
International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

50

Implementation of Text Recommendation using Word
Frequency and Cosine Similarity in Python

Ahmad Farhan AlShammari
Department of Computer and Information Systems

College of Business Studies, PAAET
Kuwait

ABSTRACT
The goal of this research is to develop a text recommendation

program using word frequency and cosine similarity in Python.

Text recommendation is the process that provides suggestions

to the user. The word frequency is used to measure the

importance of words in the text, and cosine similarity is used to

measure the similarity between texts. The basic steps of text

recommendation are explained: preprocessing text, creating list

of words, creating bag of words, creating word frequency,

calculating cosine similarity, creating similarity score, sorting

similarity score, and printing recommendations. The developed

program was tested on an experimental text from Wikipedia.

The program successfully performed the basic steps of text

recommendation and provided the required results.

Keywords
Artificial Intelligence, Machine Learning, Natural Language

Processing, Text Mining, Text Recommendation, Word

Frequency, Cosine Similarity, Python, Programming.

1. INTRODUCTION
The rapid development of Information and Communications

Technology (ICT) is enabling the volume of data to grow very

fast. Processing large amounts of data is becoming a crucial

issue. Computer systems need more powerful methods to

process data, analyze it, and extract information. Actually,

machine learning is playing a key role in processing data more

quickly and efficiently.

Machine Learning (ML) is a branch of Artificial Intelligence

(AI) which is focused on the study of computer algorithms to

improve the performance of computer programs.

Text recommendation is one of the important applications of

machine learning. It is a common field between ML and

Natural Language Processing (NLP). Therefore, it applies both

the methods of ML and the techniques of NLP to process

human language.

Fig 1: Field of Text Recommendation

2. LIREATURE REVIEW
The review of literature revealed the major contributions in the

field of text recommendation [1-15]. The research started in the

late seventies. In 1979, Elaine Rich [16] developed the first

recommendation system "Grundy" to help users in finding their

favorite books.

Over time, many recommendation systems were developed for

different purposes. For example, "Tapestry" was developed in

1992 to help users in filtering mail system [17], and

"GroupLens" was developed in 1994 at the University of

Minnesota to help users in filtering news articles [18].

In the late 1990s, Amazon [19] developed a recommendation

system based on collaborative filtering [20]. The success story

of Amazon encouraged other companies to implement their

own recommendation systems [21]. For example, in 2006

Netflix [22] launched "NetFlix Prize" to improve the

performance of its recommendation system, and in 2010

Youtube [23] implemented its recommendation system.

Recommendation systems are mainly used in filtering items,

for example: products, articles, books, news, TV programs,

movies, songs, etc.

The research in recommendation systems is booming by the

implementation of the new developed methods in machine

learning.

The word frequency was initially proposed by Hans Luhn [24]

to measure the importance of words in the text.

The cosine similarity was introduced by Gerard Salton [25-29]

to measure the similarity between texts. He also developed the

Vector Space Model (VSM) to represent text as a vector of

numbers or weights.

The fundamental concepts of recommendation systems are

explained in the following section:

Recommendation System:
Recommendation system is a program that provides

suggestions to the user. The function of recommendation

system is to find the similarity between users and items based

on their features.

Fig 2: Concept of Recommendation System

Types of Recommendation Systems:
Recommendation systems are divided into two main groups:

Content-based and Collaborative.

AI Linguistics NLP ML ×

User1

User2

User3
…

Item1

Item2
Item3

…

Recommendation
System

Users: Items:

Recomm-

endations

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

51

Fig 3: Types of Recommendation Systems

In the content-based type: the work is focused on finding

similarity between "items". For example: the items that are

similar to the items preferred by the user are selected and added

to the recommendations.

Fig 4: Content-based Recommendation System

In the collaborative type: the work is focused on finding

similarity between "users". For example: the items that are

preferred by similar users are selected and added to the

recommendations.

