
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

25

Application Development Feasibility: DevOps or SRE?

Olumide Bashiru Abiola
Beechnet Solutions Limited

2967 Dundas Street West, #724D,
Toronto, Ontario M6P 1Z2,

Canada

Olusola Gbenga Olufemi
Hood College

401 Rosemont Ave

Frederick, MD, U.S.

ABSTRACT

DevOps Engineers are operation-focused professionals who

solve development pipeline problems. In contrast, SREs are

development-focused engineers that resolve operational,

scalability, and reliability problems. That is, DevOps primarily

focuses on core development activities while SRE is primarily

concerned with implementing and maintaining the core

infrastructure. Can this be explained better? Of course, it can.

When it comes to the distinction between DevOps and SRE, it

is important to note that these are distinct functions that have

evolved through various phases over the years. Each has its

own responsibilities, DevOps refers to Development

Operations, while SRE stands for Site Reliability Engineering

[3]. It is therefore of utmost importance to know how each

contributes to software development since organizations will

want to utilize their potential in deriving the maximum value

during application development. A lot has been discussed in the

public domain about what DevOps and SRE are and what they

are not, which calls for thorough exploration and research into

what they truly are. The insight from this work should

streamline knowledge of how software development feasibility

can be enhanced by DevOps or SRE practices or both, in line

with the frequently changing application development tooling.

General Terms

Agile, automation, application, software development, project,

features, operations.

Keywords

DevOps, SRE, feasibility, reliability, pipeline.

1. INTRODUCTION
IT teams in several organizations have imbibed DevOps and

SRE as primary strategies for building modern applications.

Hence, it is important to distinguish the difference between

these two functions, more importantly, their applications to

software development projects [3]. DevOps teams focus mainly

on core development, working on products or applications that

provide solutions to a specific problem. DevOps teams use

agile software development methodology to build, test, deploy,

and monitor applications with speed, quality, and control. SREs

on the other hand work on the implementation of the core, they

consistently give feedback to the core development group. SRE

makes use of operations data and software engineering to

automate IT operation tasks and accelerate software delivery

while bringing associated IT risks to the barest minimum. As

observed in the current technology landscape, software

development has progressively become broader, and more

complex, hence requiring high-quality approaches like DevOps

and SRE [15].

2. DEVOPS & SRE COMPARISON
As DevOps focus on streamlining changes, SREs ensure that

these changes do not add to or increase the total failure rates.

Hence, they are different. DevOps aids in automating speed,

while SRE helps with automating reliability [2]. DevOps

processes from left to right along the development life cycle,

by applying automation to speed up new capabilities rollout

which usually gets measured by deployment frequency and

lead time for a visualized change. Whereas, for SRE, there is a

move from right to left of the development life cycle which

involves production-level requirements in development with a

focus on limiting failure rates and lessening the required time

to restore services [2]. DevOps and SRE have something in

common regarding - Service Level Objectives (SLOs), both

align with SLOs to support business goals. The role of DevOps

is to expand the user base and improve the end-user experience

while the objective of SRE personnel is to contribute to

business success by offering the right features at the right time

to facilitate adaptation to change. SLOs are means to unite

DevOps and SREs [2]. The overlap between SRE and DevOps

can clearly be seen here since both goals tend to measure

success or failure, by gaining continuous reliability on all

application development [1].

3. DEVOPS – THE BELIEFS
DevOps as a culture delivers software swiftly with reduced

errors, DevOps improves quality and delivery time by

removing human error. DevOps is simply practicing building

software iteratively through linking operations with

development [3]. Therefore, DevOps assists operations teams

in delivering automated infrastructure with less engineering,

enabling developers to create reliable and predictable

environments with minimal bottlenecks [1]. Implementing

DevOps methodology is worth the transformation effort

because it drives: (1) better business values (2) faster delivery

time (3) silos removal (4) improved customer experience (5)

early problem detection, and (6) unleashing innovations [11].

The study of DevOps is so important that it is being made

mandatory in software engineering research [13]. However,

software developers are impacted in one way or the other in

their turnover by DevOps practices throughout the software

development life cycle of any application [14].

