.

Table 3: Indexing rate with different number of workers

and different fetch size

Trial

No.

No. of

Workers

Batch

Size

Queue

Max

Avg

Indexing

Rate

(docs/sec)

Avg ES

CPU%

Avg

LS

CPU%

1 24 10000 20000 10000 9000 2

2 48 10000 20000 10000 9000 2

3 6 10000 20000 10000 8500 2

4 6 10000 60000 10000 8500 2

When the Logstash Queue is used instead of reading data

directly from database, the indexing rate has increased to 22000

as shown in table 4.

Table 4: Indexing rate with using Logstash queue

Trial

No.

No. of

Workers

Batch

Size

Queue

Max

Avg

Indexing

Rate

(docs/sec)

Avg ES

CPU%

Avg

LS

CPU%

1 6 10000 60000 1gb 22000 6

2 6 10000 60000 5gb 23000 N/A

When the number of workers is increased, the indexing rates

are increased as well, as shown in table 5.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 26, August 2023

50

Table 5: Indexing rate when using queue and increasing

number of workers

Trial

No.

No. of

Workers

Batch

Size

Queue

Max

Avg

Indexing

Rate

(docs/sec)

Avg ES

CPU%

Avg

LS

CPU%

3 12 10000 60000 5gb 33000 N/A

4 12 15000 60000 5gb 33000 N/A

5 24 10000 60000 5gb 35000 9

As illustrated in the above experiments, using the full-queue

mechanism leads to better results when compared to using the

database.

Experiment 2: The effect of the type of the input data source

(file vs database)

This experiment checks the effect of using a single instance of

Logstash with different chunk size when keeping the number

of workers and batch size constant. The results shown in table

6 illustrate that except for chunk_size of 100, all results are

almost similar regarding indexing rates and CPU utilization.

Furthermore, increasing chunk size above 10000 does not have

any impact given the same configuration parameters.

Table 6: Using file as a source with different chunk size

Trial

No.

No. of

Workers

Batch

Size

Queue

Max

Avg

Indexing

Rate

(docs/sec)

Avg ES

CPU%

Avg

LS

CPU%

1
9 3000 1048576 18500 4 15

2 9 3000 100 15000 4 15

3 9 3000 20000 18500 4 15

4 9 3000 777000 18500 4 15

5 9 3000 7000000 18500 4 15

6 9 3000 10000 18500 4 15

Another experiment has been conducted to evaluate the effect

of using a single instance of Logstash, batch size of 3000,

chunk size of 10000, and increasing the number of workers

from 6 to 48. The findings shown in table 7 illustrate that there

is no change in the indexing rate when using 48, 24, 12, and 9

workers. For 6 workers, however, the indexing rate is ever-so-

slightly less and Logstash starts queuing. We decided that we

will proceed with 9 workers.

Table 7: Using file as a data source with different number

of workers

Trial

No.

No. of

Workers

Batch

Size

Queue

Max

Avg

Indexing

Rate

(docs/sec)

Avg ES

CPU%

Avg

LS

CPU%

7
48 3000 10000 18500 5 15

8 24 3000 10000 18500 5 15

9 12 3000 10000 18500 5 15

10 9 3000 10000 18500 5 15

11 6 3000 10000 18000 5 15

When running more Logstash instances side by side on the

same server has a high impact on gaining a better indexing rate,

as shown in table 8. Therefore, we recommend using different

instances of Logstash because it uses separate Queues to do the

job.

Table 8: Using Queue as a data source with different

number of instances of Logstash

T
r
ia

l
N

o
.

N
o

.
o

f
In

st
a

n
c
e
s

P
ip

el
in

e

N
o

.
o

f
W

o
r
k

e
r
s

B
a

tc
h

 S
iz

e

Q
u

e
u

e
 M

a
x

A
v

g
 I

n
d

e
x
in

g

R
a

te

(d
o

c
s/

se
c
)

A
v

g
 E

S
 C

P
U

%

A
v

g
 L

S
 C

P
U

%

6
2

CDR 9 3000 10000 16000

15

CDR 9 3000 10000 16000

15

Total

32000 9

7 3

CDR 9 3000 10000 13500

15

CDR 9 3000 10000 13500

15

CDR 9 3000 10000 13500

15

Total 41000
13

Evaluating the effect of the shard size, the

type of search queries, Number of

Concurrent Requests, Bulk Size on the

Analysis Throughput
In the second type of experiments, the Shard Size, Bulk Size,

Number of Concurrent Requests (clients), and the type of

search queries are the factors that are used to evaluate the

analysis Throughput.