Fig 5: Collaborative Recommendation System

In this research, the content-based type is applied.

Text Recommendation System:
In the text recommendation system; the input is the query text.

Then, the system will process the text, calculate the cosine

similarity between the query text and the given texts, and sort

them by the similarity score. The output is the

recommendations.

Fig 6: Diagram of Text Recommendation System

Preprocessing Text:
The raw text should be cleaned from the unwanted characters

and words, for example: punctuation symbols and stopwords.

List of Words:
The text is "tokenized" or split into words. The result of word

tokenization is the list of words as shown in the following view:

List of Words = [word1, word2, …, wordn]

Bag of Words:
Bag of Words (BoW) is the set of words without repetition as

shown in the following view:

Bag of Words = (word1, word2, …, wordm)

Word Frequency:
Word frequency is the number of times a word occurs in the

text divided by the number of words in the text. It is calculated

by the following formula:

freq(wi) =
Nwi

Nw
 (1)

Where: Nwi is the number of times word (wi) occurs in the text,

and Nw is the total number of words in the text.

Cosine Similarity:
Cosine similarity is a mathematical method used to measure the

similarity between texts. The concept was originally derived

from the calculus of vectors in mathematics.

For example: consider the two vectors A and B in the plane as

shown in the following diagram:

Fig 7: Representation of Vectors A and B

The dot product of the two vectors (A.B) is calculated by the

following formula:

A∙B =‖𝐴‖ ‖𝐵‖ Cos(𝜃) (2)

Where: ||A|| and ||B|| are the norms of vectors A and B

respectively, and θ is the angle between the two vectors.

Then, the cosine of the angle is calculated by the following

formula:

Cos(𝜃) =
A∙B

‖𝐴‖ ‖𝐵‖
 (3)

In general, for any two vectors A and B in the space:

A = (a1, a2, … , an)

Recommendation Systems

Content-based Collaborative

A

B

θ

Recommendations

User1 Item1
Likes

(Similar Items)

Item2
Item3

Recommendations

User1

Like

(Similar Users)

Item2
Item3

User2

User3

Recomm-

endations

Text

Recommendation
System

Query

Text

Text
1,2,3

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

52

B = (b1, b2, … , bn)

The cosine of the angle is calculated by the following formula:

Cos(θ) =
∑ (ai bi)

 √∑ ai
2 ∑ bi

2

 (4)

Where: ai and bi are the values of vectors A and B respectively.

The cosine similarity shows the "percentage" of similarity

between the two vectors. The cosine can take values between

(0) and (1). For example: if the cosine value is (1) then the two

vectors are similar, and if the cosine value is (0) then the two

vectors are not similar.

Fig 8: Value of Cosine Similarity

Python:
Python [30] is a high-level general purpose programming

language. It is simple, easy to learn, and powerful. It is the most

preferred programming language by the developers of machine

learning applications.

Python provides additional libraries such as: Numpy [31],

Pandas [32], Matplotlib [33], NLTK [34], and SKLearn [35].

In this research, the standard functions of Python are applied

without using any additional library.

3. RESEARCH METHODOLOGY
The basic steps of text recommendation are: (1) preprocessing

text, (2) creating list of words, (3) creating bag of words, (4)

creating word frequency, (5) calculating cosine similarity, (6)

creating similarity score, (7) sorting similarity score, and (8)

printing recommendations.