3.1 DevOps Benefits
DevOps application mindset and skills for software reliability

can reduce silos between development and operations teams

because there is shared responsibility in detecting reliability

and performance issues early in the development life cycle [2].

Other benefits include [1]:

3.1.1 Better products are delivered faster.
3.1.2 Issue resolution is fast and made less complex.
3.1.3 Scalability and availability are greater.
3.1.4 Operating environments are made more stable.
3.1.5 Resource utilization is made better.
3.1.6 Automation is made more efficient.
3.1.7 Visibility into system outcomes is made greater.

https://medium.com/dynatrace-engineering/the-sre-minstrel-singing-his-way-to-reliable-systems-ac8bd63d32a9

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

26

3.1.8 Innovation is made greater.

3.2 DevOps Metrics
Benchmarking DevOps efforts and outcomes is a significant

undertaking. However, the DevOps team can use some

performance indicators (metrics) to measure and gauge the

effectiveness of its approach. Below are some important

DevOps metrics:

3.2.1 Application availability.
3.2.2 Traffic and application usage.
3.2.3 Number of tickets.
3.2.4 Commit count.
3.2.5 Number of tests conducted.
3.2.6 Deployment Rate.

Metrics such as Deployment Speed, Deployment rollbacks/fail

frequency, Version lead time, and Rate of response to tickets

(MTTR) should also be considered. However, having a clear

objective for each of the DevOps metrics mentioned above will

help set the team in the right direction towards achieving an

optimized DevOps architecture.

4. SRE – THE PERCEPTION
The SRE philosophy has been evolving since 2003,

establishing its presence prior to the emergence of DevOps.

Ben Treynor made the term popular when he created Google’s

Site Reliability Team [1]. SRE focuses on improving software

system reliability across availability, performance, latency,

efficiency, capacity, and incident response [2]. SRE embodies

the ideology of optimizing the reliability and overall quality of

software developed [2]. Site reliability problems cannot always

be completely solved. The continuous demand for new services

and applications combined with evolving enterprise

requirements means that there will always be work for SREs,

and as such, there will always be room for improvement [2].

4.1 SRE Benefits
SRE strives to reduce duplication or redundancy of effort as

much as possible. SREs focus is on automating manual tasks,

like provisioning access and infrastructure, accounts setting up,

and self-service tool building. With this, the development

teams can focus on delivering features, while the operations

teams can focus on managing infrastructure [2]. The following

are some benefits of SRE:

4.1.1 Resiliency-based engineering is what SREs drive. SREs

provide guidance and make sure that they give resiliency the

highest priority for developers and operations, therefore

narrowing the gap between Dev and Ops [2].

4.1.2 SREs imbibe reliability principles from Dev to Ops,

inputting reliability and resiliency into every process,

application, and code change to enhance software quality that

ends up in production [2]. Taking early, proactive steps to

ensure quality and reliability are built-in from the beginning is

an SRE objective. SRE can streamline processes and promote

managing testing across the enterprise in support of CI/CD

practices [2]

4.1.3 SRE promotes higher change rates while maintaining

resiliency and aims to get 99.999% uptime. In multi-cloud

environments, resiliency measurement is done across multiple

key metrics such as performance, user experience,

responsiveness, and conversion rates. SREs build and

implement services that improve operations and accelerate the

release process across all areas to achieve their objectives.

These include adjusting monitoring and alerting for making

code changes in production. Building custom tooling from

scratch to meet specific needs in the software delivery or

incident management workflow is often done by SREs [2].

4.1.4 SRE ensures that a lot of the changes made do not break

the systems [2].

4.1.5 Caring about every process from source code to

deployment is what SRE does, earning the accolade of being a

true bridge from development to operations [1].

4.2 SRE Metrics
SREs focus principally on the following five metrics [7]:

4.2.1 V: Volume - Current number of requests, drops, spikes.

4.2.2 A: Availability - Are all services up and running?

4.2.3 L: Latency - Are service response times within the

expected range?

