
International Journal of Computer Applications (0975 - 8887)
Volume 185 - No.29, 2023 August

Intelligent Thread-Specific Rename Register Allocation
for Simultaneous Multi-Threading Processors Based on

Cache Behavior

An Do
The University of Texas at San Antonio

San Antonio, TX 78249-0669, USA

Wei-Ming Lin
The University of Texas at San Antonio

San Antonio, TX 78249-0669, USA

ABSTRACT
Simultaneous Multi-Threading (SMT) processors allow multiple
threads to share resources, such as execution units, caches,
and pipelines, in the same processor to improve overall system
throughput and utilization. The distribution of the physical register
file can have a significant impact on the performance of the
system. Hence, the register file is one of the most crucial
shared resources. One or a few threads holding too many shared
registers can obstruct the execution of other threads, thus hurting
overall performance. In this paper, we develop an efficient
register-file-sharing algorithm based on the number of L2 cache
misses. To determine the relationship between L2 cache misses
and rename register utilization, the analysis begins with running
programs in a single-threaded environment. This relationship then
becomes the foundation to develop an algorithm to optimize the
use of shared registers. Simulation on M-sim [8] shows that
the proposed algorithm increases the throughput by up to 63%
compared to the default case while preserving execution fairness
among threads.

General Terms
Simultaneous Multi-threading, Register Rename

Keywords
Simultaneous Multi-threading, Register Rename, Register Capping
L2 Cache Miss, Resource Sharing

1. INTRODUCTION
Simultaneous Multi-Threading (SMT) is a method that enables a
single processor core to execute multiple threads simultaneously
to improve overall system performance. SMT achieves this by
introducing thread-level parallelism (TLP). To exploit TLP, SMT
allows threads to utilize unused processor resources that would
otherwise be idle. For example, if a thread stalls waiting for data,
another thread can be executed on the same processor core during
the stall, increasing the utilization of the processor.
It is important to note that while SMT can exploit TLP to
improve performance by overcoming Instruction-Level Parallelism
(ILP) present in a single thread ([3],[12]), it can also introduce

performance penalties due to increased contention for resources
and reduced cache hit rates. Optimizing SMT to take advantage of
TLP involves carefully managing the allocation of resources among
threads and minimizing resource contention. Various research on
resource-sharing algorithms has been done in the past. Research
[11] proposes the ICOUNT policy; in the fetching stage, this
policy gives higher priority to a thread that has lower occupancy
in the pre-issue stages. DCRA [2] is another resource-sharing
algorithm for the fetch stage. It monitors memory performance
and allocates more resources for threads that use resources more
efficiently. A per-thread capping technique on Issue Queue (IQ)
entries [7] improves performance by optimizing the dispatch stage;
[15] and[14] also propose techniques to improve the dispatch stage.
The distribution of the write buffer is targeted in [4] and [1] to
reduce unfair occupation. Previous works targeting the rename
stage include paper [16], which proposes a capping technique to
limit the number of registers all threads are allowed to use. An
autonomous approach, similar to a capping technique, using Neural
Network is presented in [13]. The rename stage is an early stage
with shared resources. Effectively distributing the registers can
have a high impact on the rest of the pipeline. Computer programs
behave differently, leading to some programs utilizing registers
better than others. Therefore a thread-specific capping technique
can maximize the performance gain for every register. Fast threads
can achieve better performance improvement than slow threads
when given more registers. An algorithm to orchestrate such a
distribution scheme without starving the slow threads can lead to
substantial overall performance improvement while maintaining
execution fairness.
This paper presents an algorithm based on the relationship
between shared register utilization and L2 cache misses to
optimize the distribution of rename registers for SMT systems.
A program performs better when given more rename registers.
However, up until a certain amount of rename registers, the
performance gain is no longer significant due to bottleneck
at another stage. Programs that incur fewer L2 cache misses
continue to perform better with more rename registers than
programs with a higher number of L2 cache misses. The
proposed algorithm detects which programs benefit more from
more registers and allocate larger portions of registers to them.
The programs that benefit less from more registers are allocated

1

International Journal of Computer Applications (0975 - 8887)
Volume 185 - No.29, 2023 August

smaller portions, but not smaller than a predefined limit so that
they do not suffer from starvation. This ensures that registers are
utilized in a way to gain the most overall performance while
maintaining execution fairness. Simulation results show an average
performance improvement of up to 63% and 39% in 4-threaded
workload and 8-threaded workload respectively. The harmonic IPC
sees similar improvement, indicating that the effectiveness of the
proposed algorithm is not at the expense of execution fairness.
The remaining of the paper is organized as follows: Section 2
introduces the background of SMT systems and the renaming
stage, followed by a walk-through of the simulated environment
parameters; motivation is analyzed in detail in Section 4, followed
by outlines of the proposed method in Section 5; Section 6 presents
the simulation results; Section 7 presents the concluding remarks.