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 26, August 2023

51

4.2.1 Shard Size Factor
The indexing process and the searching process are two main

ElasticSearch operations of the highest resource-demanding.

Hot-Warm architecture in ElasticSearch suggests that, with the

time series data that are indexed over time, if some nodes are

dedicated for just searching operations that nodes are called

“Warm” nodes. While, the Hot nodes receive both indexing and

searching requests. In order to get better performance

combined with better hardware costs, only the Hot nodes

should be built using high-cost hardware and the other Warm

nodes can be built using low-cost hardware. This also helps to

increase the amount of the stored data since it can reside, after

being indexed, on the Warm nodes.

To mimic the behaviors of the different types of nodes we

decided to:

1. Test the effect of the shard size factor on the indexing rate

during indexing-only load to have a basic run that we can

compare different benchmarks against it.

2. Test the effect of the shard size factor on the searching rate

during searching-only load and this would mimic the behavior

of the Warm nodes.

(1) Evaluating Shard Size on Indexing Rate

At this test we indexed 520 million documents (193 G) of data

using 8 parallel indexing clients with 5000 bulk size on a single

CDR shard to test the effect of increasing the shard size on the

indexing rate. No searching activity is involved at this phase.

The bulk size has been chosen of medium size and is consistent

throughout the experiment, so it should not be a factor in the

collected results.

Figure 4: Shard Size vs Indexing Rate Only

(2) Evaluating Shard Size on Searching Rate

In this experiment, we indexed documents with incremental shard size

of 27G, 60G, and 90G of CDR data. We issued 60 basic search

operations on each size and monitored the effect of the increased shard

size on the search latency and the search throughput.

As depicted on figure 5, the throughput of searching at different

shard sizes up to 90 G were the same (60 ops/sec) which means

that up to that size, ElasticSearch can still perform the 60 basic

search operations within a sec. The search service times are of

averages 40 ms, 45ms, 60 ms for the sizes 27 G, 60 G, 90 G,

respectively.

Figure 5: Shard Size vs Searching Rate

Figure 6: Throughput of Searching

4.2.2 Type of Search Query
In this experiment, we indexed incremental shard sizes of 40 G,

80G, 125G, and 170G of CDR data in one shard then issued 60

mixed search operations (match queries, aggregation queries,

AND & OR operators joined queries, wild card queries, with

and without time range conditions) per sec for 10 minutes

(including 3 min warm-up) on each shard size and monitored

the effect of increasing the shard size on the search service time

and the search throughput.

As depicted in figure 6, the average of the search throughput

for the 4 shard sizes is 64 ops/sec, 63 ops/sec, 62 ops/sec, and

56 ops/sec, respectively. This means that the throughput

decreased when increasing the size but within an acceptable

level due to the increased data size. The mixed search is

showing a higher response time when compared with the results

of the basic search.

4.2.3 Number of Concurrent Search Clients Factor

(parallel clients)
This experiment tests how the searching throughput effected by

using different numbers of parallel basic search queries (16, 32,

48, 64, 80, 96, 112, 128, 144) and shard of size 107 G on ES

node that have 48 CPU threads . The results ensure that search

service time increases when increasing the number of parallel

requests whether the parallel requests exist in a concurrent CPU

cycles for all the existing cores or not.

4.2.4 Bulk Size Factor
In this experiment, we vary the bulk size from 10k to 30k using

increments of 2k and monitor the indexing rate. The results

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 26, August 2023

52

show that the indexing has a consistent rate of around 15.5k

docs/sec with all the used bulk sizes. We can conclude that

working on bulks with small size finishes faster because the ES

can execute more than one of them at the same time. On the

other hand, working on bulks with larger size takes more time

but index a huge amount of data. Therefore, both ways seem to

have the same effect.

5. CONCLUSION
This paper proposes a framework for analyzing CDRs using big

data tools and techniques. The framework helps the low

enforcement agencies in criminal investigation. Many

performance tests have been conducted to optimize the

proposed framework in terms of reducing the required

computing power and to improving the overall performance at

the same time. Future research can explore the use of different

machine learning methods to analyze CDRs in order to extract

hidden patterns that can guide the criminal investigation.

