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ABSTRACT 

Biological S-systems use power-law-based differential 

equations to show net interactive strength between constitutes. 

In medium-sized or large-scale systems, dynamic constants of 

S-systems represent the net value of the action strength, rather 

than the actual strength. As a result, S-systems becomes the 

most potential model for large-scale systems. Moreover, 

biological systems are always subject to uncertainty and noise. 

Fuzzy logic controllers are developed for handing uncertainty, 

imprecision, and complexity in the real world. Noise, 

uncertainty, and the interactive information are all implied in 

fuzzy if-then rules.  In this study, the previously proposed 

optimal fuzzy controller is used to smoothly regulate biological 

systems to target states with minimum input consumption. Then, 

an integrated fuzzy proportional-integral-derivative controller 

(integrated fuzzy PID) and a pole-placement-based fuzzy 

controller for biological S-systems are proposed. Additionally, 

these fuzzy controlled systems are all visualized in block 

diagrams to provide biological researchers a friendly 

environment. For these three kinds of fuzzy controllers, only 

three control rules are used to control a cascade biological 

system. Simulation results shows that nearly perfect results are 

achieved for all these three controllers. 
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1. INTRODUCTION 
Two well-known biological systems (S-systems and Michaelis-

Menten kinetic systems) are based on biochemistry system 

theory and described as highly nonlinear differential equations. 

The modelling of generalized Michaelis-Menten systems is a 

bottom-up process. Systems are gradually constructed from 

small systems [1] to medium-sized systems [2] and then 

expanded to large systems [3]. Parameter estimation needs a 

large amount of experimental data and doing experiments 

repeatedly. The modelling of S-systems is a top-down process 

and parameters are estimated through computational 

approaches. Good generalization properties let S-system 

become the most potential model for large-scale systems. Liu 

and coworkers used the S-system to describe p53 signaling 

pathway mechanism [4]. S-system modelling is a multi-

objective multi-constraints optimization problem. Various 

intelligently computational technologies were recently 

developed to achieve S-system modelling [5-11]. 

Fuzzy set theory shows great potential in dealing with 

biological data and modelling biological systems because of the 

use of linguistic variables and fuzzy relationship.  Luo and An 

took a review of fuzzy set theory in device control, biological 

control, classification and pattern recognition, and prediction 

and association [12]. Komlyama and coworkers emphasized 

that fuzzy interactions always exist in cell macromolecular 

nanoarchitectonics [13]. Abyad and coworkers used T-S fuzzy 

models to describe biomass growth processes and then optimal 

fuzzy control was used to control the process [14].  Bordon et 

al. used fuzzy logic to achieve the quantitatively modelling of 

repressilators with unknown kinetic data [15]. Liu and 

coworkers introduced fuzzy Petri nets for biological system 

modelling and discussed the capacities and applications [16]. 

They further proposed a hybrid of continuous Petri nets and 

fuzzy inference systems to achieve integrated modelling of 

biological systems with uncertainties [17]. Zhu and coworkers 

used fuzzy neural networks as inverse systems to achieve 

decoupling control of marine biological enzyme fermentation 

processes [18]. An adaptive T–S type neural-fuzzy scheme was 

proposed to achieve the fuzzy modeling of multi-inputs multi-

outputs biological systems (small-scale genetic networks, 

branch pathways and cascade networks systems) [6]. The 

number of generated rules depends on the number of input 

variables of underlying systems and the division of the input 

space: There are 3𝑛  rule numbers for an 𝑛 -dimensional 

biological system with each input variable being divided into 

three intervals. To reduce the number of rules, researchers tried 

to construct biological fuzzy systems with a fixed number of 

rules. However, to determine the number of rules which are 

sufficient to ensure the accuracy researchers should fully 

understand the underlying biological systems. This will lose the 

essence of adaptive T–S type neural-fuzzy modeling.  

Linear optimal control (LQR) gives the best possible 

performance for linear systems. Fuzzy modeling can mimic a 

real nonlinear system well. Fuzzy control supports more robust 

control than linear control does. Therefore, the previously 

proposed optimal fuzzy controller which is based on T-S fuzzy 

systems and is an integration of LQR and fuzzy control have 

practical advantages [19, 20]. The optimal fuzzy controller has 

been successfully applied to magnetic suspension system, 4-

pole and 8-pole active magnetic bearing system, inverted 

pendulum system, half-car active suspension system, and even 

Taiwan iTS-1 experimental car.   

PID controllers are still extensively used in industry process 

due to simple structures with only error and error derivative as 

inputs and model-free   advantages. Parameter tuning is an 

essential issue for the performance of PID controllers.   Ziegler-

Nichols methods are usually used to estimate the PID 

parameters [21]. Various computational approaches are 

proposed to achieve optimally auto-tuning of the parameters 

[22-27]. Additionally, the performance of PID controllers 

dramatically reduces as the nonlinearity and complexity of the 

underlying systems increase.  Fuzzy   gain scheduling is a 

general way to improve the quality of PID control of nonlinear 

systems [28]. Hermassi and coworkers used fuzzy gain 

scheduling PID controllers to develop vector control strategy 

of grid-connected wind energy conversion systems [29]. 

Xhaiyatham and Ngamroo used this technology for the 
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stabilization of superconducting magnetic energy storage of 

power system [30]. A hybrid of fuzzy logic control and PID 

controller is also a way to increase the robustness and accuracy 

of PID-controlled systems. Liu and coworkers used fuzzy PID 

controller to achieve position control of manipulator working 

space, wherein particle swarm optimization is used to online 

self-tuning PID parameters [25]. Phu and coworkers combined 

fuzzy PID controllers with fuzzy control process which is 

expressed as linear-form fuzzy differential equation [31]. Cao 

and coworkers proposed 𝐻∞ fuzzy PID control synthesis for T-

S fuzzy systems [32].  