4.2.4 E: Errors - What errors are occurring, and why?

4.2.5 T: Tickets - What are the complaints of the users?

5. DEVOPS & SRE ROLES

5.1 SREs Usually:
5.1.1 Spend more time programming as compared to DevOps

engineers.

5.1.2 Ensure that binaries and configurations are applicable

for integration and deployment in different environments.

5.1.3 Write code and manage configurations for automation.

5.1.4 Monitor software infrastructure, track and solve tickets

to resolve problems.

5.1.5 Must plan software deployments with immutable

infrastructure using CI/CD.

5.2 DevOps Engineers Focus On:
5.2.1 Ensuring software development and deployment are as

easy as possible for the development team.

5.2.2 Spending time with tools like Jenkins, Kubernetes,

and Docker to automate software builds, tests, and

deployments aligned with CI/CD priorities.

5.2.3 Configuring, supporting, and documenting

infrastructural components.

5.2.4 Developing workflows to enable CI/CD for projects.

5.2.5 Setting up and maintaining various virtual environments

(VMs, Containers).

5.2.6 Implementing and maintaining cluster environments.

Table 1. Comparison - DevOps & SRE [3]

Parameters DevOps SRE

Works with
Product development

team

Operations

Team

Focus
 The development side

of product management

The operations

side of product

management

Approach

 Streamlining

development and

deployment processes,

reducing risk, and

increasing speed

Treats

production

environment as

a highly

available service

Use case

Applied in agile

software development

projects

Used with lean

infrastructure

practices

Goals
Aims to improve

communication in the

Aims to create

systems that a

https://www.opsera.io/ci-cd-pipeline
https://www.opsera.io/blog/ace-your-devops-game-with-this-ultimate-list-of-plugins-in-jenkins
https://www.opsera.io/blog/ci-cd-pipelines-with-kubernetesbuild-migrate-and-integrate-security-seamlessly
https://www.opsera.io/ecosystem/docker-hub
https://www.opsera.io/platform/toolchain-automation
https://www.opsera.io/learn/continuous-testing-devops
https://www.opsera.io/blog/all-you-need-to-know-about-ci-cd-pipeline
https://www.knowledgehut.com/blog/others/what-is-management

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

27

entire lifecycle from

ideation through

deployment.

small number of

skilled

engineers can

easily maintain

Tools Used

Use automation tools

like Puppet or Chef to

ensure consistency

across environments.

Use scripting

languages like

Python or Bash

5.3 DevOps & SRE Commonalities
Table 1 gives more insight into commonalities. Both DevOps

Engineers and SREs share a common belief that embracing

change is necessary for driving continuous improvement in

application development. It is worth noting that no software

remains the same always, likewise, no system can be idle or

remain unchanged forever. DevOps and SRE both have a

strong focus on working together as a team with shared

responsibilities and knowledge, none can work in a silo. Both

promote making software changes as small as possible since

small units usually merge more smoothly and are easier to roll

back when problems arise. DevOps and SRE both advocate a

strong preference for automation wherever possible in

development [10].

Tools utilized by DevOps and SREs are generally similar and

often nearly identical, except for team-specific ones that are

created to address their unique needs and responsibilities.

Another similarity is the requirement for good measurement

and observability. Data, especially good data, is vital to both

DevOps and SRE.

6. TITLE & AUTHORS
Olumide Bashiru Abiola - CISSP, CISA, CISM, CRISC |

Olumide currently serves as a Project Manager with one of the

largest banks in North America and is an independent

Cybersecurity Consultant. Olumide draws upon his experience

in the financial and technology industry after holding a myriad

of other positions in System, Network, and Infrastructure

Administration. He is responsible for clients’ end-to-end

cybersecurity programs, coordinating cybersecurity efforts

within the enterprise.

Olusola Gbenga Olufemi – Olusola is extensively skilled in

Distributed Systems Implementations, Information System

Security and Management. He is vast in Cloud Application &

Infrastructure Provisioning. Olusola is an active member of

ISACA, PMI, and ACM. He is recognized by elite associates

as a lifelong learner and researcher.