Fig 9: Steps of Text Recommendation

Fig 10: Flowchart of Text Recommendation

The basic steps of text recommendation are explained in details

in the following section:

1. Preprocessing Text:
The text is cleaned from the unwanted characters and words. It

is done by the following steps:

1.1 Converting Text into Lower Case:
The text is converted into lower case. It is done by the following

code:

text = text.lower()

1.2 Removing Punctuation:
The punctuation symbols (like: !@#$ …) are removed from the

text. It is done by the following code:

1. Preprocessing Text

2. Creating List of Words

3. Creating Bag of Words

4. Creating Word Frequency

5. Calculating Cosine Similarity

6. Creating Similarity Score

7. Sorting Similarity Score

8. Printing Recommendations

Creating

List of Words

Creating

Freq

Query
Bag of

Words

Query

Words
Words

Bag of

Words

Recomm-

endations

Stop-

words

Query

Freq

Calculate

Cosine
Similarity

Similarity

Score

Query

Text

Freq

Sorted

Similarity
Score

Preprocessing Text

Creating
Bag of Words

Sorting
Similarity

Score

Creating
Similarity

Score

Text
1,2,3

(Similar) (Not Similar)

Cos(θ) = 1 Cos(θ) = 0

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

53

letters = "abcdefghijklmnopqrstuvwxyz"

for c in text:

 if (c not in letters):

 text = text.replace(c," ")

1.3 Removing Stopwords:
The stopwords (like: I, am, is, are, ...) are removed from the

text. It is done by the following code:

stopwords = ["i", "am", "is", "are", "we",

 "he", "she", "it", "the",

 "this", "that", "they", ...]

for word in text:

 if (word in stopwords):

 text = text.replace(word,"")

2. Creating List of Words:
The text is split into words. It is done by the following code:

words = text.split()

3. Creating Bag of Words:
The bag of words is the set of words. It is done by the following

code:

bag_of_words = set(words)

4. Creating Word Frequency:
The word frequency holds the frequencies of words.

Word Frequency

w1 freq(w1)

w2 freq (w2)

w3 freq (w3)

… …

wn freq(wn)

Fig 11: Structure of Word Frequency

Where: freq(wi) is the frequency of word (wi). It is done by the

following code:

Nw = len(words)

freq = {}

for word in bag_of_words:

 freq[word] = words.count(word) / Nw

5. Calculating Cosine Similarity:
The cosine similarity is calculated by formula (4). It is done by

the following code:

calculate dot product of two vectors

def dot(vector1, vector2):

 sum = 0

 for key in vector1:

 if key in vector2:

 sum += vector1[key] * vector2[key]

 return sum

calculate norm of vector

def norm(vector):

 sum = 0

 for key in vector:

 sum += vector[key]**2

 return math.sqrt(sum)

calculate cosine similarity

def cosine(freq1, freq2):

 value1 = dot(freq1, freq2)

 value2 = norm(freq1) * norm(freq2)

 return value1 / value2

6. Creating Similarity Score:
The similarity score holds the similarity scores of the texts with

the query text.

Text Score

t1 score1

t2 score2

t3 score3

… …

tn scoren

Fig 12: Structure of Similarity Score

Where: scorei is the similarity score of text (ti) with the query

text. It is done by the following code:

score = {}

for text, freq in freqs:

 score[text] = cosine(qfreq,freq)

7. Sorting Similarity Score:
The similarity score is sorted in reverse order by the score

value. In Python, sorting a list is done using the (sorted)

function as shown in the following code:

sorted_list = sorted(list, reverse=True)

However, sorting a dictionary is more complicated that a list

because the structure of dictionary is composed of paired (key,

value) items.

8. Printing Recommendations:
The recommendations consist of the texts that have similarity

scores above the average score. It is done by the following

code:

for text, value in sorted_score.items():

 if (value >= average):

 print(text)

4. RESULTS AND DISCUSSION
The developed program was tested on an experimental text

from Wikipedia [36]. The program performed the basic steps

of text recommendation and provided the required results. The

program output is shown in the following section:

List of Words:
The list of words is shown in the following view:

List of Words:

filtering

information

items

particular

pertinent

...

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

54

Bag of Words:
The bag of words is shown in the following view:
Bag of Words:

across

additional

algorithms

alternative

approach

...

Word Frequency:
The word frequency is shown in the following view:

Word Frequency:

Across 0.0054644809

Additional 0.0054644809

algorithms 0.0054644809

alternative 0.0054644809

approach 0.0054644809

...