Dey and Ayyagari used fuzzy number to express parametric 

uncertainties and discussed fuzzy pole placement technology 

for robust PID controller design [33]. Bai and coworkers used 

fuzzy Lyapunov function method to solve linear matrix 

inequality pole placement problem [34]. In this study, three 

control methods for biological systems are proposed. First, the 

previously proposed optimal fuzzy controller was used for 

biological systems and the control process was visualized to 

provide biological researchers a friendly environment. Second, 

an integrated fuzzy PID control scheme for biological or 

physical systems is constructed to achieve satisfactory 

performance. Finally, a pole-placement-based fuzzy control is 

proposed and examined.                                                                      

2. OPTIMAL FUZZY CONTROL 

VISULIZATION 
For nonlinear physical or biological systems described by T-S 

fuzzy models [19, 20]: (𝑅𝑖  denotes the 𝑖th rule of the fuzzy 

model, 𝑖 = 1, … 𝑟.) 

𝑅𝑖:If 𝑥1is 𝑇1𝑖 , … , 𝑥𝑛is 𝑇𝑛𝑖 ,                                                                       

then 𝑋̇(𝑡) = 𝐴𝑖(𝑡)𝑋(𝑡) + 𝐵𝑖(𝑡)𝑢(𝑡),   𝑌(𝑡) = 𝐶(𝑡)𝑋(𝑡),  (1) 

where 𝑥1 … , 𝑥𝑛  are system states, 𝑇1𝑖 , … 𝑇𝑛𝑖  are fuzzy terms, 

𝑢(𝑡)  and 𝑌(𝑡) = [ 𝑦1, … 𝑦𝑛′]𝑇 are, respectively, system input 

vectors and system output vectors. The desired rule-based 

fuzzy controller is in the form of 

𝑅𝑖:If 𝑦1is 𝑆1𝑖 , … , 𝑦𝑛′is 𝑆𝑛′𝑖 ,  then 𝑢(𝑡) = 𝑟𝑖(𝑡),   𝑖 = 1, … 𝛿,  (2) 

where 𝑆1𝑖 , … 𝑆𝑛𝑖  are the input fuzzy terms of the 𝑖th control rule. 

The asymptotically local optimal control law is [19, 20] 

                            𝑟𝑖
∗(𝑡) = −𝐵𝑖

𝑇𝜋̅𝑖𝑋∗(𝑡),     (3) 

and their blending global minimizer, 𝑢∗(𝑡) =

∑ ℎ𝑖
𝑟
𝑖=1 (𝑋∗(𝑡))𝑟𝑖

∗(𝑡), is able to minimize 

     𝐽(𝑢(∙)) = ∫ (𝑋𝑇∞

0
(𝑡)𝐿𝑋(𝑡) + 𝑢𝑇(𝑡)𝑄𝑢(𝑡))𝑑𝑡,      (4) 

where 𝑋𝑇(𝑡)𝐿𝑋(𝑡) is state trajectory penalties and 𝑢𝑇(𝑡)𝑄𝑢(𝑡) 

is fuel consumption with 𝐿  and 𝑄  are symmetric positive 

semidefinite matrices.  Based on the essence of the dynamic 

programming, the quadratic optimization problem becomes a 

successively ongoing dynamic programming regarding the 

state resulting from the previously decision [20]. The fuzzy 

subsystem in Eq. (1) and the fuzzy control rule in Eq. (2) have 

a one-to-one correspondence (𝑖th-rule to 𝑖th-rule), and at any 

time instant the overall behavior of the fuzzy system is a fuzzily 

blending result of all fuzzy subsystems [20]. The proposed 

optimal fuzzy controller has been successfully applied to 

magnetic suspension system, 4-pole and 8-pole active magnetic 

bearing system, inverted pendulum system, half-car active 

suspension system, and even Taiwan iTS-1 experimental car.  

   Now, a cascade pathway in Fig. 1 is used to examine the 

performance of the optimal fuzzy controller in regulating the 

biological system back to desired states. The entire controlling 

process is visualized in the Simulink environment for 

biological researchers to get the points easily and then to apply 

to other biological systems. 

--
𝒙𝟏 

𝒙𝟐 

𝒙𝟑 

𝒙𝟒 

 

Fig 1: Cascade pathways [35] 

The cascade pathway possesses an independent variable 𝑥4 to 

produce mid-product 𝑥1, and then to generate mid-product 𝑥2 

which induces the generation of the final product 𝑥3.  The 

generation reaction from the source 𝑥4  to 𝑥1  is inhibited by 

both mid-product  𝑥2  and 𝑥3.  The dynamic behavior is 

described as the following S-system in Eq. (5). 

𝑥̇1 = 10𝑥2
-0.1𝑥3

-0.05𝑥4 − 5𝑥1
0.5, 

𝑥̇2 = 2𝑥1
0.5 − 1.44𝑥2

0.5, 

𝑥̇3 = 3𝑥2
0.5 − 7.2𝑥0.5.                       (5) 

All the reaction constants (exponent order and rate constants) 

are cited from Tsai and Wang’s paper [35].   

◼ T-S fuzzy modelling of S-systems 

Optimal fuzzy controllers show fuzzing blending behavior of 

the locally optimal control laws in Eq. (3) which are based on 

T-S fuzzy systems, 

𝑥̇𝑖 = 𝑣𝑖
+ − 𝑣𝑖

−

= 𝛼𝑖 ∏ 𝑥𝑗

𝑔𝑖𝑗

𝑛+𝑚

𝑗=1

− 𝛽𝑖 ∏ 𝑥𝑗

ℎ𝑖𝑗

𝑛+𝑚

𝑗=1

, 𝑖 = 1, … 𝑛 (6) 

where 𝑔𝑖𝑗  and ℎ𝑖𝑗  denote the net interactive strength from 𝑥𝑗  

on 𝑥𝑖 , 𝛼 and 𝛽𝑖  are the rate constants. The 𝑥𝑖 , 𝑖 = 1, … 𝑛 are 

dependent variables and 𝑥𝑛+1, … 𝑥𝑛+𝑚  are independent 

variables, the values of which remains constant during a period 

of an experiment. To construct the corresponding optimal fuzzy 

controller of the cascade pathway biological system, the S-

systems in Eq. (5) must transform to their corresponding T-S 

fuzzy systems. A neural fuzzy scheme was proposed to 

construct T-S fuzzy systems of biological systems [6]. A fuzzy 

prototype was further proposed to describe cell growth 

signaling mechanisms, wherein four nominal cases were 

concerned: resting tissue cells, resting blood vessel cells, tissue 

cells subjected to additional stimuli and cells in blood vessel 

[36]. Here, a region nonlinear transformation is proposed to get 

the corresponding T-S fuzzy model for achieving optimal 

control purpose. 