2. BACKGROUND
2.1 Simultaneous Multi-Threading
Simultaneous Multi-Threading (SMT) utilizes resources in
a modern processor more effectively by executing multiple
independent threads in parallel, resulting in improved performance.
By allowing multiple threads to execute concurrently on the same
clock cycle, SMT exploits Thread-Level Parallelism (TLP) among
threads to take advantage of underutilized resources when ILP in
a single thread is not sufficient [3]. Figure 1 illustrates the basic
pipeline stages of a 4-threaded system. The system is built from a
typical out-of-order super-scalar processor.

effective address

Commit
6. Store

1. Fetch 2. Decode/Rename

Cache/

Physical Rename

Register File

Commit
6. Load

6. Commit

4. Issue

3. L/S Dispatch

5. Writeback / Forward
store data

read register

register

Write
Buffer

L/S

register writeback

register forward

forward
register

IQ

FU

FU

FU

.

.

.

.

.

.
Mem

forward

read data

3. Dispatch

LSQ

IFQ ROB

Fig. 1: Pipeline Stages in a 4-threaded SMT System

Firstly, instructions from each thread are fetched from memory
(and cache) and placed into their Instruction Fetch Queue (IFQ).
Following the decode and register-rename stages, they are allocated
into their corresponding Re-Order Buffer (ROB) and dispatched
to the shared Issue Queue (IQ). Load/Store instructions have
their address calculation operations dispatched into IQ while
also having their operations dispatched into individual Load
Store Queues (LSQ). When the instruction-issuing conditions are
satisfied (i.e. all operands are ready and the required functional
unit is available), the operations are issued to the corresponding
functional units and their results are written back to their target
locations or forwarded to where they are needed in IQ or LSQ.
Load/Store instructions, upon calculating their addresses, initiate
their memory operations. Lastly, all instructions are committed
from the ROB in order, synchronized with Load/Store instructions

in LSQ. SMT processors typically share key datapath components
among multiple independent threads. These shared resources may
include the physical register file, machine bandwidths, inter-stage
buffers (such as the Issue Queue), functional units, and write
buffers. By sharing resources, the hardware required in an SMT
system can be significantly reduced, while achieving comparable
throughput to multiple copies of superscalar processors. The
effective distribution of shared resources among simultaneously
executing threads is crucial for achieving desirable performance
in an SMT system. Without such effective distribution, shared
resources may be occupied by one or very few threads out of
proportion, resulting in faster threads impaired by the lack of
resources. Consequently, overall system performance may suffer.
Among the shared resources, the shared registers in the physical
register file are used to eliminate register name dependencies in
the rename stage, which is the first stage of shared resources.
Disproportionate distribution of the physical register file among
threads can easily become a bottleneck along the pipeline stages.
Therefore, this paper focuses on the efficient distribution of the
physical register file among multiple threads.

2.2 Physical Register File
In this segment, the topic of register renaming and its
implementation will be introduced. Register renaming is a
useful technique that is employed to avoid name dependencies,
such as write-after-read and write-after-write, that arise when
registers are reused. This method has gained popularity among
modern processors because it is essential to achieve out-of-order
execution. By assigning different physical registers to the same
architectural register when it is used in subsequent instructions,
renaming effectively removes false dependencies. As a result, later
instructions can be executed out-of-order without interfering with
earlier instructions. For instance, consider the following program
segment that contains false dependencies. Out-of-order execution
is hindered by write-after-read (e.g., between instructions γ and δ)
and write-after-write (e.g., between instructions α and δ).

r1 ←− (instruction α)
:
←− r1 (instruction β)

:
←− r1 (instruction γ)

:
r1 ←− (instruction δ)

:
←− r1 (instruction ϵ)

If renaming is employed, r1 in instruction δ is assigned to another
physical register, allowing δ and instructions after that to execute
before instruction γ
Commonly, multi-threaded processors feature a ”physical” register
file that contains more physical registers than the number
of ”architectural” registers defined in the ISA. Whenever an
instruction writes to an architectural register, the physical location
is allocated and assigned to that architectural register. Subsequent
read instructions of that architecture register will have their data
come from the most recently assigned physical register. This
mapping between architectural registers and physical registers
is recorded in the rename table. With this renaming approach,
the availability of physical registers is a major factor in the
performance of the system.