Fig 1: DevOps Transformations [12]

7. DECIDING ON DEVOPS OR SRE
Fig 1 above shows how the business application development

sustainability depends on both DevOps and SRE. When an

organization prioritizes downtime over uptime, then DevOps

will suffice. There is undoubtedly a need for improvement on

past software development, deployment, and operations

methods [10]. As there are growing complexities associated

with containerized microservices running on cloud services,

orchestrating and keeping everything working, even with

components or services failure, is a major undertaking.

Planning for site reliability is vital [10]. If your application or

services are expected to be reliable to the level of two or more

nines of uptime and availability, then the focus of SRE with its

error budgets and SLOs will help remove the politics and

guesses from the process. This enables stakeholders to see

clearly how to impact the availability and reliability of the

system most directly and effectively. DevOps and SRE both

aim to enhance the release cycle by helping development and

operations transparently see each other’s side of the process

throughout the application lifecycle. They also promote

automation and monitoring, reducing the time from when a

developer commits a change to when it is deployed to

production. SRE and DevOps aim for this outcome without

compromising the quality of the code or the product itself

[1]. SRE and DevOps both can narrow the gap between

development and operations teams in improving the application

development life cycle without jeopardizing quality [4].
DevOps and SRE can coexist since the two practices need each

other. Although the work culture is different in both, they still

share some foundational values needed in application

development [10]. SRE and DevOps ask two different but

equally valuable questions:

• DevOps asks what needs to be done.

• SRE asks how that can be done [1].

https://www.netapp.com/devops-solutions/what-is-devops

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

28

7.1 Observability & Incident Response
DevOps and SRE teams can prevent many incidents in the

application development cycle, however, no team can prevent

all development related production incidents in any

organization. Companies that use SRE and think about how

long it has been since they had incidents that impacted

customers can be observed. The nature of the incident and how

quickly it was resolved can also be investigated. Statistics have

shown that SRE is the solution when uptime and minimization

of incident-related downtime and costs are necessary [10]. For

SRE, incident response is concerned with restoring deployment

from an unfavorable state back to its expected condition.

Nevertheless, the incident response lifecycle involves

prevention, discovery, and resolution, aiming at automating as

much as possible in each stage [8].

Prevention comes as the first and last step of incident response.

In an ideal situation, incidents are prevented first with test-

driven development in the CI/CD pipeline. Sadly, deployment

sometimes does not execute as planned in production [8].

Discovery means knowing when an incident might have

occurred, then offering the right alert to the right channels to

respond. When discovery is automated, it gives maximum

incident response coverage, also minimizes the mean time to

discover (MTTD) and protects the SLOs [8]. Resolution assists

with bringing deployment back to its desired state. However,

some incidents have automated solutions, for instance, in

autoscaling services, more capacity is automatically

provisioned when the computing resource is drained or

overwhelmed. At the same time, some incidents will need

human attention, particularly when the symptoms are

unrecognized, or the cause of this incident is unknown. To be

precise, observability helps drive the incident response

lifecycle with monitoring, alerting, and search [8]. Hence, the

collective solution minimizes the mean time to resolution

(MTTR) in protecting service reliability and customer loyalty

and the end [8].

7.1.1 Observability with Data
An issue cannot be resolved if it can't be observed. Hence, an

incident response will require having visibility into the full

stack of the affected deployment over time in any development

environment.

7.1.1.1 Monitoring, Alerting & Taking Action
Observability assists in automating the incident response

lifecycle through monitoring, discovering, and alerting on the

Service Level Indicators (SLI) and SLOs that are most

important.

When SLIs and SLOs are known, they can be defined as alerts

and actions which serve as the right data to share with the right

people whenever there is a breach in SLO. With an elastic alert,

queries are scheduled that trigger actions when the results meet

some set conditions. The conditions define metrics (SLIs) and

thresholds (SLOs). Actions are what are delivered as messages

to one or more channels, to signal the beginning of an incident

response process.

7.1.1.2 Investigation & Doing Research
It should be known that incident response is a research problem.

Research assists in delivering timely and appropriate answers

to questions asked. Research serves as the key to fast incident

response. Not just because the approach might be fast with

technological involvement, but because the experience might

be insightful.