The T-S fuzzy system can be realized as a nonlinear system 

with several linear subsystems which describing local features 

(regions) of the underlying system, and the local feature can be 

a certain organizational environment or experimental 
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conditions in [37]. Equation (7) is a locally linearized system 

of the S-system [38]: 

𝑧̇(𝑡) = (𝐴𝐷。𝐸) 𝑧(𝑡) + (𝐴𝐼。𝐹) 𝑢(𝑡) 

                          = Å𝑧(𝑡) + ℬ𝑢(𝑡).                                    (7) 

whrein 。denotes Hadamard product, the perturbed dependent 

variables 𝑧𝑖 ≜ 𝑥𝑖 − 𝑥̅𝑖 , 𝑖 = 1, … 𝑛 , the perturbed independent 

variables 𝑢𝑙 ≜ 𝑟𝑙 − 𝑟̅𝑙 , 𝑙 = 1, … 𝑚,  and the system parameters 

𝐴𝐷 = [𝑔𝑖𝑗 − ℎ𝑖𝑗]
𝑗=1,…𝑚

𝑖=1,…𝑛
, 𝐴𝐼 = [𝑔𝑖𝑗 − ℎ𝑖𝑗]

𝑙=1,…𝑚

𝑖=1,…𝑛
, 𝐸 =

[𝑣̅𝑖
+ 𝑥̅𝑗⁄ ]𝑗=1,…𝑛

𝑖=1,…𝑛
 and 𝐹 = [𝑣̅𝑖

− 𝑟̅𝑙⁄ ]𝑙=1,…𝑚
𝑖=1,…𝑛 .  The upper bound 

notation denotes variables in equilibrium. The 𝐸, 𝐹 relate to an 

operating point or an equilibrium point for linearization. 

Different set of independent variables (variable experimental 

conditions) generate different values of 𝐸 and 𝐹, and then the 

corresponding local dynamic behavior is also different. For the 

cascade pathway in Eq. (5), the system matrix 𝐴𝐷 =

[
−0.5 −0.1 −0.05
0.5 0.5 0
0 0.5 −0.5

] and 𝐴𝐼 = [
1
0
0

]. Additionally, the steady 

state values (equilibrium points) are closely related to 

independent variables [38, 39]: 

𝑌̄𝑑 = 𝐴𝐷
† ⋅ 𝑏 − (𝐴𝐷

†  𝐴𝐼) ⋅ 𝑌𝐼,  (8) 

where 𝐴𝐷
†

 is the inverse or the pseudoinverse of 𝐴𝐷 , 𝑦𝑖 =

ln 𝑥𝑖 , 𝑌̅𝑑 = [𝑦̅𝑗]𝑗=1…𝑛and 𝑌𝐼 = [𝑦𝑗]𝑗=𝑛+1…𝑛+𝑚 , 𝛼𝛽𝑖 = ln(
𝛽𝑖

𝛼𝑖
) 

and letting matrices  𝑏 = [𝛼𝛽𝑖]𝑖=1…𝑛 . The 𝑌̅𝑑  denotes 𝑌𝑑 in 

equilibrium. The independent variables are used as the inputs 

of T-S fuzzy system, and the number of fuzzy rules depends on 

the division number of the input space. A rule represents a 

subsystem, describing the locally dynamic behavior: 

  𝑹𝒍: IF 𝑢1 is 𝑇1𝑙 , 𝑢2 is 𝑇2𝑙, …, 𝑢𝑚 is 𝑇𝑚𝑙   

then 𝑧̇(𝑡) = Å𝑙𝑧(𝑡) + ℬ𝑙𝑢(𝑡),    (9) 

where Å𝑙  and ℬ𝑙  is the Å and ℬ in Eq. (7), which depend 

on the values of independent variables. Figure 2 is the 

schematic diagram of input space segmentation and region 

linearization for constructing T-S fuzzy systems. 

 

Fig 2: Schematic diagram of region linearization 

Three experimental conditions are chosen as operating points: 

 𝑥4 = 0.1 ( rule 𝑅1 ),  𝑥4 = 0.75 (rule 𝑅2 )  and  𝑥4 =

3 ( rule 𝑅3). Based on Eq. (8), the corresponding steady state 

values are obtained through the following Matlab function: 

function x_ss=Sstate(u,A_d,A_I,b) 

Yi=log(u);  %u=x4 

Yd=inv(A_d)*(b'-A_I*Yi);   

x_ss=exp(Yd); 

end 

The x_ss, A_d, A_I denote, respectively, the steady state 𝑋̅,  the 

system matrices 𝐴𝐷  and 𝐴𝐼 .  For the three experimental 

conditions the estimated steady states are 𝑋̅ = [𝑥̅1 , 𝑥̅2, 𝑥̅3] 
=[0.0827, 0.1595, 0.0277] for  𝑥4 = 0.1,  𝑋̅= [1.8347, 3.5391, 

0.6144] for  𝑥4 = 0.75 and 𝑋̅ = [15.4812, 29.8633, 5.1846] 

for 𝑥4 = 3. Here, the fuzzy system is  

R1: If  𝑥4 is low, then 𝑧̇(𝑡) = Å1𝑧(𝑡) + ℬ1𝑢(𝑡), 

R2: If  𝑥4 is medium, then 𝑧̇(𝑡) = Å2𝑧(𝑡) + ℬ2𝑢(𝑡), 

R3: If  𝑥4 is high, then 𝑧̇(𝑡) = Å3𝑧(𝑡) + ℬ3𝑢(𝑡),    (10) 

wherein 

Å1 = [
−8.6953 −0.9015 −2.5964
3.4781 −8.031 0

0 3.7564 −21.6367
], 

Å2 = [
−1.8475 −0.1914 −0.5511
0.7383 −0.3827 0

0 0.7973 −4.5927
], 

Å3 = [
−0.6354 −0.0659 −0.1897
0.2542 −0.1318 0

0 0.2745 −1.5810
], 

 ℬ1 = [
14.3756

0
0

],      ℬ2 = [
9.0300

0
0

],          

ℬ3 = [
6.5577

0
0

],                                                                                   

where Å1, ℬ1 for subsystem 1 (rule 𝑅1), Å2, ℬ2 for subsystem 

2 (rule 𝑅2), and  Å3, ℬ3 for subsystem 3 (rule 𝑅3). 