2

International Journal of Computer Applications (0975 - 8887)
Volume 185 - No.29, 2023 August

A physical register is allocated at the time of renaming and is
not freed until the next write instruction on the same architectural
register is committed. One way to increase register availability is to
expedite the deallocation process. Such modification is proposed
in [5] which modifies the deallocation process to expedite the
release of a register to reduce register occupation time. However,
this approach requires software support from the operating system.
Another approach is presented in [6] which holds off register
allocation until the complete stage. The tradeoff of this approach is
that an instruction might not find a free register to commit to at the
complete stage leading to a deadlock. It is challenging to modify
the allocation-deallocation process without additional information
from the operating system or a great amount of additional
hardware. That is not to say there is no room for improvement
while maintaining the in-order allocation and deallocation process.
A scheme for better utilization of the physical registers can ensure
the availability of registers and improve performance. According to
previous research, the competition for floating point registers is not
as fierce as for integer registers [16]. Therefore, this paper focuses
only on the distribution of integer registers.
The register file is shared among threads. However, only the
additional registers are truly shared after each thread has populated
its defined number of architectural registers. For example, an ISA
with 32 architectural registers ensures each thread has all of its
architectural registers mapped to at least one physical register at
all times. If the register file has extra registers after dedicating 32
registers for each thread, these extra registers will be shared among
threads. Figure 2 [17] shows the organization of the register file
for this example. Rt, Ra, and Rr are the total number of registers,
the number of architectural registers per thread, and the number of
extra registers for renaming. Therefore

Rr = Rt −N ×Ra

where N is the number of threads in the system. In single-threaded
systems, if the thread holds on to all the rename registers too long,
it cannot execute any more instructions until a previous instruction
is committed and releases a register. This can be mitigated
by increasing the register file size. However, in multi-threaded
systems, the order of committing is independent among threads,
leading to the slow threads occupying more registers as the fast
threads release them. Without making Rt unreasonably large, it is
necessary to have an effective distribution scheme of the rename
registers to prevent the slow threads from hindering the system’s
overall performance.

Fig. 2: Organization of a shared Physical Register File

3. SIMULATION ENVIRONMENT
3.1 Simulator
M-sim [8], a multi-threaded micro-architectural simulation
environment is used to evaluate the performance of the proposed
algorithm. M-sim includes all the features necessary for this
paper, including models of the key pipeline structures such as the
Reorder Buffer (ROB), the Issue Queue (IQ), the Load/Store Queue
(LSQ), separate integer and floating-point register files, and register
renaming. M-sim can simulate a single-threaded processor or a
simultaneous multi-threaded processor. The configuration of the
simulated processor is given in Table 1.

Table 1. : Configuration of the Simulated Processor

Parameter Configuration
Machine Width 8 wide fetch/dispatch/issue/commit
L/S Queue Size 48-entry load/store queue
ROB & IQ size 128-entry ROB, 32-entry IQ

Functional Units 4 Int Add(1/1)
& Latency(total/issue) 1 Int Mult(3/1)/Div(20/19)

2 Load/Store(1/1), 4 FP Add(2/1)
1 FP Mult(4/1)/Div(12/12)

Sqrt(24/24)
Physical registers integer and floating point

as specified in the paper
L1 I-cache 64KB, 2-way set associative

64-byte line
L1 D-cache 64KB, 4-way set associative

64-byte line
write back, 1 cycle access latency

L2 Cache unified 512KB, 16-way set associative
64-byte line

write back, 10 cycles access latency
BTB 512 entry, 4-way set-associative

Branch Predictor bimod: 2K entry
Pipeline Structure 5-stage front-end(fetch-dispatch)

scheduling (for register file access:
2 stages, execution, write back, commit)

Memory 32-bit wide, 300 cycles access latency

3.2 Workloads
The simulated processor is evaluated by running a mixture of
benchmarks from the SPEC CPU2006 benchmark suite [10].
Each program is simulated in a simplescalar environment to be
classified by its ILP in accordance with the procedure mentioned
in Simpoints tool [9]. There are three types of ILP classification,
high ILP, medium ILP (execution bound), and low ILP (memory
bound). Table 2 and Table 3 provide the 4-threaded and 8-threaded
mixes that feature various ILP combinations to represent diversified
workloads.