Similarity Score:
The similarity score is shown in the following view:

Similarity Score:

Text 1 0.3913118961

Text 2 0.0

Text 3 0.3407546685

Text 4 0.3465516400

Text 5 0.0

Text 6 0.4001633653

Text 7 0.4168439339

Text 8 0.3474041669

Text 9 0.0

Text 10 0.0

Text 11 0.0

Text 12 0.3391511082

The following chart shows a visual representation of the

similarity score:

Fig 13: Chart of Similarity Score

Sorted Similarity Score:
The sorted similarity score is shown in the following view:

Sorted Similarity Score:

Text 7 0.4168439339

Text 6 0.4001633653

Text 1 0.3913118961

Text 8 0.3474041669

Text 4 0.3465516400

Text 3 0.3407546685

Text 12 0.3391511082

The following chart shows a visual representation of the sorted

similarity score:

Fig 14: Chart of Sorted Similarity Score

Average Score:
The average score is shown in the following view:

Average Score = 0.2151817316

Recommendations:
The recommendations are shown in the following view:

Query:

Text recommendation

Recommendations:

Recommendation systems have also been de ...

There are also popular recommendation sy ...

A recommendation system is a subclass of ...

Recommendation systems usually make use ...

Recommendation systems are used in a var ...

Recommendation systems are particularly ...

Recommendation systems are a useful alte ...

In summary, the program output clearly demonstrates that the

developed program successfully performed the basic steps of

text recommendation and provided the required results.

5. CONCLUSION
Text recommendation is one of the important applications of

machine learning. The purpose of text recommendation is to

provide suggestions to the user. The word frequency is used to

measure the importance of words in the text, and cosine

similarity is used to measure the similarity between texts.

In this research, the author developed a text recommendation

program using word frequency and cosine similarity in Python.

The developed program performed the basic steps of text

recommendation: preprocessing text, creating list of words,

creating bag of words, creating word frequency, calculating

cosine similarity, creating similarity score, sorting similarity

score, and printing recommendations.

The program was tested on an experimental text from

Wikipedia and provided the required results: list of words, bag

0 0.1 0.2 0.3 0.4 0.5

Text 1

Text 2

Text 3

Text 4

Text 5

Text 6

Text 7

Text 8

Text 9

Text 10

Text 11

Text 12

Similarity Score

0 0.1 0.2 0.3 0.4 0.5

Text 7

Text 6

Text 1

Text 8

Text 4

Text 3

Text 12

Text 2

Text 5

Text 9

Text 10

Text 11

Sorted Similarity Score

International Journal of Computer Applications (0975 – 8887)

Volume 185 – No. 30, August 2023

55

of words, word frequency, similarity score, sorted similarity

score, and recommendations.

In future work, more research is certainly needed to improve

and develop the current methods of text recommendation. In

addition, they should be more investigated in different

domains, and languages such as Arabic.

6. REFERENCES
[1] Sammut, C., & Webb, G. I. (2011). "Encyclopedia of

Machine Learning". Springer.

[2] Aggarwal, C. (2015). "Data Mining: The Textbook". New

York: Springer.

[3] Aggarwal, C. (2016). "Recommender Systems: The

Textbook". Springer.

[4] Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G.

(2010). "Recommender Systems: An Introduction".

Cambridge University Press.

[5] Burke, R., Felfernig, A., & Göker, M. H. (2011).

"Recommender Systems: An Overview". AI Magazine,

32(3), 13-18.

[6] Park, D. H., Kim, H. K., Choi, I. Y., & Kim, J. K. (2012).

"A Literature Review and Classification of Recommender

Systems Research". Expert Systems with Applications,

39(11), 10059-10072.

[7] Bobadilla, J., Ortega, F., Hernando, A., & Gutiérrez, A.

(2013). "Recommender Systems Survey". Knowledge-

based Systems, 46, 109-132.