◼ Optimal fuzzy controller 

The fuzzy control law in Eq. (3) for the 𝑖th fuzzy subsystem is 

further expressed as a feedback gain  𝐾𝑖; 
                       𝑟𝑖

∗(𝑡) = −𝐵𝑖
𝑇𝜋̅𝑖𝑋∗(𝑡) = −𝐾𝑖𝑋∗(𝑡),      (11) 

and the optimal fuzzy controller for the entire system becomes  

       𝑢∗(𝑡) = − ∑ ℎ𝑖
𝑟
𝑖=1 (𝑋∗(𝑡))𝐾𝑖𝑋∗(𝑡).        (12) 

By choosing the penalty matrix of 𝐽(𝑢(∙)) in Eq. (4) as 𝐿 =

[
1000 0 0

0 1000 0
0 0 1000

] and 𝑄 = 1 and using the lqr function 

of the Matlab, 

                      𝐾𝑖 = 𝒍𝒒𝒓(𝐴𝑖 , 𝐵𝑖 , 𝐿, 𝑄),                             (13) 

the feedback gain 𝐾𝑖 = [𝑘1, 𝑘2, 𝑘3] is then estimated: 

 𝐾𝑖 = [31.1721 19.4427, 0.1862] for  𝑥4 = 0.1,  

   𝐾𝑖 = [1.8347 3.5391 0.6144] for  𝑥4 = 0.75, 

       𝐾𝑖 = [15.4812 29.8633 5.1846] for  𝑥4 = 3.    (14) 

Figure 3 is the visualization graph for the optimal fuzzy 

controlled system, wherein the fuzzy controller (denoted by the 

blue dash line) and the S-system (denoted by the purple dash 

line) are shown in distinct block diagrams. The  𝑥2 inhibits the 

generation of both 𝑥1 and  𝑥3. So, we choose  𝑑𝑥 = 𝑥2 −  𝑥̅2 as 

the concentration deviation to estimate the feedback law  𝑑𝑢 =
𝐾 ∙ 𝑑𝑥, where 𝐾 is the output of fuzzy controller. Only three 

simple fuzzy rules are used:  

R1: If  𝑥4 is low, then 𝐾1 = [31.1721 19.4427 0.1860], 
R2: If  𝑥4 is medium, then 𝐾2 = [31.4695 19.5353 0.3073], 
R3: If 𝑥4is high, then 𝐾3 = [31.5500 19.5599 0.3415].    (15) 

 

Dry-lab experiments are conducted at  𝑥4 = 1 and the initial 

condition 𝑋(0) = [0.2 0.5 0.1] . Figure 3 shows the block 

diagram for the controlling process of the cascade system, 

wherein 𝑑𝑢 = − ∑ ℎ𝑖
𝑟
𝑖=1 (𝑋∗(𝑡))𝐾𝑖 ∙ 𝑑𝑋 because that the 

controller is based on perturbed variable 𝑑𝑋. The simulation 

results  (denoted by the red solid line) are shown in the right-

down corner of Fig. 3. The estimated states perfectly meet the 



International Journal of Computer Applications (0975 – 8887) 

Volume 185 – No. 3, April 2023 

56 

desired states. Even the independent variables are outside of the 

range of [0 3], for example, in the case of  𝑥4 = 3.5 the 

estimated states 𝑋 =
[19.624543977938   37.85588479856   6.5721819724842] 
still well match the desired values 𝑋𝑑 =
[19.624487682916   37.855879017971  6.5722012183977].
. 

 
 

  
Fig 3: Optimal fuzzy controlled systems  

3. INTEGRATED FUZZY PID  
PID controllers, one kind of feedback control mechanisms, has 

been widely used in industry.  PID controllers cannot guarantee 

system stability or optimal control. However, only the response 

of the measured system variable is needed. PID controllers are 

still broadly applicable because the controllers execute model-

free control. There are two issues for using PID controllers. 

One is the parameter tunning, which is conceptually intuitive, 

but is hard in practice. Unsuitable parameters cannot stabilize 

the underlying systems. The other is the performance of PID 

controller is degraded when the underlying system is nonlinear 

or asymmetric. Various hybrid of PID and fuzzy controllers 

were proposed [22-32]. In this study, an integrated fuzzy PID 

is proposed, wherein each linear subsystem is stabilized by the 

corresponding PID control law and the fuzzily blending 

controller of these individual PID controller law can stabilize 

the underlying nonlinear system.  

◼ Local behavior (fuzzy subsystems)  

We still chose 𝑥4 = 0.1, 0.75 and 3 for three basic fuzzy (linear) 

subsystems in Eq. (7). The three subsystems are denoted as low, 

medium and high, respectively.  The systems matrix Å𝑙 , ℬ𝑙 , 𝑙 =
1,2,3 are in Eq. (10). Their PID parameters are automatically 

tuned to ensure the stability of locally closed-loop subsystems 

through Control System Toolbox™ in Simulink/Matlab 

software. Simulation results for the three subsystems are 

examined through Fig. 4. Table 1 shows the tuned PID 

parameters and the simulation results for the three subsystems. 