3.3 Metrics
The sum of individual threads’ IPC is a common metric to measure
the system performance in SMT processors:

Overall IPC =

N∑
i

IPCi (1)

3

International Journal of Computer Applications (0975 - 8887)
Volume 185 - No.29, 2023 August

Table 2. : SPEC CPU2006 4-threaded Mixes

Mix Benchmarks Classification(ILP)
Low Med High

Mix1 libquantum, dealII, gromacs, namd 0 0 4
Mix2 soplex, leslie3d, povray, milc 0 4 0
Mix3 hmmer, sjeng, gobmk, gcc 0 4 0
Mix4 lbm, cactusADM, xalancbmk, bzip2 4 0 0
Mix5 libquantum, dealII, gobmk, gcc 0 2 2
Mix6 gromacs, namd, soplex, leslie3d 0 2 2
Mix7 dealII, gromacs, lbm, cactusADM 2 0 2
Mix8 libquantum, namd, xalancbmk, bzip2 2 0 2
Mix9 povray, milc, cactusADM, xalancbmk 2 2 0

Mix10 hmmer, sjeng, lbm, bzip2 2 2 0

Table 3. : SPEC CPU2006 8-threaded Mixes

Mix Benchmarks Classification(ILP)
Low Med High

Mix1 libquantum, dealII, gromacs, namd, 0 4 4
soplex, leslie3d, povray, milc

Mix2 libquantum, dealII, gromacs, namd, 4 0 4
lbm, cactusADM, xalancbmk, bzip2

Mix3 hmmer, sjeng, gobmk, gcc, 4 4 0
lbm, cactusADM, xalancbmk, bzip2

Mix4 libquantum, dealII, gromacs, soplex, 2 3 3
leslie3d, povray, lbm, cactusADM

Mix5 dealII, gromacs, namd, xalancbmk, 3 2 3
hmmer, cactusADM, milc, bzip2

Mix6 gromacs, namd, sjeng, gobmk, 3 3 2
gcc,lbm, cactusADM, xalancbmk

where N denotes the number of threads that run simultaneously in
the system and IPCi denotes the IPC of each thread.
In addition, to ensure improved overall IPC is not accomplished by
the starvation effect, the Harmonic IPC is adopted. Harmonic IPC
reflects the execution fairness among the threads:

Harmonic IPC = N/

N∑
i

1

IPCi

(2)

4. MOTIVATION
Previous research [16] and [17] have shown that the imbalance in
the distribution of rename registers can be unexpectedly extreme.
Figure 3 shows the average percentage of the rename register
occupied by each thread, sampled every 50 clock cycles, in a
4-threaded environment for mixes from Table 2 with a register
file of size 160. Mixes with small differences among threads do
not exhibit extreme competition. Each bar features one standard
deviation away from the average. A large standard deviation
indicates high fluctuation in the percentage of registers occupied.
On average, Mix 3, Mix 8, Mix 9, and Mix 10 experience extreme
competition indicated by a single thread occupying 65% of the
registers or more in at least 50% of the sampling points. While there
is high fluctuation in Mix 3 and Mix 9, one thread still occupies
approximately 55% and 65% of the registers 84.1% of the time,
respectively. Such dominance can result in heavy performance
penalties to the entire system.

Fig. 3: Average Register Occupancy of Each Thread

4.1 Register File Capping Technique
In order to prevent a situation where a single thread dominates,
a capping technique was proposed [16]. This technique limits
the number of rename registers a thread can use at any given
point in time, which is referred to as the ”cap value”. While
this fixed-capping approach has shown significant potential, it
is not adaptable to varying workloads in real time. In addition,
this fixed-capping approach sets a global cap for all threads.
This disregards the different needs of each thread. The proposed
approach considers the thread’s demand for rename registers,
which is determined by the number of L2 cache misses and the
utilization of the registers that the thread is permitted to use. The
”cap value” is adjusted accordingly to ensure that threads that
benefit from additional registers are given more, while threads that
are not utilizing all of their allocated registers have them reallocated
for better distribution.