Another area of future research is to build real-time crime

detection models by analyzing the CDRs streams in order to

detect the crimes when they occur

6. REFERENCES
[1] Abuhamoud, N., &Geepalla, E. (March 2019). Analysis

CDR for Crime Investigation using graph-based method

(Neo4j). Retrieved from

https://www.researchgate.net/publication/334587978.

[2] Kumar, M., &Hanumanthappa, M. (2016) Crime

Investigation and Criminal Network Analysis Using

Archive Call Detail Records. Proceedings of the 2016

IEEE Eighth International Conference on Advanced

Computing (ICoAC).

[3] Abuhamoud, N., &Geepalla, E. (December 2019), "A

Study of Using Big Data And Call Detail Records For

Criminal Investigation in https://www.Suj.sebhau.edu.ly.

[4] Khan, E. S., Ansari, F., Dhalvelkar, H. A., &Sabiqua.

(2017). Criminal Investigation Using Call Data Records

(CDR) through Big Data Technology, International

Conference on Nascent Technologies in the Engineering

Field (ICNTE-2017).

[5] Ibrahim, S. E., &Reyad, C. A. (2023, May). A Proposed

Big Data Analytics Model for Crimes Predication based

on Spatial and Temporal Criminal Hotspot. Presented at

CompuNet 31.

[6] Goergen, D., Mendiratta, V., State, R., & Engel, T. (2014).

Analysis of large Call Data Records with Big Data. In

Proceedings of the IPTComm Conference (ISBN:

1569985267).

[7] Mokhtari, A., Ghorbani, N., &Bahrak, B. (2022).

Aggregated Traffic Anomaly Detection Using Time

Series Forecasting on Call Detail Records. Security and

Communication Networks, Volume 2022, Article ID

1182315, 9 pages. https://doi.org/10.1155/2022/1182315.

[8] Zhao, Z., Koutsopoulos, H. N., & Zhao, J. (2022).

Identifying hidden visits from sparse call detail record

data. Transactions in Urban Data, Science, and

Technology, 1(3-4).

[9] Ayesha, B., Jeewanthi, B., Chitraranjan, C., Perera, A. S.,

&Kumarage, A. S. (2021). User Localization Based on

Call Detail Record. arXiv preprint arXiv:2108.09157v1

[cs. LG]. Retrieved from

https://arxiv.org/abs/2108.09157v1.

[10] Zhang, Z., Ahmad, A., Ali, H., & Sultan, K. (2019). Call

Details Record Analysis: A Spatiotemporal Exploration

toward Mobile Traffic Classification and Optimization.

Information, 11(6), 192. DOI: 10.3390/info11060192.

Retrieved from

https://www.mdpi.com/journal/information.

[11] Singh, R., Agivale, A., Mane, M., Oza, B., &Naik, A.

(2017). CDR and TD analysis using Data Mining.

International Journal of Advance Research and Innovative

Ideas in Education, Vol-3, Issue-6, ISSN(O)-2395-4396.

[12] Ghotekar, N. (2016). Analysis and Data Mining of Call

Detail Records using Big Data Technology. International

Journal of Advanced Research in Computer and

Communication Engineering (IJARCCE), Vol. 5, Issue

12.

[13] Elagib, S., Olanrewaju, R., &Hashim, A.H.A. (2015).

CDR analysis using Big Data technology. In Proceedings

of the International Conference on Computer, Network,

and Electrical Engineering (ICCNEEE) (pp. 1-4).

[14] Iglesias, J.A., Ledezma, A., Sanchis, A., &Angelov, P.

(2017). Real-Time Recognition of Calling Pattern and

Behavior of Mobile Phone Users through Anomaly

Detection and Dynamically Evolving Clustering. Applied

Sciences, 7, 798. doi:10.3390/app7080798.

[15] Traag, V., Browet, A., Calabrese, F., &Morlot, F. (2011).

Social Event Detection in Massive Mobile Phone Data

Using Probabilistic Location Inference. HAL Open

Science.

[16] Logstash :https://www.elastic.co/logstash (last accessed

on June 2023)

[17] ElasticSearch: https://www.elastic.co/what-

is/elasticsearch (last accessed on June 2023)

IJCATM : www.ijcaonline.org