 

Fig4: Local behavior for PID controllers 

Table 1: PID parameters and simulation results for the 

three subsystems. 
𝒙𝟒 

[

𝑲𝒑

𝑲𝑰

𝑲𝑫

] 

state variables 

estimated value target values 

0.1 
[
−𝟑. 𝟏𝟐𝟑𝟒
−𝟏. 𝟐𝟖𝟕𝟒
−𝟏. 𝟑𝟗𝟏𝟗

] [
𝟎. 𝟎𝟖𝟐𝟕𝟏𝟗𝟖𝟗
𝟎. 𝟏𝟓𝟗𝟒𝟖𝟔𝟓𝟐
𝟎. 𝟎𝟐𝟕𝟔𝟖𝟑𝟒𝟐

] [
𝟎. 𝟎𝟖𝟐𝟔𝟔𝟐𝟓𝟗
𝟎. 𝟏𝟓𝟗𝟒𝟓𝟕𝟏𝟔
𝟎. 𝟎𝟐𝟕𝟔𝟖𝟑𝟓𝟒

] 

0.75 
[
−𝟑. 𝟒𝟑𝟓𝟔
−𝟏. 𝟕𝟖𝟓𝟒
−𝟏. 𝟑𝟑𝟒𝟏

] [
𝟏. 𝟖𝟑𝟒𝟔𝟔𝟑𝟗𝟒
𝟑. 𝟓𝟑𝟗𝟏𝟎𝟓𝟐𝟏
𝟎. 𝟔𝟏𝟒𝟒𝟐𝟖𝟐𝟓

] [
𝟏. 𝟖𝟑𝟒𝟔𝟔𝟔𝟒𝟖
𝟑. 𝟓𝟑𝟗𝟎𝟗𝟒𝟐𝟗
𝟎. 𝟔𝟏𝟒𝟒𝟐𝟔𝟎𝟗

] 

3 
[
−𝟐. 𝟎𝟑𝟐𝟖
−𝟎. 𝟔𝟒𝟎𝟐
−𝟏. 𝟒𝟏𝟖𝟓

] [
𝟏𝟓. 𝟒𝟕𝟕𝟒𝟕𝟔𝟔𝟗
𝟐𝟗. 𝟖𝟕𝟗𝟎𝟐𝟑𝟖𝟖
𝟓. 𝟏𝟖𝟕𝟕𝟎𝟓𝟕𝟔

] [
𝟏𝟓. 𝟒𝟖𝟏𝟏𝟓𝟏𝟕𝟐
𝟐𝟗. 𝟖𝟔𝟑𝟑𝟑𝟐𝟕𝟗
𝟓. 𝟏𝟖𝟒𝟔𝟎𝟔𝟑𝟗

] 

◼ Global behavior  

The outputs of PID controllers of the three fuzzy subsystems 

are fuzzily blended as follows. 

         𝑢∗(𝑡) = ∑ ℎ𝑖
𝑟
𝑖=1 (𝑋∗(𝑡))𝑢𝑝𝑖𝑑

𝑖                 (16) 

The fuzzy-logic-control icon in the fuzzy toolbox of Simulink 

cannot directly used for PID control. Therefore, the 
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membership-function icon is used to create the firing strength 

of each rule 𝑤𝑖 (𝑋∗(𝑡)), 𝑖 = 1, … 3, and then, the normalized 

firing strengthℎ𝑖(𝑋∗(𝑡)) is obtained. The detailed scheme for 

constructing fuzzy PID is shown in Fig. 5.  Table 2 shows the 

simulation results of the proposed integrated fuzzy PID 

controllers compared to the target values. Nearly perfect match 

is obtained, even the independent variable 𝑥4 are far out of the 

range of the chosen subsystem conditions, [0.1 3]. 

 

Fig5: Integrated PID controllers scheme.  

Table 2: Simulation results for the integrated fuzzy PID 

controlled system. 
𝒙𝟒 state variables 

estimated value target values 

0.3 
[
𝟎. 𝟒𝟒𝟖𝟎𝟔𝟓𝟕𝟐𝟗𝟗𝟔𝟖𝟓𝟓
𝟎. 𝟖𝟔𝟒𝟑𝟐𝟒𝟑𝟐𝟒𝟕𝟖𝟒𝟗𝟒
𝟎. 𝟏𝟓𝟎𝟎𝟓𝟔𝟑𝟎𝟔𝟑𝟖𝟔𝟐𝟕

] [
 𝟎. 𝟒𝟒𝟖𝟎𝟔𝟓𝟕𝟐𝟗𝟗𝟔𝟖𝟓𝟐
𝟎. 𝟖𝟔𝟒𝟑𝟐𝟒𝟑𝟐𝟒𝟕𝟖𝟒𝟗𝟓
𝟎. 𝟏𝟓𝟎𝟎𝟓𝟔𝟑𝟎𝟔𝟑𝟖𝟔𝟐𝟖

] 

0.5 
[
𝟎. 𝟗𝟖𝟑𝟐𝟏𝟐𝟕𝟑𝟗𝟓𝟎𝟖𝟔𝟐
𝟏. 𝟖𝟗𝟔𝟔𝟐𝟗𝟓𝟏𝟐𝟗𝟒𝟎𝟖

𝟎. 𝟑𝟐𝟗𝟐𝟕𝟓𝟗𝟓𝟕𝟏𝟎𝟕𝟕𝟕
] [

𝟎. 𝟗𝟖𝟑𝟐𝟏𝟐𝟕𝟑𝟗𝟓𝟎𝟖𝟓𝟐
𝟏. 𝟖𝟗𝟔𝟔𝟐𝟗𝟓𝟏𝟐𝟗𝟒𝟎𝟖

𝟎. 𝟑𝟐𝟗𝟐𝟕𝟓𝟗𝟓𝟕𝟏𝟎𝟕𝟕𝟖
] 

1 
[
𝟐. 𝟖𝟓𝟔𝟎𝟖𝟏𝟑𝟏𝟎𝟓𝟕𝟎𝟔
𝟓. 𝟓𝟎𝟗𝟒𝟏𝟔𝟏𝟎𝟖𝟑𝟓𝟐𝟒
𝟎. 𝟗𝟓𝟔𝟒𝟗𝟓𝟖𝟓𝟐𝟏𝟒𝟒𝟓

] [
𝟐. 𝟖𝟓𝟔𝟎𝟖𝟏𝟑𝟏𝟎𝟓𝟔𝟗𝟗
𝟓. 𝟓𝟎𝟗𝟒𝟏𝟔𝟏𝟎𝟖𝟑𝟓𝟐𝟓

𝟎. 𝟗𝟓𝟔𝟒𝟗𝟓𝟖𝟓𝟐𝟏𝟒𝟒𝟓𝟐
] 