4.2 Reference Systems for Performance Comparison
To present an extensive performance comparison, the default
M-sim without any modification is used as a baseline, as well as
two other capping algorithms as reference systems. One is a fixed
capping approach and the other is a simple intelligent capping
approach.
For the fixed capping approach, all threads are capped at one
value throughout the entire simulation. Tests are performed on
32 out of all the possible cap values to find the one which
provides maximum returns on improvement. This is a fixed and
global capping approach. It does not adapt to the workload and
all the threads have the same cap value. This approach is not
practical because it is not possible to determine the best cap
value beforehand. However, it represents the best improvement a
fixed and global capping approach can achieve for the sake of
comparison.
The simple intelligent control is also a global capping technique,
however, it dynamically adjusts the cap value based on the change
in the number of instructions committed. In this approach, the cap
value starts as 1

4
Rr . After every 5,000 clock cycles, the cap value

either increments or decrements based on the direction. At the
beginning of the simulation, the direction is not determined. It is
up to the designer to choose the initial direction. For this paper,
the initial direction is up. Since the initial direction is up, at clock
cycle 5,000, the cap value increases by 1. At clock cycle 10,000, the
number of instructions committed within this past 5,000 clock cycle

4

International Journal of Computer Applications (0975 - 8887)
Volume 185 - No.29, 2023 August

window is compared with the number of instructions committed
in the previous window. If the number of committed instructions
increases, maintain the same direction when the next window start.
On the other hand, if it decreases, the direction is reversed.

5. PROPOSED METHOD
This section introduces the Physical-Register-Allocation algorithm
that dynamically adjusts the cap value of each thread based on the
number of L2 cache misses, depicted as L2m, and rename register
need within a defined time window. The algorithm is designed
to ensure optimal utilization of the rename registers and prevent
extremely imbalanced distribution.

5.1 Register Demand and L2 cache miss
A high number of L2m is directly correlated with low IPC. When
a program has a high number of L2m, it may hold registers for a
longer amount of time. Since the rename is done in Round-Robin,
programs that hold registers longer continue to incur more registers.
This may lead to programs with high L2m holding on to more
registers than others, which affects other programs’ execution
flow. Inconveniently, using more registers does not always allow
these programs to perform better. To examine the behavior of
the programs, each is simulated in a single-threaded environment
with Rt = 128 to observe its IPC and L2m. Each program has
Rt−Ra = 96 extra registers to determine how well it can perform
when given a large amount of rename registers. For the rest of this
paper, the IPC from this single-threaded environment is denoted as
Single-Threaded IPC. Each program is simulated with an increased
cap value every time to observe how different cap values affect its
IPC. Figure 4 shows the percentage of the Single-Threaded IPC
each program reaches at increasing cap value starting at 4. Low
ILP threads and some medium ILP threads reach up to 90% of their
Single-Threaded IPC while using 6 rename registers or less while
some medium ILP threads and high ILP threads need an amount
close to 32 registers or more to reach their Single-Threaded IPC. To
draw a more distinct correlation, Figure 5 shows the cap value to
reach 90% of the Single-Threaded IPC and the total L2m. The cap
value to reach 90% performance correlate inversely with the total
L2m. It is clear that the fewer L2 cache misses there are, the more
register the thread demands to get close to its Single-Threaded IPC.

Fig. 4: Total number of L2 Cache Misses and Cap Value to Reach 90%
Unrestricted Performance for Each Benchmark