8. CONCLUSION
In conclusion, the collaboration between developers,

operations, and product owners enables SREs to define and

meet uptime and availability targets [2]. However, SRE and

DevOps can coexist. While the two share some foundational

values, the focus of their work is different. Even though they

share similar tooling and development practices, a big

differentiator is that SRE have a strong and deliberate focus on

keeping a site up and running [10]. Organizations at times

create wider DevOps teams in such a way that the SREs

collaborate with them or act as a subset of the team. [10].

Teams must also comprehend that these two software

engineering practices often work together to create a reliable

and secure software product. Hence, finding the better of both

methodologies is impossible, as the two constantly overlap

each other [9]. Though there are differences in their processes

and objectives, SRE and DevOps nevertheless shares core

principles that enable the teams to proactively build reliable

services, which further leads to greater operational efficiency,

business value, and overall happiness for all stakeholders [9].

However, there is a need for further research in DevOps and

SRE practices to help software development professionals in

the use of these practices to better deliver robust applications.

9. ACKNOWLEDGMENTS
Praise be to God for the blessing and guidance in this journey,

and for making the writers impactful in this present information

technology sphere. Many thanks also to friends and family

members who have been inspirational and supportive all these

years in this information technology endeavor.

10. REFERENCES
[1] Netapp, What is site reliability engineering (SRE)?

https://www.netapp.com/devops-solutions/what-is-site-

reliability-engineering/

[2] Dynatrace, What is SRE (site reliability engineering)?

And what do site reliability engineers do?

https://www.dynatrace.com/news/blog/what-is-site-

reliability-engineering/Fröhlich, B. and Plate, J. 2000. The

cubic mouse: a new device for three-dimensional input. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems

[3] Knowledgehut, DevOps vs SRE: Major Differences -

https://www.knowledgehut.com/blog/devops/devops-vs-

sre.

[4] Veritis, SRE vs DevOps: Which Productivity Approach is

Better? https://www.veritis.com/blog/sre-vs-devops-

which-productivity-approach-is-better/.

[5] Opsera, SRE vs DevOps: Responsibilities, Differences

and Salaries - https://www.opsera.io/learn/sre-vs-devops-

responsibilities-differences-salaries

[6] Platora, The 10 Essential DevOps Metrics That Really

Matter - https://www.plutora.com/blog/10-essential-

devops-metrics-that-really-matter

[7] Performetriks, 5 Key Metrics of Successful Site

Reliability Engineers -

https://www.performetriks.com/post/5-key-metrics-of-

successful-site-reliability-engineers

[8] Elastic, Elastic Observability in SRE and Incident

Response - https://www.elastic.co/blog/elastic-

observability-sre-incident-response

[9] Professional DevOps, SRE VS DevOps -

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

29

https://www.professional-devops.com/sre-vs-

devops.html

[10] Gremlin, SRE vs DevOps: CAN THEY COEXIST OR

DO THEY COMPETE? https://www.gremlin.com/site-

reliability-engineering/sre-vs-devops/

[11] Harrisonclarke, What Emerging Tech Companies Are

Looking for in DevOps/SRE Roles -

https://www.harrisonclarke.com/blog-2023/what-

emerging-tech-companies-are-looking-for-in-devops-sre-

roles

[12] All Hands On Tech, SITE RELIABILITY

ENGINEERING: COMPARING SRE AND DEVOPS -

https://www.allhandsontech.com/it-

ops/devops/comparing-sre-and-devops/

[13] Leonardo Leite, Carla Rocha, Fabio Kon, Dejan

Milojicic, and Paulo Meirelles. 2019. A Survey of

DevOps Concepts and Challenges. ACM Comput. Surv.

52, 6, Article 127 (November 2019), 35 pages.

https://doi.org/10.1145/3359981

[14] Liming Zhu, Len Bass, George Champlin-Scharff,

DevOps and Its Practices,

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=74

58765

[15] Alok Mishra, Ziadoon Otaiwi, DevOps and software

quality: A systematic mapping,

https://www.sciencedirect.com/science/article/pii/S15740

13720304081, Volume 38, November 2020, 100308

IJCATM : www.ijcaonline.org