1.5 
[
𝟓. 𝟑𝟐𝟗𝟒𝟐𝟑𝟎𝟓𝟖𝟔𝟗𝟗𝟔
𝟏𝟎. 𝟐𝟖𝟎𝟓𝟐𝟐𝟖𝟕𝟓𝟓𝟕𝟒
𝟏. 𝟕𝟖𝟒𝟖𝟏𝟐𝟗𝟗𝟗𝟐𝟑𝟏𝟓

] [
𝟓. 𝟑𝟐𝟗𝟒𝟐𝟑𝟎𝟓𝟖𝟔𝟗𝟕𝟔
𝟏𝟎. 𝟔𝟖𝟎𝟓𝟐𝟐𝟖𝟕𝟓𝟓𝟕𝟒
𝟏. 𝟕𝟖𝟒𝟖𝟏𝟐𝟗𝟗𝟗𝟐𝟑𝟏𝟔

] 

2 
[
𝟖. 𝟐𝟗𝟔𝟒𝟕𝟓𝟓𝟒𝟖𝟕𝟖𝟐𝟓
𝟏𝟔. 𝟎𝟎𝟒𝟎𝟎𝟑𝟕𝟓𝟗𝟐𝟑𝟐
𝟐. 𝟕𝟕𝟖𝟒𝟕𝟐𝟖𝟕𝟒𝟖𝟔𝟔𝟓

] [
𝟖. 𝟐𝟗𝟔𝟒𝟕𝟓𝟓𝟒𝟖𝟕𝟖𝟓𝟒
𝟏𝟔. 𝟎𝟎𝟒𝟎𝟎𝟑𝟕𝟓𝟗𝟐𝟑𝟏
𝟐. 𝟕𝟕𝟖𝟒𝟕𝟐𝟖𝟕𝟒𝟖𝟔𝟔𝟓

] 

2.5 
[

𝟏𝟏. 𝟔𝟗𝟒𝟔𝟏𝟓𝟗𝟕𝟗𝟒𝟕
𝟐𝟐. 𝟓𝟓𝟗𝟎𝟓𝟖𝟔𝟎𝟐𝟑𝟔𝟗
𝟑. 𝟗𝟏𝟔𝟓𝟎𝟑𝟐𝟐𝟗𝟓𝟕𝟕𝟖

] [
𝟏𝟏. 𝟔𝟗𝟒𝟔𝟏𝟓𝟗𝟕𝟗𝟒𝟔𝟖
𝟐𝟐. 𝟓𝟓𝟗𝟎𝟓𝟖𝟔𝟎𝟐𝟑𝟔𝟗
𝟑. 𝟗𝟏𝟔𝟓𝟎𝟑𝟐𝟐𝟗𝟓𝟕𝟖

] 

3.5 
[
𝟏𝟗. 𝟔𝟐𝟒𝟒𝟖𝟕𝟔𝟖𝟓𝟒𝟏𝟓
𝟑𝟕. 𝟖𝟓𝟓𝟖𝟕𝟗𝟎𝟏𝟔𝟒𝟖𝟒
𝟔. 𝟓𝟕𝟐𝟐𝟎𝟏𝟐𝟏𝟕𝟗𝟗𝟖𝟓

] [
𝟏𝟗. 𝟔𝟐𝟒𝟒𝟖𝟕𝟔𝟖𝟐𝟗𝟏𝟔
𝟑𝟕. 𝟖𝟓𝟓𝟖𝟕𝟗𝟎𝟏𝟕𝟗𝟕𝟏
𝟔. 𝟓𝟕𝟐𝟐𝟎𝟏𝟐𝟏𝟖𝟑𝟗𝟕𝟕

] 

5 
[

𝟑𝟑. 𝟗𝟕𝟏𝟎𝟓𝟓𝟏𝟏𝟎𝟎𝟐
𝟔𝟓. 𝟓𝟑𝟎𝟓𝟖𝟒𝟔𝟒𝟏𝟑𝟑𝟑
𝟏𝟏. 𝟑𝟕𝟔𝟖𝟑𝟕𝟔𝟎𝟗𝟕𝟓

] [
𝟑𝟑. 𝟗𝟕𝟏𝟎𝟓𝟓𝟎𝟖𝟒𝟏𝟏𝟗
𝟔𝟓. 𝟓𝟑𝟎𝟓𝟖𝟒𝟔𝟓𝟑𝟎𝟎𝟕
𝟏𝟏. 𝟑𝟕𝟔𝟖𝟑𝟕𝟔𝟏𝟑𝟑𝟔𝟗

] 

10 
[

𝟗𝟖. 𝟔𝟖𝟎𝟕𝟓𝟑𝟗𝟖𝟗𝟏𝟐
𝟏𝟗𝟎. 𝟑𝟓𝟔𝟑𝟗𝟑𝟕𝟓𝟔𝟏𝟗
𝟑𝟑. 𝟎𝟒𝟕𝟓𝟓𝟏𝟏𝟒𝟖𝟏𝟓𝟖

] [
𝟗𝟖. 𝟔𝟖𝟎𝟔𝟕𝟑𝟕𝟎𝟎𝟗𝟖𝟔
𝟏𝟗𝟎. 𝟑𝟓𝟔𝟐𝟑𝟕𝟖𝟒𝟗𝟏𝟐
𝟑𝟑. 𝟎𝟒𝟕𝟗𝟓𝟕𝟗𝟓𝟗𝟗𝟏𝟕

] 

 

4. POLE-PLACEMENT-BASED FUZZY 

CONTROL 
Pole placement design is to select an optimal feedback gain 

matrix to place the closed-loop poles of the underlying system 

in pre-determined locations such that a satisfactory time and 

frequency domain behavior can be obtained. Given a linear 

subsystem  𝑧̇(𝑡) = Å𝑙𝑧(𝑡) + ℬ𝑙𝑢(𝑡)  in Eq. (9) and a 

vector 𝑉𝑙  to denote desired closed-loop pole locations, the 

Matlab software provide a place function to estimate a gain 

matrix 𝐾𝑙 = [𝑘1, 𝑘2, 𝑘3]  such that the local state 

feedback  𝑟𝑙
∗(𝑡) = − 𝐾𝑙𝑧(𝑡)  locates the locally closed-loop 

poles at the position 𝑉𝑙.  