Fig. 5: Total number of L2 Cache Misses and Cap Value to Reach 90%

Unrestricted Performance of each Benchmark

5.2 Proposed Algorithm
The analysis of L2m and the register demand of the programs
is the foundation for the proposed algorithm. The objective of
the algorithm is to give programs with higher L2m a lower cap
value and give programs with lower L2m a higher cap value
while keeping a balance among all the cap values. This prevents
programs with higher L2m from unnecessarily occupying more
registers while leaving more registers for programs with lower
L2m to maximize their performance. How the algorithm works
is as follows. At the end of every window (each window is 2000
clock cycles), the threads are ranked based on their L2m in that
window. To balance out the adjustments, the cap values of half of
the threads with lower L2m are incremented while the cap values
of the other half with higher L2m are decremented. The flowchart
of the proposed algorithm is shown in Figure 6.
The algorithm has parameters in place to avoid pulling the cap
value too low, pushing it too high, and having a sum of cap values
much greater than the number of registers available. Cl, Ch, Cm,
and Cs are used to depict the Cap Lower Limit, Cap Upper Limit,
Maximum Sum Of Caps, and Sum Of Caps accordingly. While
adjusting the cap values, besides looking at the L2m, it is also
important to ensure that the sum of caps does not surpass a certain
limit. That limit is Cm. Whether a thread can rename also depends
on factors other than its cap value, therefore with a Cm = Rr ,
some physical registers are left underutilized. By having

Cm = Rr + 2N (3)

it leaves a small headroom for threads that can rename to utilize
what other threads cannot, despite occupying less than the cap
value. Naturally, it is necessary to ensure that Cs < Cm while
performing adjustments. 1

N
Cm is the starting cap value for all

threads at the beginning of the simulation. Programs with a high
L2m do not gain much improvement with a high cap value. Many
of them reach their Single-Threaded IPC with as little as 6 rename
registers. On the other hand, programs with a low number L2m
have a higher demand for rename registers. On average, they need
18 registers to reach 90% of their Single-Threaded IPC, with some
needing more than 32. It is important to allocate as much register
to such programs as possible without staving programs with high
L2m. As a compromise, the hard lower limit is set as

Cl = 4 (4)

5

International Journal of Computer Applications (0975 - 8887)
Volume 185 - No.29, 2023 August

Fig. 6: Flowchart of proposed algorithm

While L2m is a good indication of high ILP programs, it does
not always reflect low register occupancy delay. Therefore, there
needs to be an upper limit to the cap value to prevent a thread from
holding on to many registers for a long period of time. Due to the
complementary nature of the adjustment process (half increments
and half decrements), and an even portion is 1

N
Cm registers if

the rename registers are split evenly, the upper limit is defined as
Ch = 1

N
Cm + (1

N
Cm − 4) or

Ch =
2

N
Cm − 4 (5)

For example, consider a 4-threaded system with a register file size
of 160. Rr = 32 therefore Cm = 40. If two threads consistently
have lower L2m than the other two, the threads with lower L2m
will have cap values of 16 (Ch = 16) while the other two will have
cal values of 4 (Cl = 4).

6. SIMULATION RESULTS
M-sim configured as Table 1 is the tool to simulate the proposed
algorithm to compare with the default settings using the mixes
in Table 2 and Table 3 for 4-threaded workload and 8-threaded
workload.
Figure 7 and Figure 8 show the improvement of the proposed
algorithm on different register file sizes, compared to the
three reference systems for 4-threaded workload and 8-threaded
workload, respectively.

Fig. 7: IPC Percentage Improvement vs. Register File Size on the
4-threaded Workload

Fig. 8: IPC Percentage Improvement vs. Register File Size on the
8-threaded Workload

The proposed algorithm results in considerable performance
improvement compared to the three reference systems. Compared
to the default system, the proposed algorithm performs up to
63% and 39% better for the 4-threaded case and 8-threaded case,
respectively. In the 8-threaded case, the algorithm not only provides
a substantial improvement over the default but there is also a big
gap when compared to the fixed capping and intelligent capping
techniques. To our surprise, the simple intelligent algorithm
trails behind the fixed capping despite its dynamic nature. This
leads us to believe that while the simple intelligent capping
is dynamic, it is overly sensitive to the change in the number
of instructions committed. A sudden spike in the number of
instructions committed can lead to it making adjustments opposite
to the behavior of the threads. The fixed capping also represents
the best-case scenario for the fixed and global approach while
the intelligent control is only a simple implementation of the
dynamic and global approach. The combination of dynamic and