[8] Ricci, F., Rokach, L., & Shapira, B. (2015).

"Recommender Systems: Introduction and Challenges".

Recommender Systems Handbook, 1-34.

[9] Lu, J., Wu, D., Mao, M., Wang, W., & Zhang, G. (2015).

"Recommender System Application Developments: A

Survey". Decision Support Systems, 74, 12-32.

[10] Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016).

"Paper Recommender Systems: A Literature Survey".

International Journal on Digital Libraries, 17, 305-338.

[11] Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A., &

Kashef, R. (2020). "Recommendation Systems:

Algorithms, Challenges, Metrics, and Business

Opportunities". Applied Sciences, 10(21), 7748

[12] Jannach, D., Pu, P., Ricci, F., & Zanker, M. (2021).

"Recommender Systems: Past, Present, Future". AI

Magazine, 42(3), 3-6.

[13] Kanwal, S., Nawaz, S., Malik, M. K., & Nawaz, Z. (2021).

"A Review of Text-based Recommendation Systems".

IEEE Access, 9, 31638-31661.

[14] Roy, D., & Dutta, M. (2022). "A Systematic Review and

Research Perspective on Recommender Systems". Journal

of Big Data, 9(1), 59.

[15] Ko, H., Lee S., Park Y., & Choi A. (2022). "A Survey of

Recommendation Systems: Recommendation Models,

Techniques, and Application Fields". Electronics, 11(1),

141.

[16] Rich, E. (1979). "User Modeling via Stereotypes".

Cognitive science, 3(4), 329-354.

[17] Goldberg, D., Nichols, D., Oki, B., & Terry, D. (1992).

"Using Collaborative Filtering to Weave an Information

Tapestry". Communications of the ACM, 35(12), 61-70.

[18] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., &

Riedl, J. (1994). "Grouplens: An Open Architecture for

Collaborative Filtering of NetNews". In ACM Conference

on Computer Supported Cooperative Work, 175-186.

[19] Amazon: https://www.amazon.com

[20] Linden, G., Smith, B., & York, J. (2003). "Amazon.com

Recommendations: Item-to-Item Collaborative Filtering".

IEEE Internet Computing, 7(1), 76–80.

[21] Schafer, J. B., Konstan, J., & Riedl, J. (1999).

"Recommender Systems in E-Commerce". In Proceedings

of the 1st ACM Conference on Electronic Commerce,

158-166.

[22] NetFlix: https://www.netflix.com

[23] Youtube: https://www.youtube.com

[24] Luhn, H. (1958). "The Automatic Creation of Literature

Abstracts". IBM Journal of Research and

Development, 2(2), 159-165.

[25] Salton, G., Wong, A., & Yang, C. S. (1975a). "A Vector

Space Model for Automatic Indexing". Communications

of the ACM, 18(11), 613-620.

[26] Salton, G., Yang, C. S., & Yu, C. T. (1975b). "A Theory

of Term Importance in Automatic Text Analysis". Journal

of the American Society for Information Science, 26(1),

33-44.

[27] Salton, G. & McGill, M. (1983). "Introduction to Modern

Information Retrieval". McGraw Hill Book Co, New

York.

[28] Salton, G., & Buckley, C. (1988). "Term-Weighting

approaches in Automatic Text Retrieval". Information

Processing and Management, 24(5), 513-523.

[29] Salton, G. (1989). "Automatic Text Processing: The

Transformation, Analysis, and Retrieval of Information by

Computer". Addison- Wesley Publishing Company, USA.

[30] Python: https://www.python.org

[31] Numpy: https://www.numpy.org

[32] Pandas: https:// pandas.pydata.org

[33] Matplotlib: https://www. matplotlib.org

[34] NLTK: https://www.nltk.org

[35] SK Learnt: https://scikit-learn.org

[36] Wikipedia: https://en.wikipedia.org

IJCATM : www.ijcaonline.org