                           𝐾𝑙 = 𝒑𝒍𝒂𝒄𝒆(Å𝑙 , ℬ𝑙 , 𝑉𝑙).                    (17) 

Three pole-placement-based laws are individually constructed 

to satisfy local dynamic behavior, and then their fuzzily 

blending controller is able to ensure that the global behavior of 

the entire cascade system possesses satisfactory dynamic 

behavior.  

◼ Local behavior (fuzzy subsystems)  

The same experimental conditions are used for constructing 

fuzzy rules:  𝑥4 = 0.1 ( rule 𝑅1 ),  𝑥4 = 0.75 (rule 𝑅2 )  and 

 𝑥4 = 3 ( rule 𝑅3) .  The corresponding desired closed-loop 

poles for the three subsystems are 𝑉1 = [−2 ± 3𝑗, −10]  for 

subsystem one (rule  𝑅1 ), 𝑉2 = [−1.5 ± 0.5, −4.5]  for 

subsystem two (rule  𝑅2 ) and 𝑉3 = [−1.5 ± 0.5, −4.5]  for 

subsystem three (rule  𝑅3). The principle of setting the position 

of the desired closed-loop poles is to let the conjugate complex 

poles (called dominate poles) dominate the dynamic behavior 

of the underlying system, and the other pole far away from the 

dominate poles. From an engineering viewpoint, the distance is 

3 to 5 times farther.  

For convenience, the one-to-one correspondence of fuzzy 

systems to fuzzy controllers is directly used.  Therefore, for 

fuzzy systems in Eq. (9) the corresponding fuzzy rules are  

𝑹𝒍: IF 𝑢1 is 𝑇1𝑙, 𝑢2 is 𝑇2𝑙, …, 𝑢𝑚 is 𝑇𝑚𝑙  

then  𝑟𝑙
∗(𝑡) = − 𝐾𝑙𝑋∗(𝑡), 𝑙 = 1,2,3.                 (18) 

By choosing the same experimental conditions  𝑥4 = 0.1,
0.75, 3 to, respectively, denote low, medium and high, and 

using the place function in Eq. (17) to get the feedback gain: 

𝐾1 = [−1.2615 4.6424 − 24.6290]  for  𝑥4 = 0.1,  𝐾2 =
[0.0752 0.2310 − 0.2322]  for  𝑥4 = 0.75  and 𝐾3 =
[15.4812 29.8633 5.1846] for 𝑥4 = 3. The fuzzy control rule 

is designed as follows. 

R1: If  𝑥4 is low, then 𝑘1, 𝑘2, 𝑘3 are all low. 

R2: If  𝑥4 is medium, then 𝑘1, 𝑘2, 𝑘3 are all medium. 

R3: If  𝑥4 is high, then 𝑘1, 𝑘2, 𝑘3 are all high.       (19) 

Figure 6 is the scheme for pole-placement-based fuzzy 

controlled system. Table 3 is the simulation results and the 
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target values. Perfect match is obtained. However, the control 

failed when  𝑥4 out of the range [0,3].  

 

 

Fig 6: Pole-placement-based fuzzy controlled systems.  

Table 3: Simulation results of the pole-placement-based 

fuzzy controlled systems. 
𝒙𝟒 state variables 

estimated value target values 

0.3 
[
𝟎. 𝟒𝟒𝟖𝟎𝟔𝟓𝟕𝟐𝟗𝟗𝟔𝟖𝟓𝟖
𝟎. 𝟖𝟔𝟒𝟑𝟐𝟒𝟑𝟐𝟒𝟕𝟖𝟒𝟖𝟒
𝟎. 𝟏𝟓𝟎𝟎𝟓𝟔𝟑𝟎𝟔𝟑𝟖𝟔𝟐𝟔

] [
 𝟎. 𝟒𝟒𝟖𝟎𝟔𝟓𝟕𝟐𝟗𝟗𝟔𝟖𝟓𝟐
𝟎. 𝟖𝟔𝟒𝟑𝟐𝟒𝟑𝟐𝟒𝟕𝟖𝟒𝟗𝟓
𝟎. 𝟏𝟓𝟎𝟎𝟓𝟔𝟑𝟎𝟔𝟑𝟖𝟔𝟐𝟖

] 

0.5 
[
𝟎. 𝟗𝟖𝟑𝟐𝟏𝟐𝟕𝟑𝟕𝟒𝟓𝟓𝟗𝟓
𝟏. 𝟖𝟗𝟔𝟔𝟐𝟗𝟓𝟏𝟑𝟔𝟔𝟒𝟓

𝟎. 𝟑𝟐𝟗𝟐𝟕𝟓𝟗𝟓𝟕𝟐𝟖𝟑𝟖𝟖
] [

𝟎. 𝟗𝟖𝟑𝟐𝟏𝟐𝟕𝟑𝟗𝟓𝟎𝟖𝟓𝟐
𝟏. 𝟖𝟗𝟔𝟔𝟐𝟗𝟓𝟏𝟐𝟗𝟒𝟎𝟖

𝟎. 𝟑𝟐𝟗𝟐𝟕𝟓𝟗𝟓𝟕𝟏𝟎𝟕𝟕𝟖
] 

1 
[

𝟐. 𝟖𝟓𝟔𝟎𝟖𝟏𝟑𝟏𝟎𝟓𝟓𝟐𝟐
𝟓. 𝟓𝟎𝟗𝟒𝟏𝟔𝟏𝟎𝟖𝟑𝟔𝟒𝟑

𝟎. 𝟗𝟓𝟔𝟒𝟗𝟓𝟖𝟓𝟐𝟏𝟒𝟔𝟕𝟏
] [

𝟐. 𝟖𝟓𝟔𝟎𝟖𝟏𝟑𝟏𝟎𝟓𝟔𝟗𝟗
𝟓. 𝟓𝟎𝟗𝟒𝟏𝟔𝟏𝟎𝟖𝟑𝟓𝟐𝟓

𝟎. 𝟗𝟓𝟔𝟒𝟗𝟓𝟖𝟓𝟐𝟏𝟒𝟒𝟓𝟐
] 