6

International Journal of Computer Applications (0975 - 8887)
Volume 185 - No.29, 2023 August

thread-specific cap value adjustment featured in the proposed
algorithm results in superior performance gain compared to both
reference algorithms.
While there is a trend between improvement and register file size in
the 4-threaded case, the same cannot be said about the 8-threaded
case. The improvement peaks at Rt = 160 and decreases as the
register file size increases on the 4-threaded workload. As the
register file size increases, the competition is not as fierce. The
more resources the system has, the effect of the distribution system
decreases. Therefore, even when one or a few threads hold on to
too many registers, there are enough available registers for the other
threads to still perform well. This phenomenon does not manifest
in the 8-threaded case for the proposed algorithm. One possible
explanation is the diversity of ILP categories in the mixes. All
but one mix in the 8-threaded workload contains programs from
all three ILP categories. With more mixes containing threads at
opposite ends of the ILP spectrum, more threads are more likely
to have their cap value hitting the bottom limit of Cl = 4, leaving
more registers for threads with lower L2m. Figure 5 shows that
some programs cannot reach their Single-Threaded IPC even when
given 32 registers, this means that the performance improvement
can increase as the register file size increases for mixes that have
multiple programs at opposite ends of the ILP spectrum in the
8-threaded workload.
For further examination, let us take a closer look at the 4-threaded
workload at Rt = 160. Figure 9 presents the IPC improvement of
each mix.
As mentioned above, Mix 3, Mix 8, Mix 9, and Mix 10 exhibit
extreme competition indicated by the dominance of one thread
while the other mixes do not exhibit such extreme competition.
Figure 9a and Figure 9b show the %IPC improvement of these two
groups. The proposed algorithm performs 110% better on average
compared to the default in extreme cases. Mix 9 and 10 feature
the highest improvement, while the improvement for Mix 8 is not
as substantial. In the regular group, there is also a considerable
average improvement of 32%.

6.1 Execution Fairness
It is important for a distribution algorithm to not sacrifice execution
fairness to improve overall performance. The improvement
would be less meaningful if the algorithm devotes the majority
of resources to fast-running threads while critically throttling
slower-running threads. To demonstrate the execution fairness of
the proposed algorithm, Figures 10 and 11 demonstrate the average
IPC improvement on the 4-threaded workload and 8-threaded
workload with various register file sizes, respectively.
The proposed method achieves up to 54% and 19% improvement
over the default system for the 4-threaded workload and 8-threaded
workload respectively. It is fair to say that the algorithm improves
the overall performance without sacrificing execution fairness.
Interestingly enough, except for the case where Rt = 320, both the
fixed capping and intelligent capping cause a decrease in harmonic
IPC in the 8-threaded workload. The combination of global cap
value and diversity of the 8-threaded mixes is a potential culprit.
The same cap value for all threads despite them being a part
of multiple ILP categories is not ideal. Especially for the simple
intelligent capping method where the cap value is driven by the
number of instructions committed overall, which closely correlates
to the total IPC.

(a) Regular Cases

(b) Extreme Cases

Fig. 9: IPC Improvement With Rt = 160 On All 4-Threaded Mixes

7. CONCLUSION
This paper proposes an optimized register-file-distribution method,
based on the number of L2 cache misses and the demand for
renaming registers. The algorithm is developed by observing how
well each program performs, given various cap values. Correlating
this with the number of L2 cache misses, the algorithm adjusts
the cap values of each thread to meet its demand while not
compromising other threads. This method achieves promising
results compared to the default case and two other reference
systems. The findings in this paper open a path for potential future
improvements. The per-thread cap values adjustment mechanism
presented in this paper is only one of the possible ways to balance
the cap values among threads. There are other mechanisms to be
explored. While the number of L2 cache misses is a good indicator
of register demand, there are still gray areas. In addition, the
correlation may only hold up for the set of programs presented
in the paper. The search for another parameter or a parameter to
be used in conjunction with L2 cache misses has the potential

7

International Journal of Computer Applications (0975 - 8887)
Volume 185 - No.29, 2023 August

Fig. 10: Harmonic IPC Percentage Improvement vs. Register File Size
on the 4-threaded Workload

Fig. 11: Harmonic IPC Percentage Improvement vs. Register File Size
on the 8-threaded Workload

to improve the performance, as well as make the algorithm more
adaptable to a broader variety of workloads.

8. REFERENCES
[1] Shane Carroll and Wei-Ming Lin. Latency-aware write buffer

resource control in multi-threaded cores. Int. J. Distrib.
Parallel Syst.(IJDPS), 7, 2016.