1.5 
[

𝟓. 𝟑𝟐𝟗𝟒𝟐𝟑𝟎𝟓𝟖𝟔𝟗𝟕
𝟏𝟎. 𝟐𝟖𝟎𝟓𝟐𝟐𝟖𝟕𝟓𝟓𝟕𝟒
𝟏. 𝟕𝟖𝟒𝟖𝟏𝟐𝟗𝟗𝟗𝟐𝟑𝟏𝟕

] [
𝟓. 𝟑𝟐𝟗𝟒𝟐𝟑𝟎𝟓𝟖𝟔𝟗𝟕𝟔
𝟏𝟎. 𝟐𝟖𝟎𝟓𝟐𝟐𝟖𝟕𝟓𝟓𝟕𝟒
𝟏. 𝟕𝟖𝟒𝟖𝟏𝟐𝟗𝟗𝟗𝟐𝟑𝟏𝟔

] 

2 
[
𝟖. 𝟐𝟗𝟔𝟒𝟕𝟓𝟓𝟒𝟖𝟕𝟖𝟐𝟓
𝟏𝟔. 𝟎𝟎𝟒𝟎𝟎𝟑𝟕𝟓𝟗𝟐𝟑𝟐
𝟐. 𝟕𝟕𝟖𝟒𝟕𝟐𝟖𝟕𝟒𝟖𝟔𝟔𝟓

] [
𝟖. 𝟐𝟗𝟔𝟒𝟕𝟓𝟓𝟒𝟖𝟕𝟖𝟓𝟒
𝟏𝟔. 𝟎𝟎𝟒𝟎𝟎𝟑𝟕𝟓𝟗𝟐𝟑𝟏
𝟐. 𝟕𝟕𝟖𝟒𝟕𝟐𝟖𝟕𝟒𝟖𝟔𝟔𝟓

] 

2.2 
[

𝟗. 𝟔𝟎𝟔𝟕𝟏𝟎𝟐𝟒𝟏𝟓𝟖𝟓
𝟏𝟎. 𝟓𝟑𝟏𝟒𝟔𝟐𝟔𝟓𝟕𝟑𝟕𝟔
𝟑. 𝟐𝟏𝟕𝟐𝟔𝟕𝟖𝟐𝟐𝟒𝟔𝟏

] [
𝟗. 𝟔𝟎𝟔𝟕𝟏𝟎𝟐𝟒𝟏𝟓𝟖𝟑𝟖
𝟏𝟖. 𝟓𝟑𝟏𝟒𝟔𝟐𝟔𝟓𝟕𝟑𝟕𝟔
𝟑. 𝟐𝟏𝟕𝟐𝟔𝟕𝟖𝟐𝟐𝟒𝟔𝟏𝟏

] 

2.5 
[

𝟏𝟏. 𝟔𝟗𝟒𝟔𝟏𝟓𝟗𝟕𝟗𝟒𝟕
𝟐𝟐. 𝟓𝟓𝟗𝟎𝟓𝟖𝟔𝟎𝟐𝟑𝟔𝟗
𝟑. 𝟗𝟏𝟔𝟓𝟎𝟑𝟐𝟐𝟗𝟓𝟕𝟕𝟖

] [
𝟏𝟏. 𝟔𝟗𝟒𝟔𝟏𝟓𝟗𝟕𝟗𝟒𝟔𝟖
𝟐𝟐. 𝟓𝟓𝟗𝟎𝟓𝟖𝟔𝟎𝟐𝟑𝟔𝟗
𝟑. 𝟗𝟏𝟔𝟓𝟎𝟑𝟐𝟐𝟗𝟓𝟕𝟖

] 

 

5. CONCLUSION  
Noise and uncertainty always exist in biological systems. So, 

fuzzy logic control is a good choice for biological systems.  A 

general fuzzy logic control scheme was previously proposed to 

regulate S-type biological systems (S-systems) [40]. In this 

study, three well-known control technologies (linear quadratic 

optimization, PID and pole-placement design) were integrated 

with fuzzy logic control to control biological S-systems. The 

entire controlling process is visualized in the Simulink 

environment such that biological researchers can get the point 

easily and modify the scheme for other biological systems. The 

constructed T-S fuzzy systems are based on three experimental 

conditions,  𝑥4 = 0.1, 0.75, 3, which denotes three independent 

fuzzy rules or fuzzy subsystems. Simulation shows that nearly 

perfect results are achieved all these three controllers. However, 

the testing experimental conditions can be far out of the range 

of [0.1 3] for the integrated fuzzy PID control, is out of the 

range for optimal fuzzy control, and should in the range for 

pole-placement-based fuzzy control. The first reason is that the 

former uses current error and error derivative as the inputs of 

the controller, but both optimal fuzzy control and pole-

placement-based control cannot use the currently estimated 

system inputs as the input of the controllers. (Simulink does not 

allow this kind of feedback connection.) A delay to denote the 

last time-instant input variable is used for the control input, 

which will reduce the performance. The second reason is that 

pole placement method strongly depends on the desired pole 

position vector 𝑉𝑖 . In this study, the same performance 

parameters 𝐿 and 𝑄 are used for optimal fuzzy control, but the 

𝑉𝑖 , 𝑖 = 1, 2, 3 are set at different positions in order to achieve 

satisfactory local dynamic behavior.  Therefore, the testing 

range is restricted. In the future, we shall try to compensate 

these two reasons. Additionally, dependent variables (state 

variables) of biological systems are always unmeasurable. The 

proposed controllers are all based on full-state feedback signals. 

Therefore, a soft observer or estimator is necessary to 

implement the proposed controllers to real biological systems. 

We shall develop fuzzy stochastic estimators for dealing with 

this issue. 
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