[2] Francisco J Cazorla, Alex Ramirez, Mateo Valero, and
Enrique Fernández. Dynamically controlled resource
allocation in smt processors. In 37th International Symposium
on Microarchitecture (MICRO-37’04), pages 171–182. IEEE,
2004.

[3] Hiroaki Hirata, Kozo Kimura, Satoshi Nagamine, Yoshiyuki
Mochizuki, Akio Nishimura, Yoshimori Nakase, and Teiji
Nishizawa. An elementary processor architecture with
simultaneous instruction issuing from multiple threads. In

Proceedings of the 19th annual international symposium on
Computer architecture, pages 136–145, 1992.

[4] Sherifdeen Lawal, Yilin Zhang, and WM Lin. Prioritizing
write buffer occupancy in simultaneous multi-threading
processors. Journal of Emerging Trends in Computing and
Information Sciences, 6(10):515–522, 2015.

[5] Jack L Lo, Sujay S Parekh, Susan J Eggers, Henry M
Levy, and Dean M Tullsen. Software-directed register
deallocation for simultaneous multithreaded processors.
IEEE Transactions on Parallel and Distributed Systems,
10(9):922–933, 1999.

[6] Teresa Monreal, Antonio González, Mateo Valero, José
González, and Vı́ctor Viñals. Dynamic register renaming
through virtual-physical registers. Journal of Instruction
Level Parallelism, 2:4–16, 2000.

[7] Tilak Kumar Develapura Nagaraju, Caleb Douglas, Wei-Ming
Lin, and Eugene John. Effective Dispatching in Simultaneous
Multithreading (SMT) Processors by Capping Per-thread
Resource Utilization. PhD thesis, University of Texas at San
Antonio, 2011.

[8] Joseph Sharkey, Dmitry Ponomarev, and Kanad Ghose.
M-sim: a flexible, multithreaded architectural simulation
environment. Techenical report, Department of Computer
Science, State University of New York at Binghamton, 2005.

[9] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad
Calder. Automatically characterizing large scale program
behavior. ACM SIGPLAN Notices, 37(10):45–57, 2002.

[10] SPEC. Standard performance evaluation corporation.
https://www.spec.org.

[11] Dean M Tullsen, Susan J Eggers, Joel S Emer, Henry M
Levy, Jack L Lo, and Rebecca L Stamm. Exploiting choice:
Instruction fetch and issue on an implementable simultaneous
multithreading processor. In Proceedings of the 23rd annual
international symposium on Computer architecture, pages
191–202, 1996.

[12] Dean M Tullsen, Susan J Eggers, and Henry M Levy.
Simultaneous multithreading: Maximizing on-chip
parallelism. In Proceedings of the 22nd annual international
symposium on Computer architecture, pages 392–403, 1995.

[13] Wenjun Wang and Wei-Ming Lin. Real-time physical
register file allocation with neural networks for simultaneous
multi-threading processors. International Journal of High
Performance Systems Architecture, 8(3):146–158, 2018.

[14] Yilin Zhang, Marcus Hays, Wei-Ming Lin, and Eugene
John. Autonomous control of issue queue utilization for
simultaneous multi-threading processors. In Proceedings of
the High Performance Computing Symposium, pages 1–8,
2014.

[15] Yilin Zhang and Wei-Ming Lin. Capping speculative traces
to improve performance in simultaneous multi-threading
cpus. In 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, pages
1555–1564. IEEE, 2013.

[16] Yilin Zhang and Wei-Ming Lin. Efficient physical register file
allocation in simultaneous multi-threading cpus. In 33rd IEEE
International Performance Computing and Communications
Conference (IPCCC 2014), Austin, Texas, 2014.

[17] Yilin Zhang and Wei-Ming Lin. Intelligent usage
management of shared resources in simultaneous
multi-threading processors. In Proceedings of the

8

International Journal of Computer Applications (0975 - 8887)
Volume 185 - No.29, 2023 August

International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA), page 27.

The Steering Committee of The World Congress in Computer
Science, Computer . . . , 2015.

9

	Introduction
	Background
	Simultaneous Multi-Threading
	Physical Register File

	Simulation Environment
	Simulator
	Workloads
	Metrics

	Motivation
	Register File Capping Technique
	Reference Systems for Performance Comparison

	Proposed Method
	Register Demand and L2 cache miss
	Proposed Algorithm

	Simulation Results
	Execution Fairness

	Conclusion
	References

